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Chapter 7
Internet of Things for Sustainable
Human Health

Abstract The sustainable health IoT has the strong potential to bring tremendous
improvements in human health and well-being through sensing, and monitoring of
health impacts across the whole spectrum of climate change. The sustainable health
IoT enables development of a systems approach in the area of human health and
ecosystem. It allows integration of broader health sub-areas in a bigger archetype
for improving sustainability in health in the realm of social, economic, and
environmental sectors. This integration provides a powerful health IoT framework
for sustainable health and community goals in the wake of changing climate. In this
chapter, a detailed description of climate-related health impacts on human health is
provided. The sensing, communications, and monitoring technologies are discussed.
The impact of key environmental and human health factors on the development of
new IoT technologies also analyzed.

7.1 Introduction

The sustainable development goals (SDGs) are a set of goals established by United
Nations (UN) following the millennium development goals (MDG), in 2015 by 193
UN member nations to address health, climate, and environmental issues being
faced by the humanity [69]. These SDGs have laid a special focus on sustainable
approach for future health and present a vital scope to foster the appropriate
environment for an improved human health by the way of sustainable society.
Thereof, four vital issues are identified [63].

• Necessity of systems approach for sustainable health
• Importance of health society for community’s prosperity
• Assessment of climate change impacts and additional perils to sustainable health

and to provide expeditious health benefits
• Development of indicators, models, and metrics to observe and project different

health impacts in terms of threats and risks

To achieve SDGs objectives, a new systems paradigm is required across the
various prongs of sustainable development (e.g., world, mankind, and well-being).
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For this purpose, integration of sensing, communications, monitoring, and decision
support systems is required for sustainable health IoT paradigm, under the guide-
lines of United Nations and World Health Organization.

7.1.1 Sustainable Health IoT

The sustainable health IoT enables development of a systems approach in the area
of human health and ecosystem. It allows integration of broader health sub-areas
in a bigger archetype for improving sustainability in health in the realm of social,
economic, and environmental sectors. This integration provides a powerful health
IoT framework to sustainable health and community goals in the wake of changing
climate [31, 40, 87, 89]. The other climate mitigation approaches using the IoT
paradigms also carry many health benefits such as health community is achieved via
sensing and corresponding improvements in air quality, green urban environment,
and reduction in flooding [14, 123, 146, 150]. The IoT paradigm also enables many
health benefits of adaption and mitigation while providing insights climate-related
health impacts [47, 86]. The climate change impact on human health is shown in
Fig. 7.1 [153]. Because of this factor, either the current health problems become
worse or new unparalleled health issues are generated.

The sustainable health IoT has the strong potential to bring tremendous improve-
ments in human health and well-being through sensing, monitoring of health
impacts across the whole spectrum of climate change. It is envisioned to provide
health and environmental data that can be utilized to characterize the impacts
of climate change on human health [47], which in turn enables identification,
projection, and effective response to human health related threats. The impact of
climate change on human health is discussed in the following section.

7.1.2 Climate Change and Human Health

A significant threat is being faced by the humanity in health related issues because
of the climate change [15, 25]. The impact of weather and climate on human health
is very significant and diverse. This exposure to climate induced health issues
is impacting the community and people in different ways. There are many ways
(e.g., environmental emissions, ozone exposure, water and air quality, temperature,
and weather) in which human health is being impacted by the climate change
[46, 50, 101, 109, 126, 160]. Particularly, the increasing concentrations of the carbon
dioxide and rising temperatures, and their relation with variations in plants, flower
production, and allergenic initiating time has led to increased production of the
allergens [73]. The rise in emissions is also cause of rising temperatures and sea
levels, variations in precipitation patterns, increase in extreme weather pattern.
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Fig. 7.1 The climate change impact on human health [153]

