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ABSTRACT

Bin packing is a problem with many applications in various industries. This

thesis addresses a specific instance of the this problem, known as the

Container Packing problem. Special attention is paid to the Pallet Loading

problem which is a restricted sub-problem of the general Container Packing

problem.

Since the Bin Packing problem is NP-complete, it is customary to apply a

heuristic measure in order to approximate solutions in a reasonable amount

of computation time rather than to attempt ,to produce optimal results by

applying some exact algorithm. Several heuristics are examined for the

problems under consideration, and the results produced by each are shown

and compared where relevant.
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NOTATION

The following notation conventions are used throughout this thesis.

IX I Absolute value, the difference between X and o.

{X} Ceiling function, the smallest integer greater than or equal to

X.

[X] Floor function, the largest integer less than or equal to X.

Is I ~, the size (number of elements) of the set S.
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CHAPTER 1

IN TRODU CTION

Almost everyone has, at some stage, come into contact with some form

of packing problem. Whether it is packing food into a lunchbox, clothes
into a suitcase, or even arranging furniture in a room, an optimal

placement is necessary in order to make full use of the available space.
I

The problem of determining this optimal placement is known as the

'Packing Problem', and in its most general form, can be stated as:

Given a fixed amount of some resource, and a number of
weighted consumers of that resource, find an arrangement

which maximises the total weight of the satisfied consumers

Consider the example of arranging furniture in a room: the resource is
the total available space within the room, defined by the room's

dimensions, and the consumers of that resource are the individual
pieces of furniture. The furniture is considered a consumer of the

available space from the viewpoint that only one piece of furniture can

occupy any space at any given time, thereby consuming it. The weights

could depend on how dearly the furniture is prized. The weight of the
family heirloom Chesterfield, for example, will probably be more than
that of the chipboard magazine stand.

In this example, there are also a number of other constraints that must

be added to the general problem: there must be enough space for people

to be able to use the furniture; all the pieces must stand on the floor, not

on top of each other; no furniture may be placed on its side; the

Chesterfield must not be in direct sunlight; the chairs should not be in
the fireplace; etc...
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So, for any particular problem, the general statement may be modified

to:

Given a fixed amount of some resource, and a number of

weighted consumers of that resource, find an arrangement

whereby the total weight of the satisfied consumers is

maximised, subject to any relative, problem dependant

constraints.

This problem has a large number of industrial applications. It is found

in various forms in a wide variety of different contexts and in various

different dimensions; each instance of the problem substituting its own

properties for the resource, consumers, weig~ts and constraints.

Brown [Br071] discusses a number of applications of the general

packing problem. Industrial situations to which the problem is applied

include such diverse fields as scheduling advertisements for television

and radio, reducing the amount of wasted material (glass, paper, wood)
in the form of unusable offcuts, allocating computer resources to a

number of competing processes, and determining packing layouts for

transporting goods to customers.

All these problems fit the general description of the packing problem.
In the advertisement scheduling case, for example, the resource
corresponds to the amount of time available for the advertisements to be

I

broadcast; the consumers are the various advertisements; and their
weights depend on the price paid for each. The additional restrictions

include not showing the same advertisement twice in the same break,

not showing two advertisements for the same type of product in the

same break, and any other restrictions that the individual station
requires. [Br071]
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Some applications of the packing problem have received more attention

in the literature than others. The two most common are the 'Cutting

Stock' and 'Trim Loss' problems. Both problems can be described in
their 2-dimensional form in terms of the glass industry, although they

are just as applicable to other industries and in other dimensions.

The cutting stock problem involves determining how to cut a given set of

orders from a stock sheet. The dimensions of the required pieces and

the stock sheet are known, and a cutting plan is required that will allow

the maximum amount of the required order to be cut.

The trim loss problem, on the other hand, requires that the amount of

unusable trim be minimised. Here it is usual that the orders be

satisfied as soon as they are received, and an algorithm is needed that

will determine which of the available stock sheets to use in order to

reduce the amount of unusable offcuts remaifling.

