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Abstract— Current applications of Internet of Things (IoT) 
often require nodes to implement logical decision-making on 
aggregated data, which involves more processing and wider 
interactions amongst network peers, resulting in higher energy 
consumption and shorter node lifetime. This paper presents a 
game theoretic approach used in Sensomax, an agent-based 
WSN middleware that facilitates seamless integration of 
mathematical functions in large-scale wireless sensor networks. 
In this context, we investigate game theoretic and auction-based 
techniques to optimise task distribution and energy 
consumption in IoT networks of multiple WSNs. We also 
demonstrate how our proposed game theoretic approach affects 
the performance of WSN applications with different 
operational paradigms. 
 

Keywords— Game theory; IoT; WSN; Energy-efficient; 
Sensomax; 

I. INTRODUCTION 
IoT (Internet of Things) has become a major technology 
enabler for a wide variety of applications ranging from 
medical, to military and environmental monitoring. These 
require data to be aggregated online, and often involve a 
number of actions to be applied on the environment (i.e. via 
actuators) as a result of the data aggregation process. They 
include multiple interconnected WSNs with a more 
sophisticated set of logical and mathematical functionalities, 
often implemented in a collaborative fashion amongst a large 
number of sensors and actuators. Sensor nodes therefore 
require a relatively powerful processor and sufficient 
memory for retrieving raw data and storing the processed 
ones, which in turn requires increasingly more resourceful 
components, but supplying sensors with larger energy 
sources often results in larger, harder to deploy sensors. 
Modern   applications   also   attempt   to   maximise   WSN’s  
reusability by sharing their resources amongst multiple 
applications, in order to reduce the cost and the hardship 
involved  in  WSNs’  deployment. 

There have been several attempts to provide sensors with 
reliable software in order to regulate their energy 
consumption   and   manage   applications’   access   to   their  
underlying hardware. Middleware is a software layer, which 
lies between the application layer and the hardware 
components. It acts as an intermediary by dividing the 
available hardware functionalities based on their 
characteristics, and providing the applications with their 
required functionalities in the form of services. Provision of 
such services is implemented by maximising resources 
usability and meeting the application requirements, whilst 
minimising  resources’  energy  footprint. 

After introducing Sensomax, the next section will review 
existing research using game theory in WSNs. In section 
three, we describe the methodology by which game theory is 

used in Sensomax for the aforementioned purposes. Finally 
the case study section presents experiments conducted to 
validate our proposed game theoretic approach in optimising 
resource allocation and task distribution in WSN. 

Sensomax [1-2] is an agent-based WSN middleware, which 
supports concurrent execution of multiple applications, 
integrates different mechanisms for different operational 
paradigms, and facilitates application developers with a 
component-based architecture for seamless development 
process. Sensomax is written in Java, and was modified to be 
used on various java-enabled hardware devices such as the 
Raspberry Pi. The modular architecture of Sensomax makes 
it easy to embed various logical and mathematical operations 
within the applications using Java APIs. It also provides 
developers with a set of pre-built APIs for modifications. 

One of the outstanding features of Sensomax is a hierarchical 
communication mechanism, which abstracts the network into 
logical regions with exclusive functionalities. In Sensomax, 
each application is allocated a region according to its needs, 
whilst resources in the same region can be utilised by other 
applications   simultaneously.   However,   each   application’s  
concurrent utilisation of the network resources is completely 
invisible to other applications. Such capability could also 
create a multi-tier and collaborative execution environment, 
where  multiple  applications’  interaction  using  the  same  set  of  
hardware resources is necessary.  

In [18] we used game-theory in the same manner to facilitate 
energy-efficiency. In this paper however we will use 
auction-based techniques [3-4] with game theory to optimise 
multi-tasking. [3-4] used auction-based techniques to 
distribute  applications’  tasks  amongst  sensors  based  on  their  
available resources, and investigated how quickly and 
energy-efficient applications requirements could be served. 