Accordingly, water bodies are contaminated, diseases are transmitted through food
sources, air quality is degraded, which, consequently, bring cascading adverse
effects upon human health and well-being. These problems are being exacerbated
with rapid changes hence increasing exposure of the human for longer duration of
time [143]. Therefore, new challenges are being faced in the area of human health
[45, 100]. The climate and holistic health outcomes are shown in Fig. 7.2.
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Fig. 7.2 The climate and holistic health outcome [153]

It is important to note that the magnitude of impact of climate on human health
varies on spatial and temporal scale [72, 90, 119]. The children, elderly, poor,
and sick are the ones most affected [10, 16, 79, 135, 140, 141]. The research has
shown the high correlation between the mold and fungus related indoor air quality
issues and the high and extreme temperatures, and heat waves and precipitation
[48, 53, 64, 64, 75]. The moist indoor environment causes elevated prevalence of
asthma and upper respiratory tract symptoms [2, 2, 39, 53, 70, 102, 128, 142, 148].
The extreme heat contributes to air pollution, and asthma, pediatric, deaths (e.g., hot
cars), and increased frequency of emergency room (ER) visits, and hospitalization
[7, 38, 91, 130, 159]. Similarly, the heavy precipitation also leads to severe flooding
events, algal blooms, and waterborne diseases. The outdoor air quality is also
affected by the wildfires which leads to respiratory issues because of smoke
inhaling. The human health is also being impacted by the worsening air quality
and pollution of the ozone [118]. The climate change has also led to expansion
of scope of some disease vectors and other epidemiological factors, such as Ixodes
ticks (Lyme disease vectors). The climate change also impacts the mental health and
causes stress particularly after disasters and displacement. The summary of these
climate change impacts is outlined below:

• The increased exposure to ozone [8, 15, 19, 50, 95, 125, 126, 151]
• Extreme weather events [1, 7, 52, 105, 116, 124]
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• Rising allergens [108]
• Increase in frequency and intensity of wildfires [81]
• Thermal extremes [13]
• Growing harmful algal blooms (HAB) [9, 62, 114]
• Mental health stress [36, 57, 65, 66, 98, 106, 111, 145]
• Expansion of vector-borne infectious diseases [21, 83, 85, 93, 110, 117, 129, 136]
• More water- and food-borne diseases [32, 67, 88, 115]
• Food quality an security [56, 132]

7.2 Benefits of Sustainable Health IoT

The sustainable health IoT has tremendous potential to bring improvements in
human health and well-being by enabling real-time sensing and monitoring of the
climate induced impacts. These benefits are discussed below:

• Innovations in mobile health care
• Evolution of new sensing methods
• Novel communication techniques such as human body communications and

molecular communications
• Remote diagnostic systems
• Human mobility models to predict diseases outbreak
• Support for remote telehealth and self-monitoring and tracking on diurnal basis
• Efficiency and improvements in health care settings
• Quick diagnosis of medical conditions
• Improvements in patient conditions management
• Development of novel treatment regimes

7.3 Sustainable Health IoT

The sustainable health IoT is characterized by its things which are the vital com-
ponent of the paradigm for real-time sensing monitoring, medication compliance
wireless communications, and imaging based decision support systems. In this
section, the sustainable health IoT things are discussed.

• Patients, physician and health care providers
• Smart ingestible, implantable, and injectable medical devices
• Medicines, health, and wellness products
• Physiological, wearable, and molecular sensors
• Actuators, treatment, electronic health records
• Telehealth, precision medicine
• Insulin pumps, cochlear implants, and pacemakers
• Patient-generated and machine-generated healthcare data
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7.4 Sustainable Health IoT Technology

In this section different technologies for sustainable health IoT are discussed.

7.4.1 Precision Medicine

The precision medicine is one of the emerging technologies in human healthcare
[30, 96]. It deals with disease prevention and treatment approaches which are based
on considering the human genetic, environmental, and other factors tailored to
individual patients. The precision medicine practices are also called personalized
medicine. The sustainable health IoT enables precision medicine by integrating
DNA databases of clinical trials and application layer Health Level 7 (HL7) and
other standards such as Fast Healthcare Interoperability Resource (FHIR) [120] to
support treatments of different diseases.

