3,552 research outputs found

    The neural representation of sensorimotor transformations in a human perceptual decision making network

    Full text link
    Humans can quickly engage a neural network to transform complex visual stimuli into a motor response. Activity from a key region within this network, the intraparietal sulcus (IPS), has been associated with evidence accumulation and motor planning, thus implicating it in sensorimotor transformations. If such transformations occur within a brain region, a key and untested prediction is that neural activity reflecting both the parametric amount of evidence available and the timing of motor planning can be independently manipulated. To investigate these ideas, we constructed a dot motion discrimination task in which information about response modality (what to use) and response mapping (how to use it) was provided independently either before or after presentation of a dot motion coherence stimulus whose strength varied across trials. Consistent with our hypothesis, activity within IPS covaried with dot motion coherence during the stimulus phase, and as information necessary for the response was delayed, the peak of IPS activity shifted to the response phase. In contrast, areas such as the motion-sensitive region MT+ and the supplementary motor area demonstrated activity limited to the stimulus and response phases of the task, respectively. These results show that activity in IPS correlates with temporally dissociable representations consistent with both evidence accumulation and motor planning, and suggest that IPS is a core component for sensorimotor transformations within the perceptual decision-making network

    Inside the brain of an elite athlete: The neural processes that support high achievement in sports

    Get PDF
    Events like the World Championships in athletics and the Olympic Games raise the public profile of competitive sports. They may also leave us wondering what sets the competitors in these events apart from those of us who simply watch. Here we attempt to link neural and cognitive processes that have been found to be important for elite performance with computational and physiological theories inspired by much simpler laboratory tasks. In this way we hope to inspire neuroscientists to consider how their basic research might help to explain sporting skill at the highest levels of performance

    The influence of external and internal motor processes on human auditory rhythm perception

