389 research outputs found

    Remote Sensing of Precipitation: Part II

    Get PDF
    Precipitation is a well-recognized pillar in the global water and energy balances. The accurate and timely understanding of its characteristics at the global, regional and local scales is indispensable for a clearer insight on the mechanisms underlying the Earth’s atmosphere-ocean complex system. Precipitation is one of the elements that is documented to be greatly affected by climate change. In its various forms, precipitation comprises the primary source of freshwater, which is vital for the sustainability of almost all human activities. Its socio-economic significance is fundamental in managing this natural resource effectively, in applications ranging from irrigation to industrial and household usage. Remote sensing of precipitation is pursued through a broad spectrum of continuously enriched and upgraded instrumentation, embracing sensors which can be ground-based (e.g., weather radars), satellite-borne (e.g., passive or active space-borne sensors), underwater (e.g., hydrophones), aerial, or ship-borne. This volume hosts original research contributions on several aspects of remote sensing of precipitation, including applications which embrace the use of remote sensing in tackling issues such as precipitation estimation, seasonal characteristics of precipitation and frequency analysis, assessment of satellite precipitation products, storm prediction, rain microphysics and microstructure, and the comparison of satellite and numerical weather prediction precipitation products

    Radar and satellite observations of precipitation: space time variability, cross-validation, and fusion

    Get PDF
    2017 Fall.Includes bibliographical references.Rainfall estimation based on satellite measurements has proven to be very useful for various applications. A number of precipitation products at multiple time and space scales have been developed based on satellite observations. For example, the National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center has developed a morphing technique (i.e., CMORPH) to produce global precipitation products by combining existing space-based observations and retrievals. The CMORPH products are derived using infrared (IR) brightness temperature information observed by geostationary satellites and passive microwave-(PMW) based precipitation retrievals from low earth orbit satellites. Although space-based precipitation products provide an excellent tool for regional, local, and global hydrologic and climate studies as well as improved situational awareness for operational forecasts, their accuracy is limited due to restrictions of spatial and temporal sampling and the applied parametric retrieval algorithms, particularly for light precipitation or extreme events such as heavy rain. In contrast, ground-based radar is an excellent tool for quantitative precipitation estimation (QPE) at finer space-time scales compared to satellites. This is especially true after the implementation of dual-polarization upgrades and further enhancement by urban scale X-band radar networks. As a result, ground radars are often critical for local scale rainfall estimation and for enabling forecasters to issue severe weather watches and warnings. Ground-based radars are also used for validation of various space measurements and products. In this study, a new S-band dual-polarization radar rainfall algorithm (DROPS2.0) is developed that can be applied to the National Weather Service (NWS) operational Weather Surveillance Radar-1988 Doppler (WSR-88DP) network. In addition, a real-time high-resolution QPE system is developed for the Engineering Research Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) Dallas-Fort Worth (DFW) dense radar network, which is deployed for urban hydrometeorological applications via high-resolution observations of the lower atmosphere. The CASA/DFW QPE system is based on the combination of a standard WSR-88DP (i.e., KFWS radar) and a high-resolution dual-polarization X-band radar network. The specific radar rainfall methodologies at Sand X-band frequencies, as well as the fusion methodology merging radar observations at different temporal resolutions are investigated. Comparisons between rainfall products from the DFW radar network and rainfall measurements from rain gauges are conducted for a large number of precipitation events over several years of operation, demonstrating the excellent performance of this urban QPE system. The real-time DFW QPE products are extensively used for flood warning operations and hydrological modelling. The high-resolution DFW QPE products also serve as a reliable dataset for validation of Global Precipitation Measurement (GPM) satellite precipitation products. This study also introduces a machine learning-based data fusion system termed deep multi-layer perceptron (DMLP) to improve satellite-based precipitation estimation through incorporating ground radar-derived rainfall products. In particular, the CMORPH technique is applied first to derive combined PMW-based rainfall retrievals and IR data from multiple satellites. The combined PMW and IR data then serve as input to the proposed DMLP model. The high-quality rainfall products from ground radars are used as targets to train the DMLP model. In this dissertation, the prototype architecture of the DMLP model is detailed. The urban scale application over the DFW metroplex is presented. The DMLP-based rainfall products are evaluated using currently operational CMORPH products and surface rainfall measurements from gauge networks

    Exploitation of X-band weather radar data in the Andes high mountains and its application in hydrology: a machine learning approach