7.4.2 Personalization of Diabetes Treatment

The sustainable health IoT also enables monitoring of the blood glucose levels
in patients with diabetes [26]. By using sensing and wireless communications
technologies, the advanced diabetes treatments can be utilized for extensive dis-
semination of blood sugar data to intelligent computing technologies and clinicians.
There it can be evaluated for personalized treatment by generating prediction based
cautions for insulin dosage and hypoglycemia updates.

7.4.3 Automated Nutrition Control

The sustainable health IoT enables automated nutrition control where based on
daily calories needs, the customized food plan can be developed for patients
by using the food ingredients. This enables suitable food choices based on the
recommendations of the physicians. Accordingly, physicians can view the impact
the food consumption on patient health for real-time decision making [61].

7.4.4 Mobile Healthcare Connectivity

The sustainable health IoT supports integration of wireless communications based
interconnection of medical devices with the cloud for rapid on-line data man-
agement [144]. The Capsule Technologies Hub is a robust mobile gateway to
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provide connectivity using many different wireless interfaces [35, 167]. The mobile
healthcare connectivity in sustainable health IoT enables development of healthcare
applications based on the wireless technologies that enables patient management
and coordination and leads to higher efficiency and decreased cost of medical care.

7.4.5 Cancer Treatment

Cancer treatment approaches can greatly benefit from sustainable health IoT
monitoring and communication technologies, where patients can transmit updates
through symptom tracking applications to their physicians [127]. The physician’s
response is helpful to reduce the frequency of regular clinic visits. Moreover, the
side effects of the medicines can be identified and addressed quickly. Early warning
can be issued when the levels cross a threshold.

7.4.6 Glucose Monitoring

The sustainable health IoT facilitates continuous glucose monitoring (CGM) in
diabetic patients. IoT enables devices can continuously monitor the blood glucose
levels by providing regular readings for subsequent transmission to cloud using
wireless communications and Internet with easy access through mobile devices by
patients and physicians [51]. Accordingly, the automated delivery of insulin enables
efficient management.

7.4.7 Smart Inhalers

The smart and connected inhalers (Bluetooth spirometer [168]) in sustainable health
IoT enable asthma and other chronic obstructive pulmonary disease (COPD) [133],
which includes emphysema and chronic bronchitis) patients to take control of their
symptoms and treatments by using Bluetooth. These can also send reminders to
patient about their medicine intake, hence, improving the disease management,
attack avoidance, and symptoms reporting to physicians.

Other important applications include connected contact lenses to monitor vari-
ations in eye dimensions causing the glaucoma [6]; the coagulation testing for
blood clot formations to avoid stroke, bleeding [165], assisted living [122]. Overall,
the sustainable health IoT enables, through its sensing, communications, and
monitoring technology, efficient health care, drug and chronic disease management,
and reduction in emergency room wait times.
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7.5 Sensing in Sustainable Health IoT

In this section, two types of health related sustainable health IoT sensing approaches
are discussed: (1) the physiological sensing and (2) the environmental sensing for
health [138].

7.5.1 Physiological Sensing

The physiological sensing is a vital monitoring approach in the sustainable health
IoT to measure and analyze different physiological (biological) signals for medical
and clinical healthcare applications [29, 164]. These data collected from these
physiological sensor signals is discussed in the following:

• Heart rate (HR)
• Finger temperature (FT)
• Respiration rate (RR)
• Carbon dioxide (CO2)
• Oxygen saturation (SpO2)
• Patient position sensor (Accelerometer)

The sensors to detect these physiological signals are given below [11]:

• Glucometer sensor
• Body temperature sensor
• Blood pressure sensor (sphygmomanometer)
• Pulse and oxygen in blood sensor (SPO2)
• Airflow sensor (breathing)
• Galvanic skin response sensor (GSR—sweating)
• Electrocardiogram sensor (ECG)
• Electromyography sensor (EMG)

A detailed review of these physiological sensors is given in [11].

