1,010 research outputs found

    A Non-Cooperative Game Theoretical Approach For Power Control In Virtual MIMO Wireless Sensor Network

    Full text link
    Power management is one of the vital issue in wireless sensor networks, where the lifetime of the network relies on battery powered nodes. Transmitting at high power reduces the lifetime of both the nodes and the network. One efficient way of power management is to control the power at which the nodes transmit. In this paper, a virtual multiple input multiple output wireless sensor network (VMIMO-WSN)communication architecture is considered and the power control of sensor nodes based on the approach of game theory is formulated. The use of game theory has proliferated, with a broad range of applications in wireless sensor networking. Approaches from game theory can be used to optimize node level as well as network wide performance. The game here is categorized as an incomplete information game, in which the nodes do not have complete information about the strategies taken by other nodes. For virtual multiple input multiple output wireless sensor network architecture considered, the Nash equilibrium is used to decide the optimal power level at which a node needs to transmit, to maximize its utility. Outcome shows that the game theoretic approach considered for VMIMO-WSN architecture achieves the best utility, by consuming less power.Comment: 12 pages, 8 figure

    Network coding-aided MAC protocols for cooperative wireless networks

    Get PDF
    The introduction of third generation (3G) technologies has caused a vast proliferation of wireless devices and networks, generating an increasing demand for high level Quality of Service (QoS). The wide spread of mobile applications has further reinforced the user need for communication, motivating at the same time the concepts of user cooperation and data dissemination. However, this trend towards continuous exchange of information and ubiquitous connectivity is inherently restricted by the energy-greedy functionalities of high-end devices. These limitations, along with the pressure exerted on the Information and Communications Technology (ICT) industry towards energy awareness, have induced the design of novel energy efficient schemes and algorithms. In this context, the Medium Access Control (MAC) layer plays a key role, since it is mainly responsible for the channel access regulation, the transmission scheduling and the resource allocation, thus constituting an appropriate point to effectively address energy efficiency issues that arise due to the users overcrowding. This dissertation provides a contribution to the design, analysis and evaluation of novel MAC protocols for cooperative wireless networks. In our attempt to design energy efficient MAC schemes, we were extensively assisted by the introduction of new techniques, such as Network Coding (NC), that intrinsically bring considerable gains in system performance. The main thesis contributions are divided into two parts. The first part presents NCCARQ, a novel NC-aided Cooperative Automatic Repeat reQuest (ARQ) MAC protocol for wireless networks. NCCARQ introduces a new access paradigm for cooperative ARQ schemes, exploiting NC benefits in bidirectional communication among wireless users. The NCCARQ performance in terms of QoS and energy efficiency is assessed by means of analytical probabilistic models and extensive computer-based simulations, revealing the significant gains we can achieve compared to standardized MAC solutions. In addition, the impact of realistic wireless channel conditions on the MAC protocol operation further motivated us to study the NCCARQ performance in wireless links affected by correlated shadowing, showing that the channel correlation may adversely affect the distributed cooperation benefits. The second part of the thesis is dedicated to the investigation of MAC issues in wireless data dissemination scenarios. In particular, the existence of multiple source nodes in such scenarios generates conflicting situations, considering the selfish behavior of the wireless devices that want to maximize their battery lifetime. Bearing in mind the energy efficiency importance, we propose game theoretic medium access strategies, applying energy-based utility functions which inherently imply energy awareness. In addition, Random Linear NC (RLNC) techniques are adopted to eliminate the need of exchanging excessive control packets, while Analog NC (ANC) is employed to efface the impact of collisions throughout the communication. During the elaboration of this thesis, two general key conclusions have been extracted. First, there is a fundamental requirement for implementation of new MAC protocols in order to effectively deal with state-of-the-art techniques (e.g., NC), recently introduced to enhance both the performance and the energy efficiency of the network. Second, we highlight the importance of designing novel energy efficient MAC protocols, taking into account that traditional approaches - designed mainly to assist the collision avoidance in wireless networks - tend to be obsolete.La presente tesis doctoral contribuye al diseño, análisis y evaluación de nuevos protocolos MAC cooperativos para redes inalámbricas. La introducción de nuevas técnicas, tales como la codificación de red (NC), que intrínsecamente llevan un considerable aumento en el rendimiento del sistema, nos ayudó ampliamente durante el diseño de protocolos MAC energéticamente eficientes. Las principales contribuciones de esta tesis se dividen en dos partes. La primera parte presenta el NCCARQ, un protocolo cooperativo de retransmisión automática (ARQ), asistido por NC para redes inalámbricas. La segunda parte de la tesis se centra en el diseño de protocolos de capa MAC en escenarios inalámbricos de difusión de datos. Teniendo en cuenta la importancia de la eficiencia energética, se proponen técnicas de acceso al medio basadas en teoría de juegos dónde las funciones objetivo están motivadas por el consumo energético. Las soluciones propuestas son evaluadas por medio de modelos analíticos y simulaciones por ordenador