These problems have been the subject of a number of works. Roodman

[Ro086] investigated a I-dimensional problem of minimising waste for a

steel manufacturing company, with the added constraint that the waste

be kept to the minimum number of pieces. A l~-dimensional problem of

this type in which the stock sheet has a finite fixed width but infinite
length has also been addressed. The object is to cut all the required
order items while keeping the length of the stock sheet used to a

minimum. [Bak8I, Cha87]

The 2-dimensional case has been investigated in considerable depth.

Various authors have included their own restrictions: some require

that the cut rectangles have their edges parallel to the edges of the stock

sheet (orthogonallayouts) [Bak80] while others view this restriction as

too limiting [Rin87]. Layouts are sometimes restricted to those which

can be formed by applying only guillotine cuts [Bea85], and other times
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not [Bea85a]. Guillotine cuts are cuts that extend from one side of the

stock sheet to the opposite side, parallel to the other pair of sides.
Figure 1.1 (a) shows an example of a layout formed by guillotine cuts,

while figure 1.1 (b) shows a layout that cannot be formed by guillotine

cuts.

Ca) Cb)

Figure 1.1: A layout that can be formed by a sequence of guillotine cuts

Ca), and one that cannot (b).

The definitive work in the field is generally considered to be that of

Gilmore and Gomroy [Gil64], while recent approaches have attempted

to use knowledge based systems [Dag90].

If one considers the available resource as the allowable volume into

which a given cargo load can be placed, and the consumers of that

resource to be the individual items making up that cargo, the general

packing problem reverts to that of packing the maximum amount of the

given cargo into the available space. This problem, which forms the

focus of the current work, is particularly important for any industry
that requires sending bulk products to customers.

The efficient utilisation of transport and warehousing facilities is

of prime importance in all industries and considerable effort is

often employed in obtaining improvements. [Dow84a]
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The problem in this form becomes

Given the dimensions of some containing region, and a
description of a cargo to be packed into that region, calculate

a layout for the cargo within the region that results in

maximum space utilisation.

This problem is known as the Container Packing Problem, as it is

commonly applied to the case where the available space is in the form of

a shipping container, and the cargo is a list of cartons that are to be

shipped or stored within that container.

The container packing problem itself is still a general problem,
encapsulating a large number of sub-problems. Each instance of the

container packing problem has its own individual characteristics,

depending on the nature of the cargo and the reason for the packing,

making it unique and requiring a specific method to provide an. efficient

solution.

The main problem with all the packing problems discussed so far is

that they belong to the class of problems known as NP-complete, [Cha87,

Ya080, Dow84a, Dag90J and thus it is not expected that an exact

algorithm will be developed to solve the problem in a feasible amount of
computation time.

Algorithms for pallet loading cannot, in a reasonable amount of

computer time, generate optimality [Dow84a]

The problem is NP-Complete. Mathematical programming

techniques are generally inadequate for the solution of these

problems due to the computational burden. Thus, instead of
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trying to reach an optimal layout pattern, most researchers have

used heuristic solutions. [Dag90]

The heuristics that have been developed to solve a number of container

packing problems are presented in chapters two and three of this work.
Before examining them, however, it is necessary to identify the one sub

problem of the container packing problem that has received most

attention. This problem, known as the 'Pallet Loading Problem' or

'Manufacturers Loading Problem' is of particular importance.

The pallet loading problem, which forms the focus of chapter two,

restricts the possible cargos and the format of the layouts produced.

The cargo being packed is restricted to a set of rectangular cartons

(boxes), all of which are necessarily of identical dimensions. These are

packed into the available space in strict layers. As a result of these

restrictions, the problem reduces to one of determining the maximum

number of rectangles that can be packed into a larger containing

rectangle [Dow87].

This reduced problem is still not as simple to solve as it may seem, as is

evident from the results shown in chapter two.