II. RELATED WORK  
Game theory is a mathematical tool aimed at solving conflicts 
and encouraging cooperation among rational participants. 
Participants,  who  are  known  as  ‘players’,  tend  to  focus  their  
decision-makings based on receiving the best possible reward 
[6]. Depending on the characteristics of a game, there are 
different approaches available to derive a solution: 

x A game is Cooperative when maximising the overall 
payoff is the primary objective, and players are not 
concerned with individual payoffs; conversely, in 
Non-cooperative games, individual payoffs are more 
important than the overall one.  

x A game is considered to be of Perfect Information, when 
every player knows all the strategies, which have been 
followed by others earlier in the game; Imperfect 
Information indicates a lack of information about the 
other players moves earlier in the game.  

Mo Haghighi, Konstantinos Maraslis, Theo Tryfonas, George Oikonomou, Alison Burrows, 
Pete Woznowski and Rob Piechocki  

School of Engineering 
University of Bristol 

Game  Theoretic  approach  towards  Optimal   
Multi-tasking  and  Data-distribution  in  IoT     



  

x In Static (or one-shot) games, all players choose a strategy 
simultaneously at the beginning and they cannot change 
it throughout the game; Dynamic games allow players 
to change strategies while the game is in progress. 

x A game in a Strategic form can be defined only by the 
strategy sets of the involved players, which are not 
known amongst players, and the function that 
determines the rewards given the followed strategies; an 
Extensive form game is sequential and often 
represented by a tree-graph, which provides players 
information about other players in addition to their 
sequence.  

x Nash Equilibrium is a set that consists of the strategies of 
all players, called optimal strategies, and that leads to a 
payoff for each player such that none of them can 
unilaterally change their strategy and gain higher reward 
than before. If a set of mixed strategies leads to a Nash 
Equilibrium, then this is called a mixed Nash 
Equilibrium. A game can have more than one Pure Nash 
Equilibrium [4]. 

x A   player’s   strategy   is   considered   Dominant when it 
always leads to better rewards for a given player than 
any other available strategy. 

Game theory can be used as a rational decision-making tool 
to solve conflicts of interest amongst network peers in WSNs. 
The kind of game played by network peers in Sensomax is a 
non-cooperative game with perfect information.   According 
to [5], the main categories that the game theoretic approaches 
of such conflicts fall into are: Network Management, with 
indicative topics such as Resource Allocation, Task 
Scheduling and Power Control, Communication with topics 
like Quality of Service (QoS), Topology Optimization and 
Routing Protocol Design, Network Security grappling with 
Intrusion/Denial of Service Attack Detection and Prevention 
and finally Applications such as Target Tracking, Data 
Collection and Packet Forwarding. In [17] we conducted a 
thorough study of game theory for the security aspects of IoT. 

In terms of network management, communication and 
applications, [15] offers a model to improve the performance 
of a heterogeneous WSN, by taking into consideration the 
reliability, connectivity and the power efficiency of the 
network. The results indicate that the existence of a Nash 
Equilibrium is always achievable. In similar work, [13] 
builds an energy-efficient control model, which offers great 
improvement to energy reduction in terms of QoS. it attempts 
to improve the so-called Gur Game algorithm [14], a 
mathematical model that is used for self-control in 
cooperative environments.  

 [10] offers a Localized Game theoretical Clustering 
Algorithm (LGCA), which tackles the problem of choosing 
the most appropriate cluster heads. It attempts to improve the 
Clustered ROuting for Selfish Sensors (CROSS) [11], and the 
Low-Energy Adaptive Clustering Hierarchy (LEACH) [12]. 
As the most fundamental part of the proposed solution, 
knowledge on the number of players (nodes) in each round is 
considered unnecessary. The key for this is that each node 
plays a clustering game only with its neighbours within a 
predefined radius. Moreover, exactly one node can bid for a 
position of the cluster-head in one district successfully, in 
order to achieve an optimal payoff. Simulation showed that 
LGCA performs better than CROSS and LEACH in terms of 
network lifetime. Focusing on security related applications of 
game theory within WSNs, [16] investigates cases where a 

clustered WSN is under attack. The proposed Intrusion 
Detection System (IDS) monitors the data transfers and 
strains to keep the WSN functioning properly. This situation 
is modelled as a two-player, non-cooperative, zero-sum game 
where   the   attacker’s   reward   is   proportional to the damage 
caused to the network and the defender, which is represented 
by  the  IDS,  receives  a  reward  proportional  to  the  network’s  
functionality. As a result, it is proved that the game has no 
Pareto optimal and no pure Nash Equilibrium. 