    Energy Efficient and Secure Wireless Sensor Networks Design

    Get PDF
    Wireless Sensor Networks (WSNs) are emerging technologies that have the ability to sense, process, communicate, and transmit information to a destination, and they are expected to have significant impact on the efficiency of many applications in various fields. The resource constraint such as limited battery power, is the greatest challenge in WSNs design as it affects the lifetime and performance of the network. An energy efficient, secure, and trustworthy system is vital when a WSN involves highly sensitive information. Thus, it is critical to design mechanisms that are energy efficient and secure while at the same time maintaining the desired level of quality of service. Inspired by these challenges, this dissertation is dedicated to exploiting optimization and game theoretic approaches/solutions to handle several important issues in WSN communication, including energy efficiency, latency, congestion, dynamic traffic load, and security. We present several novel mechanisms to improve the security and energy efficiency of WSNs. Two new schemes are proposed for the network layer stack to achieve the following: (a) to enhance energy efficiency through optimized sleep intervals, that also considers the underlying dynamic traffic load and (b) to develop the routing protocol in order to handle wasted energy, congestion, and clustering. We also propose efficient routing and energy-efficient clustering algorithms based on optimization and game theory. Furthermore, we propose a dynamic game theoretic framework (i.e., hyper defense) to analyze the interactions between attacker and defender as a non-cooperative security game that considers the resource limitation. All the proposed schemes are validated by extensive experimental analyses, obtained by running simulations depicting various situations in WSNs in order to represent real-world scenarios as realistically as possible. The results show that the proposed schemes achieve high performance in different terms, such as network lifetime, compared with the state-of-the-art schemes

    Efficient Clustering Technique for Cooperative Wireless Sensor Network

    Full text link

    An efficient power control game model for wireless sensor networks

    Get PDF
    Efficient energy usage is a major design challenge in wireless sensor networks. In this paper, an efficient power control scheme that mitigates interference and reduces the energy usage of the sensor nodes in a wireless sensor network is presented using the game theory. A non-cooperative game was formulated among the sensor nodes in the modeled network by setting a transmission power limit at the receiving nodes which ensured that the transmitting nodes transmits at the optimal power level. The utility of the sensor nodes and the interference proportion within the network was evaluated at the optimal and discrete transmit powers. The Nash equilibrium of the proposed game was studied and it corresponds to a stability point where the network performance was optimized. Simulation results showed that the proposed scheme is effective for optimization of network resource utilization, reduction in the energy consumption of the nodes, increasing the transmission sum rate, reduction of interference within the network, and improving the network capacity. Keywords: Power control, Wireless sensor network, Non-cooperative game, Interference, Energ

    A game theory based strategy for reducing energy consumption in cognitive WSN

    Get PDF
    Wireless sensor networks (WSNs) are one of the most important users of wireless communication technologies in the coming years and some challenges in this area must be addressed for their complete development. Energy consumption and spectrum availability are two of the most severe constraints of WSNs due to their intrinsic nature. The introduction of cognitive capabilities into these networks has arisen to face the issue of spectrum scarcity but could be used to face energy challenges too due to their new range of communication possibilities. In this paper a new strategy based on game theory for cognitive WSNs is discussed. The presented strategy improves energy consumption by taking advantage of the new change-communication-channel capability. Based on game theory, the strategy decides when to change the transmission channel depending on the behavior of the rest of the network nodes. The strategy presented is lightweight but still has higher energy saving rates as compared to noncognitive networks and even to other strategies based on scheduled spectrum sensing. Simulations are presented for several scenarios that demonstrate energy saving rates of around 65% as compared to WSNs without cognitive techniques