It is self-evident that, for a number of reasons, it is advantageous to be
able to solve the packing problem. A number ~f authors have quoted the
obvious advantage of reduced transportation costs to be gained from

shipping a maximum number of boxes in a single container [Ste84,

Smi80]. Brown [Bro71] has also given the example of calculating an

optimal number of distinct box sizes to use for shipping a given range of

variable sized objects. Dowsland [Dow84a] has also shown how the

entire packaging process can be integrated into a single computer

package in order to minimize costs throughout the process, by
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calculating the best box size to optimally fit onto a pallet, into a

container, etc.

All these applications require that a rapid solution be available for the

Pallet Loading problem, and thus this is a fair problem to tackle with
the technology of modern computing powe'r. But why restrict the

solution process to personal computers (PC's)?

There are a number of reasons for this, including cost and availability.

Personal computers are much cheaper than mainframes. This means

that the solutions to the problem will be affordable to many more people

and companies if they can be calculated on personal computers. Many

organisations have access to personal computers, so if a package to

solve this problem can be created for a PC, users will not have to

purchase expensive new hardware.

There are a number of other advantages to using a micro-computer

that have appeared in the literature. These include aspects such as

interaction between the packing staff and the computer, which is not

easily available on mainframe systems, and the improved graphic

capabilities of the micro which allows the production of easy to

understand picture-type output that can easily be interpreted by the
packing staff who are generally not computer literate.

The program package was initially developed for use on the

company's IBM 360 computer system.... was necessarily run in

batch mode, and this proved to be a major disadvantage owing

to the remoteness of the intended user in both a physical and

organizational sense. In order to allow a higher degree of

interaction between user and machine, the package was

modified for operation on a Z80 micro-computer. [Bis82]
I
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The ability for non-computer staff to make direct use of

interactive computer facilities therefore aids problem solution

and also ... helps overcome the apparent threat of computer

technology. [Dow84]

The problem can only be effectively tackled if interaction is

possible between the computer and those concerned with

packaging and distribution. This can be achieved effectively by

using modern interactive computer technology. [Dow84]

Armed with these reasons and justifications, research into various

packing problems and their solutions was undertaken. The results of

the research are presented in this thesis. Chapter two presents

methods of solving the restricted pallet loading problem while chapter

three addresses some of the more general container packing problems,

and their solutions.
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CHAPTER 2

THE PALLET LOADING PROBLEM

The pallet loading problem has received more attention than any other
container packing problem in the open literature for a number of

reasons: the restrictions it places on the cargo slightly reduce the

complexity of the problem; the solutions can be applied without
increasing labour costs; and it is a problem that is often encountered in

transport situations.

It includes several restrictions on the cargo and the layouts produced,

and thus is slightly easier to work with than any general packing

problem. The main restriction it applies is that the boxes are all

identical in dimension. This allows the other re'strictions to be

imposed, as they use this uniformity to reduce the complexity of the
layouts produced.

It will be assumed for discussion purposes that the boxes have
dimensions axbxc, and the pallet on which they are to be packed has

base dimensions XxY, and a maximum allowable height for the boxes

Z. Unless otherwise stated, all dimensions are given in millimeters, or
are irrelevant.

The results produced are restricted to orthogonal, 2~-dimensional

layouts. That is, the edges of each of the boxes are kept parallel to the
edges of the pallet, and the boxes are packed in strict layers, with the top

of one layer forming a flat surface on which the next layer can be
packed.
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The results can also be interpreted easily as a result of the graphical

output available, and so can be applied more quickly, resulting in

reduced transportation costs without increased labour costs associated

with the physical packing process.

The problem can be stated formally as

Given the dimensions of a containing space (pallet), and the

dimensions of a cargo unit (box), find the orthogonal, 2~-

dimensional layout that will result in the maximum

number of such units being packed into the available space.

DeCani has shown that an orthogonal arrangement of boxes will not

necessarily produce an optimal layout for all box and pallet

combinations [Dec78]. This is done by considering packing a box of size
21x1 onto a 20x10 pallet. Since the length of the box is more than either

of the dimensions of the pallet, no boxes can be packed by applying an

orthogonal packing. However, a box can be packed if it is placed

diagonally across the pallet as in figure 2.1.