 [7] applies a reputation system on different sensors in order 
to make it more energy efficient and secure. Forwarding 
packages, in a fashion required by both ends, brings positive 
reputation to a sensor, but also consumes more energy, which 
could ultimately affect the networks performance later. There 
are malicious nodes that are injected in the network in order 
to randomly drop packets in order to shut down nodes with 
low reputation. In such cases there arises a number of 
conflicting motivations, where game theoretic tools could 
offer a suitable solution.  This model, which extends the 
works done in [8-9],   attempts   to   divide   nodes’   interaction  
into three distinctive domains including: any node-to-node 
communication; one-hop neighbours communication; and 
inner-cluster communication. It concludes that for all three 
types, there can always be a Nash equilibrium, by which 
security and power conservation can be improved.  

In [10] there is a game theoretic approach of multiple 
collaborating intruders who try to inject malicious data into a 
target  node  and  the  “defender”  (the  IDS)  tries  to  prevent  the  
attack. Since intruders can be assumed to act as one, there is a 
two-player, non-cooperative zero sum game that occurs. 
Intruders, in their attempt to send their package try to find the 
paths leading to the target node that will maximize the 
probability of successful delivery. The IDS on the other hand, 
can opt among different sampling strategies aiming to 
minimize the probability of a successful attack always by 
taking into account the underlying cost of each sampling 
strategy. Under that scheme, the authors demonstrate the 
existence of a Nash Equilibrium and the optimal strategies. 

III. METHODOLOGY 
In the introduction section we explained why executing 
multiple applications is crucial to WSNs. We also briefly 
described how Sensomax is capable of multitasking, in order 
to serve multiple end-users simultaneously. In [18] we have 
demonstrated how game theory can facilitate energy-efficient 
task distribution using the same methodology. In this paper 
however, our focus will be on utilizing game theory for 
multi-tasking in WSNs. Multi-tasking capability is in fact 
implemented through hierarchical task distributions amongst 
multiple clusters. In this section we will describe how game 
theory is technically exploited within the Sensomax 
architecture for more optimal task distribution amongst 
clusters running multiple tasks. 

Before we go deep into any low level details, it is worth 
mentioning that serving the end-users is considered the most 
important requirement of the base station. Therefore, the base 
station needs to satisfy the services required by the end-user 
as its first priority. However, new applications, which are 
deployed onto the base station, either by the existing 
end-users or the new ones, have certain requirement that also 
need to be satisfied in addition to the pre-deployed 
applications.  

K Maraslis




  

In the context of game theory, the base station should weight 
its strategies and choose the best option, which maximises or 
at the least maintains its profit (utility) whilst meeting old and 
new   applications’   requirements   simultaneously.   A   node’s  
utility is defined by the amount of processing time spent on 
the given tasks, where maximising utility means spending 
less processing, thus saving more energy. 

As was briefly pointed out in the introduction section, the 
decision (strategy taken) of the base station will be known to 
the cluster-heads. The same applies to the communications 
between the cluster-heads and their members. Therefore in 
this section we will consider maintaining or maximising the 
base station, cluster-heads’  and  cluster  members’  utilities  in  
an extended game theoretic form with perfect information. 
Since this case study only deals with the interactions between 
the base station and the cluster-heads, the decision maker 
needs to make its choice between the dominated strategy and 
the Nash equilibrium (if any) with prior knowledge on the 
decision taken by the peer one-level higher in hierarchy.  

As we explained earlier, our proposed approach uses 
auction-based algorithm in conjunction with the game theory. 
The auction-based algorithms are only used to calculate the 
price of each task. More details, including the algorithms are 
given in [3] and [4]. When the base station receives an 
application from the end-user, it initially needs to query all 
the cluster-heads with the operational details of the new task, 
in order to collect their offers for the task. As was mentioned 
earlier, Cluster-heads advertise their offers based on their 
on-going operations and the number of applications running 
concurrently. Once all offers are collected, the base station 
starts the task distribution process by initially applying the 
game theoretic approaches in order to identify its options, or 
in other words, its strategies, as defined by the game theory.  

