2,906 research outputs found

    Building Programmable Wireless Networks: An Architectural Survey

    Full text link
    In recent times, there have been a lot of efforts for improving the ossified Internet architecture in a bid to sustain unstinted growth and innovation. A major reason for the perceived architectural ossification is the lack of ability to program the network as a system. This situation has resulted partly from historical decisions in the original Internet design which emphasized decentralized network operations through co-located data and control planes on each network device. The situation for wireless networks is no different resulting in a lot of complexity and a plethora of largely incompatible wireless technologies. The emergence of "programmable wireless networks", that allow greater flexibility, ease of management and configurability, is a step in the right direction to overcome the aforementioned shortcomings of the wireless networks. In this paper, we provide a broad overview of the architectures proposed in literature for building programmable wireless networks focusing primarily on three popular techniques, i.e., software defined networks, cognitive radio networks, and virtualized networks. This survey is a self-contained tutorial on these techniques and its applications. We also discuss the opportunities and challenges in building next-generation programmable wireless networks and identify open research issues and future research directions.Comment: 19 page

    Simulations of the Impact of Controlled Mobility for Routing Protocols

    Get PDF
    This paper addresses mobility control routing in wireless networks. Given a data flow request between a source-destination pair, the problem is to move nodes towards the best placement, such that the performance of the network is improved. Our purpose is to find the best nodes selection depending on the minimization of the maximum distance that nodes have to travel to reach their final position. We propose a routing protocol, the Routing Protocol based on Controlled Mobility (RPCM), where the chosen nodes' path minimizes the total travelled distance to reach desirable position. Specifically, controlled mobility is intended as a new design dimension network allowing to drive nodes to specific best position in order to achieve some common objectives. The main aim of this paper is to show by simulation the effectiveness of controlled mobility when it is used as a new design dimension in wireless networks. Extensive simulations are conducted to evaluate the proposed routing algorithm. Results show how our protocol outperforms a well-known routing protocol, the Ad hoc On Demand Distance Vector routing (AODV), in terms of throughput, average end-to-end data packet delay and energy spent to send a packet unit

    Internet of Things for Sustainable Human Health

    Get PDF
    The sustainable health IoT has the strong potential to bring tremendous improvements in human health and well-being through sensing, and monitoring of health impacts across the whole spectrum of climate change. The sustainable health IoT enables development of a systems approach in the area of human health and ecosystem. It allows integration of broader health sub-areas in a bigger archetype for improving sustainability in health in the realm of social, economic, and environmental sectors. This integration provides a powerful health IoT framework for sustainable health and community goals in the wake of changing climate. In this chapter, a detailed description of climate-related health impacts on human health is provided. The sensing, communications, and monitoring technologies are discussed. The impact of key environmental and human health factors on the development of new IoT technologies also analyzed

    Energy efficiency performance improvements for ant-based routing algorithm in wireless sensor networks

    Get PDF
    The main problem for event gathering in wireless sensor networks (WSNs) is the restricted communication range for each node. Due to the restricted communication range and high network density, event forwarding in WSNs is very challenging and requires multihop data forwarding. Currently, the energy-efficient ant based routing (EEABR) algorithm, based on the ant colony optimization (ACO) metaheuristic, is one of the state-of-the-art energy-aware routing protocols. In this paper, we propose three improvements to the EEABR algorithm to further improve its energy efficiency. The improvements to the original EEABR are based on the following: (1) a new scheme to intelligently initialize the routing tables giving priority to neighboring nodes that simultaneously could be the destination, (2) intelligent update of routing tables in case of a node or link failure, and (3) reducing the flooding ability of ants for congestion control. The energy efficiency improvements are significant particularly for dynamic routing environments. Experimental results using the RMASE simulation environment show that the proposed method increases the energy efficiency by up to 9% and 64% in converge-cast and target-tracking scenarios, respectively, over the original EEABR without incurring a significant increase in complexity. The method is also compared and found to also outperform other swarm-based routing protocols such as sensor-driven and cost-aware ant routing (SC) and Beesensor

    Implementation of brute force algorithm for topology optimisation of wireless networks

    Get PDF
    The paper discusses the topology optimisation of wireless networks using a brute force algorithm. In order to reduce the computational complexity of the algorithm the multi-thread application has been implemented to conduct the optimisation procedure. The efficiency of the algorithm was verified using an example task where topology of a wireless network has been optimised under various criteria

    An overview of internet of things

    Get PDF
    The internet of things is an emerging technology that is currently present in most processes and devices, allowing to improve the quality of life of people and facilitating the access to specific information and services. The main purpose of the present article is to offer a general overview of internet of things, based on the analysis of recently published work. The added value of this article lies in the analysis of the main recent publications and the diversity of applications of internet of things technology. As a result of the analysis of the current literature, internet of things technology stands out as a facilitator in business and industrial performance but above all in improving the quality of life. As a conclusion to this document, the internet of things is a technology that can overcome the challenges in terms of security, processing capacity and data mobility, as long as the development related to other technologies follows its expected course

    Structure and topology of transcriptional regulatory networks and their applications in bio-inspired networking

    Get PDF
    Biological networks carry out vital functions necessary for sustenance despite environmental adversities. Transcriptional Regulatory Network (TRN) is one such biological network that is formed due to the interaction between proteins, called Transcription Factors (TFs), and segments of DNA, called genes. TRNs are known to exhibit functional robustness in the face of perturbation or mutation: a property that is proven to be a result of its underlying network topology. In this thesis, we first propose a three-tier topological characterization of TRN to analyze the interplay between the significant graph-theoretic properties of TRNs such as scale-free out-degree distribution, low graph density, small world property and the abundance of subgraphs called motifs. Specifically, we pinpoint the role of a certain three-node motif, called Feed Forward Loop (FFL) motif in topological robustness as well as information spread in TRNs. With the understanding of the TRN topology, we explore its potential use in design of fault-tolerant communication topologies. To this end, we first propose an edge rewiring mechanism that remedies the vulnerability of TRNs to the failure of well-connected nodes, called hubs, while preserving its other significant graph-theoretic properties. We apply the rewired TRN topologies in the design of wireless sensor networks that are less vulnerable to targeted node failure. Similarly, we apply the TRN topology to address the issues of robustness and energy-efficiency in the following networking paradigms: robust yet energy-efficient delay tolerant network for post disaster scenarios, energy-efficient data-collection framework for smart city applications and a data transfer framework deployed over a fog computing platform for collaborative sensing --Abstract, page iii
    • …
    corecore