Figure 2.1: DeCani's case where orthogonallayouts are not optimal.
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Despite this, for the pallet loading problem, a restriction is made to

orthogonallayouts for a number of reasons.

Non-orthogonal layouts need not be considered as the crushing

force on the corners of the boxes would be intolerably high.

[Smi80]

Practical considerations usually mean that the boxes must be

placed orthogonally and in layers in which the vertical

orientation of the boxes is fixed [Dow87]

The layouts that are produced consist of a set of flat layers which are

duplicated up the height of the pallet without 'exceeding the maximum

height restrictions.

For ease of packing on the shop-floor, all layouts must be in

strict layers. [Smi80]

It is often the case that boxes must be kept upright when packed,

especially if the products packed in the boxes can be damaged by being
placed in some other orientation. If this is not the case for the
particular product being packed, then the overall height utilisation can

often be improved by defining three layers, corresponding to the three
possible vertical orientations of the boxes being packed and using an

optimal combination of these three layers.

Suppose that such a set of three layers has been calculated. Each layer
in the set has a number of boxes in it (Ni) and a vertical dimension (Di).

The optimal combination of these layers contains T boxes, where T is
given by using Mi of each layer, the Mi being calculated by maximising:
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T =NIMl + N2M2 + N3M3

subject to

This maximisation can easily and exactly be carried out through the

use of a complete search such as that given in algorithm 2.1.

Algorithm 2.1

To calculate the best corrbination of layers.

proc Best_Corrbination (Max_Height, Dl, D2, D3, Nl, N2, N3)

M3.x = 0

for Ml = 0 .. Max_Height div Dl do

for 1'12 = 0 .. Maxyeight div D2 do

M3 = (Max_Height - (Ml*Dl + M2*D2)) div D3

if Ml*Nl + 1'12*N2 + M3*N3 > M3.x then

Max = Ml*Nl + 1'12*N2 + M3*N3

Record ( Ml, 1'12, M3 )

endif

enddo

enddo

Retum(Max)

endproc

Since algorithm 2.1 finds the optimal combination of layers exactly, and

can be applied to any set of three layers, th~ packing algorithms need

only determine the layers to use and can thus be evaluated and

compared on a basis of number of boxes per layer [Bis82].

The Pallet Loading Problem Page 12



In order to compare the available algorithms, several packing

situations have been evaluated using each. Deighton [Dei91] reported
results for testing 207711 different combinations of box dimensions over
a pallet surface of 5885x2321mm (corresponding to the dimensions of a

'General Purpose Container' as defined in [Dei88]), and these results

are quoted where relevant. Several other test cases have been quoted in

the literature, and these have also been used for testing each of the

algorithms discussed. In particular, the exhaustive set of box and

pallet dimensions described by Dowsland [Dow87] has been used to

evaluate each of the algorithms.

For demonstration purposes, a sample set of seven box and pallet

combinations has been chosen. The results are summarised in table

2.1, and the resulting layouts are described in the relevant sections.

The results are also duplicated in Appendix A for ease of reference.

Test X Y a b
/

a 38 38 7 3

b ID ID 7 2
c ID 15 7 4
d ID 15 7 3

e 14 11 4 3

f 14 13 4 3
g 22 16 5 3

Table 2.1 - Test box and pallet sizes.

The problem remains to determine the number of boxes that can be

packed into a layer on the pallet and which layout to use in order to pack

the boxes in the best way. Several methods have been devised to solve
this problem and these form the focus of this chapter.
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2.1 PALLETISING CHARTS

Since a rapid solution to the problem is desirable for a number of

reasons, researchers have been attempting for a number of years to find

a means of providing a viable solution in acceptable time. Early

attempts at this involved the production of what are known as "Pallet

Loading Charts". For any given pallet, a chart can be drawn up to

show how to pack boxes of any size onto the pallet.