Every application is comprised of a number of tasks, which 
can be priced based on its given operational paradigms. 
Therefore, each task has a certain value regardless of every 
node’s  operational  state.  Once  applications  arrive  in  the  base  
station, their tasks are priced, and offers are collected from 
the cluster-heads.  

For this case study, full details of the game will be given in 
order to establish a better understanding of how interaction 
works amongst the sensor nodes. Also the game is 
implemented in a simplified form with low network density. 

All nodes are assumed to be indifferent in terms of their 
capabilities, their on-going operations, number of concurrent 
applications and their remaining energy level. Hence, for the 
first phase of this experiment we will demonstrate the 
interaction between the base station and a single cluster-head 
in order to identify their available strategies with perfect 
information. This interaction can be envisioned as a game 
between the base station and the cluster-head, where both 
network  entities’  rewards  calculated  based  on  the  task  price  
and the available resources in the node. In the second phase, 
the game will expand to include more nodes, thus creating a 
wider interaction amongst network entities.     

The cluster-head used in this experiment is already running 
an application, which requires registering Temperature at 
5-second intervals, and forwarding the recorded data to the 
base station at 60-second intervals. This application is 
hereafter   referred   to   as   the   ‘pre-deployed’   application.  
Assuming that the base station receives a new application, 

which requires recording Light level, with the same timing 
and recording requirements as the previously deployed 
application, here we will analyse the interaction of the base 
station and the cluster-head in handling the new application. 

The maximum utility (reward) of every cluster-head is 
achieved by minimising the processing time, thus saving 
more energy for longer lifetime, whereas the maximum 
utility of the base station is directly related to serving the 
end-users’  application  requirements.   

The decision-makings done by the network entities 
(including the base station, cluster-heads and the nodes) for 
handling the new task, will narrow their choices down into 
prioritising their given tasks.  

The base station can make its selection from the following 
strategies: 

A. Receive the task- never relay it to any CH (Priority 0) 
B. Accept the task- relay it immediately (Priority 1) 
C. Accept the task - delay its relay with minor latency 

(Priority 2) 
D. Accept the task and delay its relay with major latency 

(Priority 3) 

The priority number appearing next to each option indicates 
the   execution   priorities   based   on   Sensomax’s   internal  
architecture. Priorities define how urgent the tasks need to be 
executed, and effectively assign their position in the 
execution queue. Similarly, the cluster-head also has the 
above-mentioned options as the base station, except that, 
instead of relaying the given tasks to another node, it executes 
them internally, which results into the following strategies: 

a. Receive the task and never execute it (Priority 0) 
b. Accept and execute the task immediately (Priority 1) 
c. Accept the task and delay its execution with minor 

latency (Priority 2) 
d. Accept the task and delay its execution with major 

latency (Priority 3) 

Given the above strategies for both the base station and the 
cluster-head, and assuming that the entities cannot reverse 
their decisions (static game), and the new application has a 
lower priority to the pre-deployed one, the interaction can be 
demonstrated as shown in figure 1. Rewards are shown in 
parentheses with the first figure denoting the base station’s  
‘BS’   reward  and   the   second   standing   for   the  cluster-head’s  
‘CH’  reward,  in  the  form  of: 

 (“Base  station’s  reward”,  “Cluster-head’s  reward”) 