7.5.2 Ingestible Sensors

These sensors are ingested in capsules or pills and have the capability to dissolve
in stomach [84]. There, these are used to sense different physical parameters, which
can be communicated to the external nodes through human body communications
or by using wireless communications. The legal issues in ingestible sensors are
discussed in [60].
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7.5.3 Wearable Sensors

Wearable sensors are placed into wearable objects to sense different phenomena
such as health conditions, environmental conditions, and physiological signals
[11, 27, 54, 161, 166]. These can also be implanted in body from where they can
communicate using human body or molecular communications. Some important
use cases of the wearable sensors are listed below:

• Wearable devices for environmental monitoring [94] such as air quality [20, 22,
28, 42, 80, 99, 137, 157, 158]

• Wearable AI system to detect a conversation’s tone [155]
• Wearable devices for physiological sensing [76]
• Wearable system to help visually impaired users navigate [156]
• Monitoring metabolic energy expenditure, health, and fitness with a breath

analyzer [112]
• Wearable sensor for athletes detects potential head injuries, gathers data on hard

hits [18]
• Wristbands that keep wearers thermally comfortable [112]
• Wearable tracks increased skin conductance that signals stress, helps identify

dangerous seizures [104, 149]
• Wrist watch to monitor depression, and Parkinson’s disease symptoms [113]

7.6 Environmental Sensing for Health and Wellness

In this section, the sensing of different environmental parameters and their impact
on human health is discussed.

7.6.1 Sanitation, Waterborne Diseases, and Human Health

The viruses, bacteria, and protozoa are major cause of waterborne diseases also
called water-related illnesses. The human-induced chemicals, toxins generated by
cyanobacteria, and detrimental algae, are other sources of some of these diseases
[23, 131]. The patients are also exposed to these diseases when the contaminated
water is inhaled or ingested. Other recreational activities in contaminated water
and eating contaminated seafood are also a cause of waterborne diseases. The
water-related illness grows, spreads, and becomes viral and toxic based on different
climate related factors such as hurricanes, precipitation, runoff, and storm surges
[32, 88]. Moreover, the exposure to these diseases also depends on individual’s
capacity of adaptiveness and sensitiveness.
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Fig. 7.3 Water related health issues [153]

The waterborne diseases are also major challenge in urban areas where the 6–
40% of gastrointestinal illness are caused by extensive contamination of wells and
surface water by various pathogens. The access to safe drinking water is also a
major global issue with one billion population lacking access to safe potable water.
Moreover, the increasing global temperatures are fostering production of toxic algal
blooms. These organisms are serious risk to human health (see Fig. 7.3) [153].

The sustainable health IoT through its sensing of water quality, real-time
monitoring and warning systems, and other treatment technologies enables effective
prevention and mitigation of diseases caused by water contamination. It enables
water flow and quality monitoring. The water quality sensing also informs the
selection of proper disinfection technique based on pathogen sensing and molecular
sensing methods for specific pathogens and their ability to cause infection.

The sustainable health IoT holds great promise in water quality improvements
and sanitation in less developed and advanced countries. Some examples are
presented in the following:

• The smart meters and reverse osmosis (RO) technology in IoT systems and
sensor networks is being used in India for provision of clean water and for water
treatment to rural areas [134].
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• The IoT technology is being used in China to monitor the water flow and usage
by using sensors installed at different points in the water supply system [147].

• A biosensor network is utilized in Bangladesh for water quality monitoring using
arsenic sensor [41].

• In Kenya, a smart connected water hand pump is being used to address the issues
related to the non-functional water pumps for timely maintenance [92]. Special
accelerometer based devices were designed and installed with built-in 3G radios
for water hand pump monitoring. With battery life of up to 18 months, this IoT
system has reduced downtime while ensuring consistent water supply service
delivery.