    Get PDF
    Rainfall in the tropical Andes high mountains is paramount for understanding complex hydrological and ecological phenomena that take place in this distinctive area of the world. Here, rainfall drives imminent hazards such as severe floods, rainfall-induced landslides, different types of erosion, among others. Nonetheless, sparse and uneven distributed rain gauge networks as well as low- resolution satellite imagery are not sufficient to capture its high variability and complex dynamics in the irregular topography of high mountains at appropriate temporal and spatial scales. This results in both, a lack of knowledge about rainfall patterns, as well as a poor understanding of rainfall microphysics, which to date are largely underexplored in the tropical Andes. Therefore, this investigation focuses on the deployment and exploitation of single-polarization (SP) X-band weather radars in the Andean high mountain regions of southern Ecuador, applicable to quantitative precipitation estimation (QPE) and discharge forecasting. This work leverages radar rainfall data by exploring a machine learning (ML) approach. The main aims of the thesis were: (i) The deployment of a first X-band weather radar network in tropical high mountains, (ii) the physically-based QPE of X-band radar retrievals, (iii) the optimization of radar QPE by using a ML-based model and (iv) a discharge forecasting application using a ML-based model and SP X-band radar data. As a starting point, deployment of the first weather radar network in tropical high mountains was carried out. A complete framework for data transmission was set for communication among the network. The highest radar in the network (4450 m a.s.l.) was selected in this study for exploiting the potential of SP X-band radar data in the Andes. First and foremost, physically-based QPE was performed through the derivation of Z-R relationships. For this, data from three disdrometers at different geographic locations and elevation were used. Several rainfall events were selected in order to perform a classification of rainfall types based on the mean volume diameter (Dm [mm]). Derived Z-R relations confirmed the high variability in their parameters due to different rainfall types in the study area. Afterwards, the optimization of radar QPE was pursued by using a ML approach as an alternative to the common physically-based QPE method by means of the Z-R relation. For this, radar QPE was tackled by using two different approaches. The first one was conducted by implementing a step-wise approach where reflectivity correction is performed in a step-by-step basis (i.e., clutter removal, attenuation correction). Finally a locally derived Z-R relationship was applied for obtaining radar QPE. Rain gauge-bias adjustment was neglected because the availability of rain gauge data at near-real time is limited and infrequent in the study area. The second one was conducted by an implementation of a radar QPE model that used the Random Forest (RF) algorithm and reflectivity derived features as inputs for the model. Finally, the performances of both models were compared against rain gauge data. The results showed that the ML-based model outperformed the step-wise approach, making it possible to obtain radar QPE without the need of rain gauge data after the model was implemented. It also allowed to extend the useful range of the radar image (i.e., up to 50 km). Radar QPE can be generally used as input for discharge forecasting models if available. However, one could expect from ML-based models as RF, the ability to map radar data to the target variable (discharge) without any intermediate step (e.g., transformation from reflectivity to rainfall rate). Thus, a comparison for discharge forecasting was performed between RF models that used different input data type. Input data for the relevant models were obtained either from native reflectivity records (i.e., reflectivity corrected from unrealistic measurements) or derived radar-rainfall data (i.e., radar QPE). Results showed that both models performed alike. This proved the suitability of using native radar data (reflectivity) for discharge forecasting in mountain regions. This could be extrapolated in the advantages of deploying radar networks and use their information directly to fed early-warning systems regardless of the availability of rain gauges at ground. In summary, this investigation (i) participated on the deployment of the first weather radar network in tropical high mountains, (ii) significantly contributed to a deeper understanding of rainfall microphysics and its variability in the high tropical Andes by using disdrometer data and (iii) exploited, for the very first time, the native X-band radar reflectivity as a suitable input for ML-based models for both, optimized radar QPE and discharge forecasting. The latter highlighted the benefits and potentials of using a ML approach in radar hydrology. The research generally accounted for ground monitoring limitations commonly found in mountain regions and provided a promising alternative with leveraging the cost-effective X-band technology in the steep terrain of the Andean Cordillera

    Ejection of marine microplastics by raindrops : a computational and experimental study

    Get PDF
    Abstract Raindrops impacting water surfaces such as lakes or oceans produce myriads of tiny droplets which are ejected into the atmosphere at very high speeds. Here we combine computer simulations and experimental measurements to investigate whether these droplets can serve as transport vehicles for the transition of microplastic particles with diameters of a few tens of μm from ocean water to the atmosphere. Using the Volume-of-Fluid lattice Boltzmann method, extended by the immersed-boundary method, we performed more than 1600 raindrop impact simulations and provide a detailed statistical analysis on the ejected droplets. Using typical sizes and velocities of real-world raindrops – parameter ranges that are very challenging for 3D simulations – we simulate straight impacts with various raindrop diameters as well as oblique impacts. We find that a 4mm diameter raindrop impact on average ejects more than 167 droplets. We show that these droplets indeed contain microplastic concentrations similar to the ocean water within a few millimeters below the surface. To further assess the plausibility of our simulation results, we conduct a series of laboratory experiments, where we find that microplastic particles are indeed contained in the spray. Based on our results and known data – assuming an average microplastic particle concentration of 2.9 particles per liter at the ocean surface – we estimate that, during rainfall, about 4800 microplastic particles transition into the atmosphere per square kilometer per hour for a typical rain rate of 10 mm h 10mmh10 \frac {\text {mm}}{\mathrm {h}} and vertical updraft velocity of 0.5 m s 0.5ms0.5 \frac {\mathrm {m}}{\mathrm {s}}

    An analysis-forecast system for uncertainty modeling of wind speed: A case study of large-scale wind farms