 
Figure 1: Base station and Cluster-head in a game-tree 

As   this   figure   shows,   the   base   station’s   maximum   reward  
leans  towards  taking  strategy  ‘C’  with  payoff  1,  whereas  the  
Cluster-head’s  maximum  rewards  can  be  achieved  by  taking  
strategy  ‘c’.  That  is  because,  if  the  base  station  takes  strategy  
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‘C’,  it  in  fact  serves the end-user’s  requirements  to  the  best  of  
its capability and maintains serving the pre-deployed 
application as well, compared to relaying the task with minor 
or major delays, or not relaying the task at all. The same 
applies to the cluster-head, whereby   taking   strategy   ‘c’,  
which executes the application with minor delay, allows it to 
first execute the pre-deployed task and then act on the new 
one. Whereas taking other strategies either delay the current 
task (b), never executes the new task (a), or executes the new 
task   with   a   major   delay   (d).   In   case   ‘a’,   although   not  
executing the task results in less energy consumption, the 
cluster-head is still acting against the base station 
requirements, and will be queried frequently for the given 
task’s   progress (which results in spending energy on 
processing the queries), and the it could be assumed faulty by 
the base station and ultimately excluded from the network.   
Given the above explanation, there is a single dominant 
strategy, which is also the Nash equilibrium: (C, c) resulting 
in maximum payoff for both network entities. This is because 
both entities cannot maximise their payoffs by inclining to 
other strategies other than taking the (C, c) strategy.  This 
equilibrium is achieved in an extended form of the game 
theoretic approach with perfect information. 

Applying the auction-based pricing equations [3-4] to the 
above-mentioned application, results in the following figures 
for the base station and the cluster-head:  

Table 1: Processing times 
 Base Station Cluster-head 
Available Processing 
Time (Pa) 

5000 1000 

Pre-deployed   Task’s  
Required Processing 
Time (Pd) 

2500 500 

New  Task’s  Processing  
Time (Pt) 

2500 500 

Query/Response 
Processing Time (Pq) 

500 100 

Total Energy (Etotal) N/A 100,000 

 It is worth noting that the actual processing time in 
Sensomax’s   architecture   has   been   defined   in   millisecond  
unit. However, for simplicity the above figures are 
normalised by a factor of 1000000.  

 Once   nodes’   utilities   and   tasks’   prices   have been 
calculated using the aforementioned auction-based 
techniques, the rewards gained by the peers, based on the 
notations given in table 1, can be calculated using the 
following functions: 

𝐸 = 𝑃 − ∑ +
∑

+ ∑ 𝑃  (1) 

 This function simply returns how much energy can be 
saved by taking into account the number of pre-deployed 
tasks (n), new tasks (m) and the total number of 
query/responses (k). Having calculated the total saved 
energy,   node’s   remaining   energy can be calculated by 
deducting the saved energy from the total energy. 

 For the purpose of this section, we will not deal with the 
remaining energy, and the only focus will be on the saved 
energy, which is considered as the reward. Based on the 
actual pricing units, which were shown in table 1, the base 
station will compare its available strategies, whilst 

calculating the following rewards using function 1. The 
calculated rewards are therefore shown in table 2. 

Table 2: Actual rewards for the base station and cluster-head's 
strategies 

 
Table 2 represents the actual rewards (profit and loss) of the 
base station and the cluster-head in normalised millisecond 
units. As in table 2,   strategy   ‘C’   for   the   base   station   and  
strategy  ‘c’  for  the  cluster-head result in maximum rewards. 
According to this table, the pre-deployed task requires 2500 
processing time, whereas the new task requires the same 
amount.  Therefore  as  the  result  taking  options  ‘A’  by  the  base  
station  and  option  ‘a’  by  the cluster-head, both entities suffer 
profit loss of responding unnecessary queries from their 
higher-ranking  peers.  First  query  request  the  deployed  task’s  
status,   and   the   second   one   is   the   entities’   response   to   the  
query. That results in two send and receive queries for each 
node, costing 500 and 100 per query/response for the base 
station and the cluster-head respectively. In addition, the 
cluster-head also suffers a major 500 loss for not executing 
the   received   task.   Taking   option   ‘B’   by   the   base   station  
results in querying the cluster-head immediately, at the same 
time as the pre-deployed application. That results in no profit 
or loss for the base station as the gain of 500 profit for the 
second application evens out the loss of 500 for the 
pre-deployed one. For the cluster-head however, taking 
strategy  ‘b’  results  in  ignoring  the  pre-deployed  application’s  
requirement, thus suffering 500 loss. If the base station takes 
strategy   ‘C’,   it   can   save   a   total   of   1250   as   it   serves   both  
applications fairly by summing up half the utilities of the 
pre-deployed application with the new one [Saving = 
(2500/2)  +  2500].  The  base  station’s  strategy  ‘C’  leaves  the  
base station a profit of 1250 The Cluster-head’s  Strategy  ‘c’  
results in serving both applications, whilst causing slight 
delay in processing the first one, thus achieving a gain of 750 
[saving  =  (500/2)  +  500].    Taking  strategy  ‘D’  will  gain  the  
base station with loss of 500 as the new application is served 
with latency, thus not meeting the end-user’s   requirement. 
The cluster-head’s   loss  however,   evens  out   the  gain  by   the  
pre-deployed one, thus resulting in no loss or profit. 