• For sanitation and hygiene, the water flow and motion sensors are being used in
Indonesia to identify human behavior (e.g., hand washing after toilet use) and to
design enhanced hygiene training [152].

7.6.2 Ultraviolet Radiation and Human Health

The exposure to ultraviolet radiation (UV) can have multiple impacts such as
corneal damage, skin cancer, sunburn, immune suppression, and cataracts [12]. The
detrimental effects of ultraviolet radiation include damage to plastic, wood, and
other infrastructure. Overall, UV radiation presents many challenges to health and
environment.

The sustainable health IoT has the potential for robust monitoring of ozone and
UV radiation levels at a large scale, which can be integrated to the cloud for new
insights. Accordingly, models can be developed for informed decision making. A
sensor called dosimeter determines the UV exposure by measuring absorbed amount
of ionizing radiation. The ionizing radiation at its peak is capable of removing an
electron from an item. A urocanic acid photoreceptor is used for the induction of
UV immune suppression. The UV-induced (UVB induced) immune suppression
is variation in cell immunity which produces suppressor cells. Various types of
ultraviolet radiations and related concepts are discussed below [71]:

• UVA. The UVA has the longest wavelengths 0.31 micrometer to 0.4 micrometer
and impacts skin aging. The ability of atmospheric gases to absorb UVA radiation
is low. Therefore, UAV are able to reach surface of the Earth.

• UVB. It causes skin burning and suppression of immune system with its shorter
wavelength of 0.28 micrometer to 0.31 micrometer. However, most of it is
absorbed by stratospheric ozone.

• UVC. The UVC is mostly absorbed by the ozone and oxygen present in the
atmosphere. It has shorter wavelength of 0.1 micrometer to 0.2 micrometer. UV-
C radiation is almost entirely absorbed by atmospheric oxygen and ozone.
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7.6.3 Extreme Weather and Human Health

The thunderstorms associated increased humidity levels are known to cause car-
diovascular and respiratory diseases [44]. The natural disasters also contribute to
the mental health issues (e.g., post-traumatic tension disorders). Moreover, the
prolonged duration of the hurricanes, tropical storms, and extreme weather events
also causes short-term stress related issues with its disruptions to subsistence
activities and to different modes of transportation, affecting overall health and well-
being.

7.7 Wireless, Human Body, and Molecular Communications
in Sustainable Health IoT

The applications of wireless communication technologies to human health are being
used for sensing, data collection, modeling, and analysis of health information of
patients using Internet and various computing technologies [55, 59, 121, 162, 163].
Wireless communications play an important role to provide connectivity to sensors
and system in sustainable health IoT in different topologies and configurations.
The Bluetooth (IEEE 802.15.1) and Bluetooth Low Energy (BLE) are commonly
used for this purpose due to its low cost and energy requirements along with other
standards such 4G, WLAN, LTE, UMTS, Wi-Fi, and WiMAX. A list of different
wireless technologies for sustainable health IoT applications is given below:

• IEEE 802.11x (Wi-Fi) is the widely used wireless local area network protocol
for health applications. It operates in 2.4 GHz or 5 GHz frequency bands. The
latest versions of the Wi-Fi can support data rates from 54 Mb/s to 0.5 Gb/s with
communication range of more than 100 m [74].

• IEEE 802.15.1 (Bluetooth) operates in 2.4 GHz frequency band with communi-
cation range of up to 10 m. and supports data rates of 722 Kb/s for the classic
version (BC) and 3 Mb/s for Bluetooth Enhanced Data Rate (EDR) [17].

• Bluetooth Low Energy (BLE) is a low power variant of Bluetooth. It can cover
communication distances of up to 68m with maximum data rates of 1 Mb/s. It
uses physical and data access layer of Wi-Fi.