    Optimization of positioning capabilities in wireless sensor networks : from power efficiency to medium access

    Get PDF
    In Wireless Sensor Networks (WSN), the ability of sensor nodes to know its position is an enabler for a wide variety of applications for monitoring, control, and automation. Often, sensor data is meaningful only if its position can be determined. Many WSN are deployed indoors or in areas where Global Navigation Satellite System (GNSS) signal coverage is not available, and thus GNSS positioning cannot be guaranteed. In these scenarios, WSN may be relied upon to achieve a satisfactory degree of positioning accuracy. Typically, batteries power sensor nodes in WSN. These batteries are costly to replace. Therefore, power consumption is an important aspect, being performance and lifetime of WSN strongly relying on the ability to reduce it. It is crucial to design effective strategies to maximize battery lifetime. Optimization of power consumption can be made at different layers. For example, at the physical layer, power control and resource optimization may play an important role, as well as at higher layers through network topology and MAC protocols. The objective of this Thesis is to study the optimization of resources in WSN that are employed for positioning purposes, with the ultimate goal being the minimization of power consumption. We focus on anchor-based positioning, where a subset of the WSN nodes know their location (anchors) and send ranging signals to nodes with unknown position (targets) to assist them in estimating it through distance-related measurements. Two well known of such measurements are received signal strength (RSS) and time of arrival (TOA), in which this Thesis focuses. In order to minimize power consumption while providing a certain quality of positioning service, in this dissertation we research on the problems of power control and node selection. Aiming at a distributed implementation of the proposed techniques, we resort to the tools of non-cooperative game theory. First, transmit power allocation is addressed for RSS based ranging. Using game theory formulation, we develop a potential game leading to an iterated best response algorithm with sure convergence. As a performance metric, we introduce the geometric dilution of precision (GDOP), which is shown to help achieving a suitable geometry of the selected anchor nodes. The proposed scheme and relative distributed algorithms provide good equilibrium performance in both static and dynamic scenarios. Moreover, we present a distributed, low complexity implementation and analyze it in terms of computational complexity. Results show that performance close to that of exhaustive search is possible. We then address the transmit power allocation problem for TOA based ranging, also resorting to a game theoretic formulation. In this setup, and also considering GDOP as performance metric, a supermodular game formulation is proposed, along with a distributed algorithm with guaranteed convergence to a unique solution, based on iterated best response. We analyze the proposed algorithm in terms of the price of anarchy (PoA), that is, compared to a centralized optimum solution, and shown to have a moderate performance loss. Finally, this dissertation addresses the effect of different MAC protocols and topologies in the positioning performance. In this direction, we study the performance of mesh and cluster-tree topologies defined in WSN standards. Different topologies place different constraints in network connectivity, having a substantial impact on the performance of positioning algorithms. While mesh topology allows high connectivity with large energy consumption, cluster-tree topologies are more energy efficient but suffer from reduced connectivity and poor positioning performance. In order to improve the performance of cluster-tree topologies, we propose a cluster formation algorithm. It significantly improves connectivity with anchor nodes, achieving vastly improved positioning performance.En les xarxes de sensors sense fils (WSN), l'habilitat dels nodes sensors per conèixer la seva posició facilita una gran varietat d'aplicacions per la monitorització, el control i l'automatització. Així, les dades que proporciona un sensor tenen sentit només si la posició pot ésser determinada. Moltes WSN són desplegades en interiors o en àrees on la senyal de sistemes globals de navegació per satèl.lit (GNSS) no té prou cobertura, i per tant, el posicionament basat en GNSS no pot ésser garantitzat. En aquests escenaris, les WSN poden proporcionar una bona precisió en posicionament. Normalment, en WSN els nodes són alimentats amb bateries. Aquestes bateries són difícils de reemplaçar. Per tant, el consum de potència és un aspecte important i és crucial dissenyar estratègies