 What we have described so far only included the 
interaction between the base station and a single cluster-head. 
In order to expand the game to involve more players, the base 
station iterates the same process for every cluster-head 
involved in the task distribution process.  

IV. CASE STUDIES AND EVALUATION 
In [18] we demonstrated the energy profiling and packet loss 
of nodes and cluster-heads using game theory. Here we will 
review those results, as well as investigating latency and 
cluster density impacts on different operational paradigms 
with and without game theory utilization. For the first part of 
each case study we will reiterate the same experiment, which 
was thoroughly explained in [18]. 



  

In our first experiment, we tried to validate how effectively 
game theory can contribute towards energy consumption 
between the base station and cluster-heads. This was mainly 
done to optimise task distribution as the first step in which 
cluster-heads receive their tasks. As we mentioned in the 
previous section, task allocation can be challenging, 
depending on cluster-heads’   properties,   such   as   their  
remaining energy and pre-deployed tasks. Therefore we have 
built two separate applications. The first one is deployed and 
executed as the pre-deployed application, and the second 
application is deployed whilst the first one is still running. 
This approach creates a situation, where nodes tend to 
compete,   in   order   to   take   the   new   application’s   tasks  
depending on their available resources as the result of 
executing  the  first  application’s  tasks.   

The first application is a time-driven application, which 
demands light level sensory data every second upon base 
station’s  query  (request),  as  well  as  requiring  the  sensor  node  
to report temperature every 10 seconds without any request 
from the base station. The second application demands light 
level  every  5  seconds  upon  base  station’s  request,  as  well  as  
requesting automatic reporting of acceleration on three-axis 
(X,Y,Z) every 500 milliseconds. Cluster-heads receiving 
these applications query their members for the required 
parameters at the specified intervals. This experiment is 
repeated twice, with and without the game theoretic approach 
involved in the execution process. 

  
A B 

Figure 2: (A) Cluster-head energy profiling with and without game 
theory [18] (B) Energy reduction and latency associated with the 

number of cluster-heads using the game theoretic approach  

Based on the explanation given in the previous section and 
how cluster-heads decide on allocating different priorities to 
their given tasks, the results achieved from the experiment 
are shows in figure 2(A). 

As a result of such trial and error iterations, and mainly due to 
the high number of price calculations, the energy level drops 
significantly in the beginning of the process. However, once a 
winning strategy is chosen, energy-hungry price calculating 
process is reduced considerably, and the cluster-head tends to 
stay with a single strategy. Therefore as brown histogram 
shows, cluster-head’s   energy   spending   stabilises   after   ~30  
minutes. In fact, the cluster-head achieves a better energy 
profiling compared to the non-game theoretic approach (blue 
histogram). Figure 2(B) demonstrates the reduction in the 
energy consumption and the latency of 1-10 cluster-heads 
with and without the game theoretic approach in a wireless 
sensor network. The applications used in this experiment are 
the same applications used in the previous experiment, which 
were deployed in the same fashion. As figure 2(B) shows, the 
dark grey bars denote the total reduction in the energy 
consumption of the network compared to the non-theoretic 
approach, whereas the light grey bar represent the latency 

caused in the cluster-heads response to the base station during 
the lifetime of the applications. As dark grey bars show in this 
figure, the higher number of cluster-heads (players), the 
higher the energy reduction becomes. That is mainly due to 
the higher number of cluster-heads fulfilling the application, 
whereby game theory can facilitate task distribution amongst 
higher number of cluster-heads. 