• ZigBee (IEEE 802.15.4) is a less complex, low cost and data rate, wireless
personal area network (WPAN) standard for prolonged operation of devices
and equipment. It supports 868 MHz frequency, 915 MHz spectrum band, and
2.4 GHz radio wireless channel with maximum data rates of more 250 kb/s,
respectively, for communication range of up to 75 m [169].

• Long range wide area network (LoRaWAN) has the potential for long range
communications in sustainable health IoT applications (e.g., the LoRa) It also
supports 868 MHz frequency and 915 MHz spectrum operation with data rates of
more than 50 kb/s [37].
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• Chirp spread spectrum (CSS) based nanoLOC operates in 2.4 GHz frequency
band. It covers communication distances of up to 570m depending on the
environment with data rates of up 2 Mb/s [139].

More details about wireless body area network can be found in [68].

7.7.1 Human Body Communications

The human body communications (HBC) is another important connectivity mech-
anism in the sustainable health IoT. Body is a highly conducting material (body
tissues are lossy dielectric) because of the presence of the water and blood. Human
body communications also are very energy efficient and require very low power
for operation for implanted medical devices with long battery life, hence reducing
the inter-surgery time significantly. Moreover, the human body communications
are very secure and present resistance by preventing physical access of devices by
hackers. These can be utilized to form the inter-body and body-to-body communi-
cation networks wearable sensors and devices, implanted medical devices, in-body
authentication instruments in the sustainable health IoT [55, 58, 78, 107, 164].

The wearable sensors can establish connection using HBC for critical data
communications to external devices. The body area network (BAN) in the IEEE
802.15 working group has developed a physical layer (PHY) for human body
communications. In HBC, there are three main components: (1) the human body
channel, (2) radio system, and (3) modulation and transmission schemes.

Another alternative to wireless body area network (WBAN) is electro-quasistatic
human body communication (EQS-HBC) [34], which operates by broadband low
frequency human body communications to achieve secure data transmission. A
comparison of WBAN and electro-quasistatic is presented in Fig. 7.4.

7.7.2 Molecular Communications in Sustainable Health IoT

The molecular communications (MC) form the basis of the information transmission
within basic unit of human life such as biological cells and complex organisms
[4, 97]. In molecular paradigm, the data bits are modulated on molecules and
communication propagation happens through the transport of these molecule and
chemical reactions. The fundamental building blocks of the molecular communica-
tions are shown in Fig. 7.5 and are discussed below [4]:

• Molecules are the smallest distinguishable unit of a chemical compound and
represent atoms bind together in the chemical composition of a particular
substance [3].

• The chemical reactions are the manipulations and transformations resulting from
the detachment and formation of molecules.
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Fig. 7.4 A comparison of WBAN and electro-quasistatic human body communications [34].
EQS-HBC vs. WBAN: An Overview of the Data Privacy Space, (a) Persons wearing transmitter
device (pacemaker) and an on-body hub communicating using EQS-HBC and (b) WBAN

Fig. 7.5 The fundamental building blocks of molecular communications [4]. From moving
forward with molecular communication: from theory to human health applications
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• The molecule transport is the process of their propagation in space and happens
through flow, transport, Brownian forces such as movement in the blood runnel
or intra-cells motion [3].

The components of MC system include a transmitter, molecular channel, and a
receiver. The communication channels propagation depends upon various molecular
transport models such as chemotaxis, gap junction, diffusion, and molecular motor.
The current research focus in MC is to maximize data communication rates, and
development of coding and information modulation approaches, and the design
of suitable modulation and coding techniques, and novel networking topologies
for optimization of molecular data communication by molecules using multiple
segments simultaneously [103].

The MC enables the sensing and monitoring applications through its propagation
living organisms and the biochemistry underscoring the human body and cells (e.g.,
the cancers caused by the malformations polarity, and growth of molecules). The
MC systems are envisioned to advance human health informatics and enhanced
medicine with applications in natural and synthetic systems.