    Full text link
    © 2017 Elsevier Ltd The uncertainty analysis and modeling of wind speed, which has an essential influence on wind power systems, is consistently considered a challenging task. However, most investigations thus far were focused mainly on point forecasts, which in reality cannot facilitate quantitative characterization of the endogenous uncertainty involved. An analysis-forecast system that includes an analysis module and a forecast module and can provide appropriate scenarios for the dispatching and scheduling of a power system is devised in this study; this system superior to those presented in previous studies. In order to qualitatively and quantitatively investigate the uncertainty of wind speed, recurrence analysis techniques are effectively developed for application in the analysis module. Furthermore, in order to quantify the uncertainty accurately, a novel architecture aimed at uncertainty mining is devised for the forecast module, where a non-parametric model optimized by an improved multi-objective water cycle algorithm is considered a predictor for producing intervals for each mode component after feature selection. The results of extensive in-depth experiments show that the devised system is not only superior to the considered benchmark models, but also has good potential practical applications in wind power systems

    Analysis of lesion border segmentation using watershed algorithm

    Get PDF
    Automatic lesion segmentation is an important part of computer-based skin cancer detection. A watershed algorithm was introduced and tested on benign and melanoma images. The average of three dermatologists\u27 manually drawn borders was compared as the benchmark. Hair removing, black border removing and vignette removing methods were introduced in preprocessing steps. A new lesion ratio estimate was added to the merging method, which was determined by the outer bounding box ratio. In postprocessing, small blob removing and border smoothing using a peninsula removing method as well as a second order B-Spline smoothing method were included. A novel threshold was developed for removing large light areas near the lesion boundary. A supervised neural network was applied to cluster results and improve the accuracy, classifying images into three clusters: proper estimate, over-estimate and under-estimate. Comparing to the manually drawn average border, an overall of 11.12% error was achieved. Future work will involve reducing peninsula-shaped noise and looking for other reliable features for the classifier --Abstract, page iii

    Estimation of monsoon rainfall by single polarization weather radar

    Get PDF
    Weather radar can offer synoptic measurement at a higher temporal and spatial resolution to extract the rain information. Rainfall can be inverted from the radar reflectivity using the power-law relation to ground rain gauge measurement. The relationship known as Z-R model has been established in many variants but the uncertainty from the sampling bias and the Z-R variability of single-polarization radar observation on monsoon rain becomes subject to research. This study reports a novel research framework to systematically estimate the monsoon rainfall using new Z-R model on the single-polarization weather radar in Kelantan. The sampling bias was quantified by the pixel matching procedure while the non-linear Levenberg Marquardt (LM) regression and the Artificial Neural Network (ANN) regression at different rain intensity and radar range were introduced to minimise the Spatio-temporal variability of the new Z-R model. This study uses 10-minute reflectivity data recorded in Kota Bahru radar station and hourly rain record at the nearby 58 gauge stations in 2013 to 2015. The three-dimensional nearest neighbour interpolation proves that the sampling bias can be quantified. The LM shows an improvement of about 12% if the spatial adjustment was applied in the regression. Unlike LM, the ANN is more robust and independent to the spatial adjustment thus it could provide more accurate and reliable monsoon rain information in heterogenous rainy condition. The ANN model provides accuracy of ± 0.4 mm/hr, ± 1.0 mm/hr and ± 8.2 mm/hr for low, medium and high rain intensity respectively with correlation coefficient > 0.7 (p 0.5 and accuracy improvement about 8 %, 10% and 5% for abovementioned rain intensity respectively. Radar derived rainfall maps present the rain distribution was more concentrated in all downstream but only covered 1/3 of the upstream in Kelantan rivers. Further research is needed before the technique could be applied to any single-polarization system in Southeast Asia to achieve better accuracy of rain information extraction

    Stratiform and convective rain classification using machine learning models and micro rain radar

    Get PDF
    Rain type classification into convective and stratiform is an essential step required to improve quantitative precipitation estimations by remote sensing instruments. Previous studies with Micro Rain Radar (MRR) measurements and subjective rules have been performed to classify rain events. However, automating this process by using machine learning (ML) models provides the advantages of fast and reliable classification with the possibility to classify rain minute by minute. A total of 20,979 min of rain data measured by an MRR at Das in northeast Spain were used to build seven types of ML models for stratiform and convective rain type classification. The proposed classification models use a set of 22 parameters that summarize the reflectivity, the Doppler velocity, and the spectral width (SW) above and below the so-called separation level (SL). This level is defined as the level with the highest increase in Doppler velocity and corresponds with the bright band in stratiform rain. A pre-classification of the rain type for each minute based on the rain microstructure provided by the collocated disdrometer was performed. Our results indicate that complex ML models, particularly tree-based ensembles such as xgboost and random forest which capture the interactions of different features, perform better than simpler models. Applying methods from the field of interpretable ML, we identified reflectivity at the lowest layer and the average spectral width in the layers below SL as the most important features. High reflectivity and low SW values indicate a higher probability of convective rainPostprint (published version
    • …
    corecore