  
A B 

Figure 3: (A) Sensor nodes' energy profiling [18], (B) Energy 
reduction and latency associated with different cluster densities 
using game theoretic approach 

The presence of more players, helps the base station to locate 
cluster-heads faster. Mainly because they already are 
engaged in other tasks. Whereas in the non-game theoretic 
mechanism, tasks are simply split up amongst cluster-heads 
with no consideration on the overhead imposed on them 
whilst executing other tasks.  

This outcome prompts the end-users to adopt more 
cluster-heads in order to reduce the energy consumption. 
However, as we mentioned earlier, as the number of players 
are increased, the timely response of the cluster-heads are 
reduced. As the first three light grey bars on the far left side of 
the chart show, the response delay for 1-3 cluster-heads is 
around 1%, which can be considered  insignificant. That 
trivial impact is with regards to the second application, where 
three acceleration variables (X, Y, Z) are reported every 
500ms, which could sum up to 15ms. However, as the 
number of cluster-heads increase, the latency could increase 
to up to 4%, which considered quite vital, over the lifetime of 
the application (i.e. 4% latency for reporting the acceleration 
over an hour period is equivalent to nearly 216 seconds).  

In this experiment, each cluster-head was allocated two 
members only. The other factor we tried to focus on was how 
cluster density affects both energy consumption and response 
latency within each cluster . Therefore we repeated a style of 
the previous experiment, this time with a variable number of 
nodes in each cluster. 

As figure 3(B) shows, the dark grey bars represent the total 
game theoretic energy reduction with a variable number of 
nodes in a single cluster compared to the non-theoretic 
approach. According to this figure, as with the higher number 
of cluster-heads, the higher number of nodes in a cluster 
reduces the energy consumption significantly. The total 
reduction energy consumption reaches up to 13% with 8 
members in a cluster, which is nearly a third higher the 
quantity of energy saved over 8 cluster-heads. However, the 
response latency is also considerably higher. Based on the 
figure 2(B) and 3(B), the optimal number of cluster-heads 
and cluster densities used in a WSN needs to be in the range 
of 1-3 cluster-heads, each containing 2-3 members, in order 
to achieve a reasonable latencies towards meeting application 
requirements.  



  

Figure 3(B) shows the average energy profiling of 9 nodes, 
where each 3 nodes report to a single cluster-head As the 
brown histogram shows, the game theoretic approach can 
save nearly 10% on the energy consumption with our 
experimental optimal values [18].  

The experiments reported in this section were mainly 
conducted using time-driven applications. The next 
experiment will investigate how game theoretic approach 
affects energy consumptions of applications with different 
operational paradigms as in table 3. 

Table 3: Applications with different operational paradigms 
Application Operational 

Paradigm 
Frequency/ 
Threshold 

Parameter 

A Query- 
driven 

250ms Light and Temperature 

B Data- 
driven 

>300ms Light and temperature 
over 5 minutes 

C Event- 
driven 

>500 
<20 

Light  

D Time- 
driven 

5 seconds Light and Temperature 

Previous experiment was repeated four times, each time 
deploying one of the above-mentioned applications. Figure 4 
shows the energy profiling of different applications with 
different operational paradigms, with (black bars) and 
without (green bars) the game theoretic approach.   

 
Figure 4: Energy expenditure for different operational paradigms 

According to figure 4, except application C, which is an 
event-driven application, game theoretic approach saves 
around 2% on the total energy consumption of all operational 
paradigms. That is because, event-driven applications 
involve various unexpected events, which are triggered 
according to the given environment. Therefore it leaves less 
flexibility to the cluster-heads’  game  theoretic  mechanism  in  
order to stabilise and adapt to the application’s  behaviour.  

V. CONCLUSION 
In this paper we have shown how utilizing game theory can 
improve energy consumption for distributing tasks amongst 
sensor nodes. Sensomax, as a multitasking WSN 
middleware, exploited the game theoretic approach in 
conjunction with auction-based techniques, in order to 
identify the available strategies involved in tasks distribution 
process. The proposed game theoretic approach helped 
Sensomax to allocate resources to the deployed applications, 
based  on  nodes’  processing  and  memory  availability,  as  well  
as their remaining energy level. We demonstrated how 
energy consumption may be reduced in a multitier, 
hierarchical WSN, where applications are collaboratively 
executed by multiple clusters.  
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