The monocular communications information flow theory in natural systems can
model:

• At body scale, where a system is considered as an interconnection of tissues and
organs.

• The cell coordination at cellular scale.
• The information modulation into compounds for subsequent propagation through

chemical reactions and molecular transport.

For synthetic applications, the MC applications for system engineering purpose
are:

• At interface level: Use of synthetic biology tools to develop genetic programs
• At device level: Development of bioengineering systems, programmed to per-

form specific actions.
• At network level: An interconnection of bio-engineering systems human health

monitoring and connectivity to cloud

These applications of natural and synthetic systems of molecular communica-
tions in sustainable health IoT are shown in Fig. 7.6.

7.8 Sustainable Health IoT Systems

In this section, various systems, tools, databases, and indices to achieve sustainabil-
ity using Internet of Things.
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Fig. 7.6 Applications of natural and synthetic systems of molecular communications in sustain-
able health IoT [4]. From moving forward with molecular communication: from theory to human
health applications

7.8.1 Health Indices

The vital health indices related to the environment are discussed:

• UV Index. This index is used to predict the solar UV radiation. The UV index is a
number, measured on a scale of 0 to 11, that reflects the diurnal threat of sunburn
(over-exposure to sunlight). The value of 0 represents the minimal exposure and
an index value higher than 10 indicates extreme risk to human health [154].

• Environmental Health Hazard Index. The US environmental health hazard expo-
sure index provides information about harmful toxins exposure neighborhood
levels [49]. These health hazards exposures are determined using linear com-
binations of estimates of air quality respiratory, carcinogenic, and neurological
hazard with indexing census tracts.

• AirNow: The air quality index (AQI) is an index to monitor the air quality and
pollution. Accordingly, it informs about the related impact concerning human
health [5]. It is ascertained by considering four air pollutants: particle pollution,
carbon monoxide, surface ozone level, and sulfur dioxide gas.
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7.8.2 Environmental Public Health Tracking Network

This US tracking network contains data and information on health effects, environ-
mental hazards and substances, and human health [24]. This is an important data
source for measuring hazardous substances in environment. The main features of
the environmental public health tracking network are outlined in the following:

• It provide insights about spread of these substances over spatial and temporal
scale and their impact on human tissues (e.g., carbon monoxide and air pollution
in the environment).

• It also hosts data about health conditions and diseases, such as asthma and birth
defects.

• It also contains exposure data. It contains vital information about the exposures
relationship with the health effects, which relates specific health problems to age,
race, sex, and behavior and lifestyle choices.

7.8.3 Mobile Health-Care Innovations

The mobile technology is an emerging innovation in healthcare solutions. Mobile
applications are being developed to address mental health, cancer, active sports ther-
apy, and rehabilitation with capability to support large-format displays, Bluetooth
pen, AI, and cameras. These mobile technology when integrated with sustainable
health IoT holds massive potential to make a profound impact by providing
valuable healthcare services, such as telehealth [77], virtual care, and remote patient
monitoring.

7.8.4 Mobility Models and Health

The human mobility models are used to analyze the population movement which
can be used to mitigate disease outbreaks (e.g., development of malaria eradication
strategies) [43]. During the 2014 Ebola outbreak in Sierra Leone, Guinea, Nigeria,
Liberia, and Senegal, the call detail records (CDRs) from mobile cellular wireless
network were used to monitor population movements through development of
epidemiological models. These mobility models were used to forecast the spread
of Ebola and potential outbreak of disease through analysis of movement paths of
the affected population. The privacy concerns and security related issues are some
of the major challenges in implementation of this approach in sustainable health
IoT [82].
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7.8.5 Virtual Beach

This virtual beach is a decision support system to predict disease-causing pathogens
at beached. The policy makers can utilize the statistical model for health related
beach decisions. It is also to issue alerts about the concentrations of fecal indicator
bacteria (FIB) concentrations observed at beaches [33].
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