efectives per maximitzar el temps de vida de la bateria. L'optimització del consum de potència pot ser fet a diferents capes del protocol. Per exemple, en la capa física, el control de potència i l'optimització dels recursos juguen un rol important, igualment que la topologia de xarxa i els protocols MAC en les capes més altes. L'objectiu d'aquesta tesi és estudiar l¿optimització de recursos en WSN que s'utilitzen per fer posicionament, amb el propòsit de minimitzar el consum de potència. Ens focalitzem en el posicionament basat en àncora, en el qual un conjunt de nodes coneixen la seva localització (nodes àncora) i envien missatges als nodes que no saben la seva posició per ajudar-los a estimar les seves coordenades amb mesures de distància. Dues classes de mesures són la potència de la senyal rebuda (RSS) i el temps d'arribada (TOA) en les quals aquesta tesi està focalitzada. Per minimitzar el consum de potència mentre que es proporciona suficient qualitat en el posicionament, en aquesta tesi estudiem els problemes de control de potència i selecció de nodes. Tenint en compte una implementació distribuïda de les tècniques proposades, utilitzem eïnes de teoria de jocs no cooperatius. Primer, l'assignació de potència transmesa és abordada pel càlcul de la distància amb RSS. Utilitzant la teoria de jocs, desenvolupem un joc potencial que convergeix amb un algoritme iteratiu basat en millor resposta (best response). Com a mètrica d'error, introduïm la dilució de la precisió geomètrica (GDOP) que mostra quant d'apropiada és la geometria dels nodes àncora seleccionats. L'esquema proposat i els algoritmes distribuïts proporcionen una bona resolució de l'equilibri en l'escenari estàtic i dinàmic. Altrament, presentem una implementació distribuïda i analitzem la seva complexitat computacional. Els resultats obtinguts són similars als obtinguts amb un algoritme de cerca exhaustiva. El problema d'assignació de la potència transmesa en el càlcul de la distància basat en TOA, també és tractat amb teoria de jocs. En aquest cas, considerant el GDOP com a mètrica d'error, proposem un joc supermodular juntament amb un algoritme distribuït basat en millor resposta amb convergència garantida cap a una única solució. Analitzem la solució proposada amb el preu de l'anarquia (PoA), és a dir, es compara la nostra solució amb una solució òptima centralitzada mostrant que les pèrdues són moderades. Finalment, aquesta tesi tracta l'efecte que causen diferents protocols MAC i topologies en el posicionament. En aquesta direcció, estudiem les topologies de malla i arbre formant clusters (cluster-tree) que estan definides als estàndards de les WSN. La diferència entre les topologies crea diferents restriccions en la connectivitat de la xarxa, afectant els resultats de posicionament. La topologia de malla permet una elevada connectivitat entre els nodes amb gran consum d'energia, mentre que les topologies d'arbre són més energèticament eficients però amb baixa connectivitat entre els nodes i baix rendiment pel posicionament. Per millorar la qualitat del posicionament en les topologies d'arbre, proposem un algoritme de formació de clústers.Postprint (published version

    Intrusion detection model of wireless sensor networks based on game theory and an autoregressive model

    Full text link
    © 2018 Elsevier Inc. An effective security strategy for Wireless Sensor Networks (WSNs) is imperative to counteract security threats. Meanwhile, energy consumption directly affects the network lifetime of a wireless sensor. Thus, an attempt to exploit a low-consumption Intrusion Detection System (IDS) to detect malicious attacks makes a lot of sense. Existing Intrusion Detection Systems can only detect specific attacks and their network lifetime is short due to their high energy consumption. For the purpose of reducing energy consumption and ensuring high efficiency, this paper proposes an intrusion detection model based on game theory and an autoregressive model. The paper not only improves the autoregressive theory model into a non-cooperative, complete-information, static game model, but also predicts attack pattern reliably. The proposed approach improves on previous approaches in two main ways: (1) it takes energy consumption of the intrusion detection process into account, and (2) it obtains the optimal defense strategy that balances the system's detection efficiency and energy consumption by analyzing the model's mixed Nash equilibrium solution. In the simulation experiment, the running time of the process is regarded as the main indicator of energy consumption of the system. The simulation results show that our proposed IDS not only effectively predicts the attack time and the next targeted cluster based on the game theory, but also reduces energy consumption
    corecore