Power management is one of the vital issue in wireless sensor networks, where
the lifetime of the network relies on battery powered nodes. Transmitting at
high power reduces the lifetime of both the nodes and the network. One
efficient way of power management is to control the power at which the nodes
transmit. In this paper, a virtual multiple input multiple output wireless
sensor network (VMIMO-WSN)communication architecture is considered and the
power control of sensor nodes based on the approach of game theory is
formulated. The use of game theory has proliferated, with a broad range of
applications in wireless sensor networking. Approaches from game theory can be
used to optimize node level as well as network wide performance. The game here
is categorized as an incomplete information game, in which the nodes do not
have complete information about the strategies taken by other nodes. For
virtual multiple input multiple output wireless sensor network architecture
considered, the Nash equilibrium is used to decide the optimal power level at
which a node needs to transmit, to maximize its utility. Outcome shows that the
game theoretic approach considered for VMIMO-WSN architecture achieves the best
utility, by consuming less power.Comment: 12 pages, 8 figure