    Get PDF
    Musical rhythm is composed of organized temporal patterns, and the processes underlying rhythm perception are found to engage both auditory and motor systems. Despite behavioral and neuroscience evidence converging to this audio-motor interaction, relatively little is known about the effect of specific motor processes on auditory rhythm perception. This doctoral thesis was devoted to investigating the influence of both external and internal motor processes on the way we perceive an auditory rhythm. The first half of the thesis intended to establish whether overt body movement had a facilitatory effect on our ability to perceive the auditory rhythmic structure, and whether this effect was modulated by musical training. To this end, musicians and non-musicians performed a pulse-finding task either using natural body movement or through listening only, and produced their identified pulse by finger tapping. The results showed that overt movement benefited rhythm (pulse) perception especially for non-musicians, confirming the facilitatory role of external motor activities in hearing the rhythm, as well as its interaction with musical training. The second half of the thesis tested the idea that indirect, covert motor input, such as that transformed from the visual stimuli, could influence our perceived structure of an auditory rhythm. Three experiments examined the subjectively perceived tempo of an auditory sequence under different visual motion stimulations, while the auditory and visual streams were presented independently of each other. The results revealed that the perceived auditory tempo was accordingly influenced by the concurrent visual motion conditions, and the effect was related to the increment or decrement of visual motion speed. This supported the hypothesis that the internal motor information extracted from the visuomotor stimulation could be incorporated into the percept of an auditory rhythm. Taken together, the present thesis concludes that, rather than as a mere reaction to the given auditory input, our motor system plays an important role in contributing to the perceptual process of the auditory rhythm. This can occur via both external and internal motor activities, and may not only influence how we hear a rhythm but also under some circumstances improve our ability to hear the rhythm.Musikalische Rhythmen bestehen aus zeitlich strukturierten Mustern akustischer Stimuli. Es konnte gezeigt werden, dass die Prozesse, welche der Rhythmuswahrnehmung zugrunde liegen, sowohl motorische als auch auditive Systeme nutzen. Obwohl sich fĂŒr diese auditiv-motorischen Interaktionen sowohl in den Verhaltenswissenschaften als auch Neurowissenschaften ĂŒbereinstimmende Belege finden, weiß man bislang relativ wenig ĂŒber die Auswirkungen spezifischer motorischer Prozesse auf die auditive Rhythmuswahrnehmung. Diese Doktorarbeit untersucht den Einfluss externaler und internaler motorischer Prozesse auf die Art und Weise, wie auditive Rhythmen wahrgenommen werden. Der erste Teil der Arbeit diente dem Ziel herauszufinden, ob körperliche Bewegungen es dem Gehirn erleichtern können, die Struktur von auditiven Rhythmen zu erkennen, und, wenn ja, ob dieser Effekt durch ein musikalisches Training beeinflusst wird. Um dies herauszufinden wurde Musikern und Nichtmusikern die Aufgabe gegeben, innerhalb von prĂ€sentierten auditiven Stimuli den Puls zu finden, wobei ein Teil der Probanden wĂ€hrenddessen Körperbewegungen ausfĂŒhren sollte und der andere Teil nur zuhören sollte. Anschließend sollten die Probanden den gefundenen Puls durch Finger-Tapping ausfĂŒhren, wobei die Reizgaben sowie die Reaktionen mittels eines computerisierten Systems kontrolliert wurden. Die Ergebnisse zeigen, dass offen ausgefĂŒhrte Bewegungen die Wahrnehmung des Pulses vor allem bei Nichtmusikern verbesserten. Diese Ergebnisse bestĂ€tigen, dass Bewegungen beim Hören von Rhythmen unterstĂŒtzend wirken. Außerdem zeigte sich, dass hier eine Wechselwirkung mit dem musikalischen Training besteht. Der zweite Teil der Doktorarbeit ĂŒberprĂŒfte die Idee, dass indirekte, verdeckte Bewegungsinformationen, wie sie z.B. in visuellen Stimuli enthalten sind, die wahrgenommene Struktur von auditiven Rhythmen beeinflussen können. Drei Experimente untersuchten, inwiefern das subjektiv wahrgenommene Tempo einer akustischen Sequenz durch die PrĂ€sentation unterschiedlicher visueller Bewegungsreize beeinflusst wird, wobei die akustischen und optischen Stimuli unabhĂ€ngig voneinander prĂ€sentiert wurden. Die Ergebnisse zeigten, dass das wahrgenommene auditive Tempo durch die visuellen Bewegungsinformationen beeinflusst wird, und dass der Effekt in Verbindung mit der Zunahme oder Abnahme der visuellen Geschwindigkeit steht. Dies unterstĂŒtzt die Hypothese, dass internale Bewegungsinformationen, welche aus visuomotorischen Reizen extrahiert werden, in die Wahrnehmung eines auditiven Rhythmus integriert werden können. Zusammen genommen, 5 zeigt die vorgestellte Arbeit, dass unser motorisches System eine wichtige Rolle im Wahrnehmungsprozess von auditiven Rhythmen spielt. Dies kann sowohl durch Ă€ußere als auch durch internale motorische AktivitĂ€ten geschehen, und beeinflusst nicht nur die Art, wie wir Rhythmen hören, sondern verbessert unter bestimmten Bedingungen auch unsere FĂ€higkeit Rhythmen zu identifizieren

    On Neuromechanical Approaches for the Study of Biological Grasp and Manipulation

    Full text link
    Biological and robotic grasp and manipulation are undeniably similar at the level of mechanical task performance. However, their underlying fundamental biological vs. engineering mechanisms are, by definition, dramatically different and can even be antithetical. Even our approach to each is diametrically opposite: inductive science for the study of biological systems vs. engineering synthesis for the design and construction of robotic systems. The past 20 years have seen several conceptual advances in both fields and the quest to unify them. Chief among them is the reluctant recognition that their underlying fundamental mechanisms may actually share limited common ground, while exhibiting many fundamental differences. This recognition is particularly liberating because it allows us to resolve and move beyond multiple paradoxes and contradictions that arose from the initial reasonable assumption of a large common ground. Here, we begin by introducing the perspective of neuromechanics, which emphasizes that real-world behavior emerges from the intimate interactions among the physical structure of the system, the mechanical requirements of a task, the feasible neural control actions to produce it, and the ability of the neuromuscular system to adapt through interactions with the environment. This allows us to articulate a succinct overview of a few salient conceptual paradoxes and contradictions regarding under-determined vs. over-determined mechanics, under- vs. over-actuated control, prescribed vs. emergent function, learning vs. implementation vs. adaptation, prescriptive vs. descriptive synergies, and optimal vs. habitual performance. We conclude by presenting open questions and suggesting directions for future research. We hope this frank assessment of the state-of-the-art will encourage and guide these communities to continue to interact and make progress in these important areas
    • 

    corecore