542 research outputs found

    Shipping Configuration Optimization with Topology-Based Guided Local Search for Irregular Shaped Shipments

    Get PDF
    Manufacturer that uses containers to ship products always works to optimize the space inside the containers. Container loading problems (CLP) are widely encountered in forms of raw material flow and handling, product shipments, warehouse management, facility floor planning, as well as strip-packing nesting problems.Investigations and research conducted two decades ago were logistic orientated, on the basis of the empirical approaches

    Improved Layout Structure with Complexity Measures for the Manufacturer’s Pallet Loading Problem (MPLP) Using a Block Approach

    Get PDF
    Purpose: The purpose of this paper is to study the Manufacturers pallet-loading problem (MPLP), by loading identical small boxes onto a rectangle pallet to maximise the pallet utilization percentage while reducing the Complexity of loading. Design/methodology/approach: In this research a Block approach is proposed using a Mixed integer linear programming (MILP) model that generates layouts of an improved structure, which is very effective due to its properties in grouping boxes in a certain orientation along the X and Y axis. Also, a novel complexity index is introduced to compare the complexity for different pallet loading, which have the same pallet size but different box arrangements. Findings: The proposed algorithm has been tested against available data-sets in literature and the complexity measure and graphical layout results clearly demonstrate the superiority of the proposed approach compared with literature Manufacturers pallet-loading problem layouts. Originality/value: This study aids real life manufactures operations when less complex operations are essential to reduce the complexity of pallet loading

    Modelling and Optimisation of Space Allocation and layout Problems

    Get PDF
    This thesis investigates the development of optimisation-based, decision-making frameworks for allocation problems related to manufacturing, warehousing, logistics, and retailing. Since associated costs with these areas constitute significant parts to the overall supply chain cost, mathematical models of enhanced fidelity are required to obtain optimal decisions for i) pallet loading, ii) assortment, and iii) product shelf space, which will be the main research focus of this thesis. For the Manufactures Pallet loading problems (MPLP), novel single- and multi-objective Mixed Integer Linear Programming (MILP) models have been proposed, which generate optimal layouts of improved 2D structure based on a block representation. The approach uses a Complexity Index metric, which aids in comparing 2 pallet layouts that share the same pallet size and number of boxes loaded but with different box arrangements. The proposed algorithm has been tested against available data-sets in literature. In the area of Assortments (optimal 2D packing within given containers) , an iterative MILP algorithm has been developed to provide a diverse set of solutions within pre-specified range of key performance metrics. In addition, a basic software prototype, based on AIMMS platform, has been developed using a user-friendly interface so as to facilitate user interaction with a visual display of the solutions obtained. In Shelf- Space Allocation (SSAP) problem, the relationship between the demand and the retailer shelf space allocated to each item is defined as space elasticity. Most of existing literature considers the problem with stationary demand and fixed space elasticities. In this part of the thesis, a dynamic framework has been proposed to forecast space elasticities based on historical data using standard time-series methodologies. In addition, an optimisation mathematical model has been implemented using the forecasted space elasticities to provide the retailer with optimal shelf space thus resulting into closer match between supply and demand and increased profitability. The applicability and effectiveness of the proposed framework is demonstrated through a number of tests and comparisons against literature data-sets

    Packing problems on a PC.

    Get PDF
    Thesis (M.Sc.)-University of Natal, Durban, 1991.Bin packing is a problem with many applications in various industries. This thesis addresses a specific instance of the this problem, known as the Container Packing problem. Special attention is paid to the Pallet Loading problem which is a restricted sub-problem of the general Container Packing problem. Since the Bin Packing problem is NP-complete, it is customary to apply a heuristic measure in order to approximate solutions in a reasonable amount of computation time rather than to attempt to produce optimal results by applying some exact algorithm. Several heuristics are examined for the problems under consideration, and the results produced by each are shown and compared where relevant

    An exact approach for the vehicle routing problem with two-dimensional loading constraints

    Get PDF
    We consider a special case of the symmetric capacitated vehicle routing problem, in which a fleet of K identical vehicles must serve n customers, each with a given demand consisting in a set of rectangular two-dimensional weighted items. The vehicles have a two-dimensional loading surface and a maximum weight capacity. The aim is to find a partition of the customers into routes of minimum total cost such that, for each vehicle, the weight capacity is taken into account and a feasible two-Dimensional allocation of the items into the loading surface exists. The problem has several practical applications in freight transportation, and it is -hard in the strong sense. We propose an exact approach, based on a branch-and-cut algorithm, for the minimization of the routing cost that iteratively calls a branch-and-bound algorithm for checking the feasibility of the loadings. Heuristics are also used to improve the overall performance of the algorithm. The effectiveness of the approach is shown by means of computational results

    Cargo Logistics Airlift Systems Study (CLASS). Volume 3: Cross impact between the 1990 market and the air physical distribution systems, book 1

    Get PDF
    The interrelations between the infrastructure and the forecast future market are discussed. Also, using forecasts of market growth for a base, future aircraft and air service concepts were evaluated

    Planning and Scheduling Optimization

    Get PDF
    Although planning and scheduling optimization have been explored in the literature for many years now, it still remains a hot topic in the current scientific research. The changing market trends, globalization, technical and technological progress, and sustainability considerations make it necessary to deal with new optimization challenges in modern manufacturing, engineering, and healthcare systems. This book provides an overview of the recent advances in different areas connected with operations research models and other applications of intelligent computing techniques used for planning and scheduling optimization. The wide range of theoretical and practical research findings reported in this book confirms that the planning and scheduling problem is a complex issue that is present in different industrial sectors and organizations and opens promising and dynamic perspectives of research and development

    Complex materials handling and assembly systems.

    Get PDF
    Report covers June 1, 1976-July 31, 1978.Each v. has also a distinctive title.National Science Foundation. Grant NSF/RANN APR76-12036 National Science Foundation. Grant DAR78-1782
    • …
    corecore