Practical applications usually require quick reference to suitable

layouts, for a range of boxes on a given pallet. A pallet chart is

often used to provide this. [Dow84]

The chart assumes a constant pallet size, and depicts layouts for all

boxes with sizes in a given range on that pallet. They thus define a look

up function which can be used to determine the packing layout to use.

There is one such chart for each pallet size, and if a new pallet size is

used, a new chart will need to be produced.

These aids (Palletising Charts) can be of considerable benefit,

but thei r useful ness is Iimited because each chart is only

applicable for a given pallet size. [Dow84a]

An example of a palletising chart is shown ~n figure 2.2. This figure
shows the chart for packing boxes of base dimensions between
240x140mm and 410x270mm onto a 1060x813mm pallet.
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140 150 160 170 180 190 200 210 220 230 240

Figure 2.2: An example of part of a Pallet Loading Chart for a 1060x813 mm pallet

(from Smi80)

length
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8

9

7

Width (mm)
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The vertical axis of the chart represents the box length, while the
horizontal axis corresponds to the box width. For packing a box of
dimensions axb within the range of the chart onto a pallet of the correct

size, the maximum number of such boxes that can be packed onto the

pallet is given in the region of the chart in which the point (a,b) lies.
For example, a box of size 270x230mm can be checked with reference to

the point P in figure 2.2. This box size, and any other box size that falls

into the shaded region has a maximum packing number of 12. That is,

12 such boxes can be packed per layer on a pallet of the specified

dimensions.

These charts are usually accompanied by a set of tables (diagrams)

showing how to carry out the packing in order to pack the maximum

number of boxes. For the same example as above, the required packing
plan would be as in figure 2.3.

Figure 2.3: The packing configuration for 270x230mm boxes on a

1060x813mm pallet.

Despite the obvious advantages of such charts, they did not enjoy much

coverage in the open literature. The reasons for this were the high cost

of producing such charts, as well as their inability to handle varying
pallet sizes.
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The charts are expensive to set up, as the packing process must be

carried out for each box size within the required range.

Very little information is available on how I these charts are set

up. One method is to cover the plane with an even lattice of

points spaced at a given interval and to generate a suitable

layout or layouts at each point. The difficulty with this method is

in choosing the interval to give a dense_ cover of the required

range and yet require a feasible number of calculations.

[Dow84]

Pallet charts ... are usually derived using a systematic search

procedure over the range of packed sizes required, applying

some algorithm. [Dow84a]

These charts as described are useful if the pallet is of fixed size and one

wishes to evaluate the effect of packing different sized boxes onto the

pallet. Sometimes, however, the box dimensions are fixed, and the
analysis required is dependent on allowing different amounts of
overhang over the edges of the pallet. This requires a number of pallet

charts to be generated, corresponding to the different dimensions of the

total containing rectangle. Another approach that could be used,

although no reference could be found for it in the literature, would be to
generate a pallet loading chart for a fixed box size and a varying sized
pallet.

Dowsland [Dow84], however, went one step further in this area. By
observing that packing a box (axb) onto a pallet (XxY) is the same

problem as packing a different box (raxrb) ~nto the pallet (rXxrY) for

any real number r > 0, it can be shown that any pallet loading problem

of this form can be represented as a point in 3-dimensional space with
the axes defined by
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y
z=x·

By applying this observation, Dowsland defined a method of setting up a
I

three-dimensional pallet loading chart which would allow analysis of

the effects of changing pallet or box size either individually or in

combination.

The chart is made simpler by the observation that

Because X has been pre-defined as the pallet length and a as

the box length, only the region defined by

O<z~1

needs to be considered. [Dow84]

This chart, however useful it may be, requires a computer to access it,
as it is not possible to depict it graphically. It did, however, form the

basis of a method of producing rapid results [Dow85aJ.

More work on the production of pallet loading charts was not carried

out, because of the shift in emphasis of the research since the
introduction of cheap, easily available computer equipment.
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The advent of the micro computer and the subsequent

improvements in its graphics capabilities, has meant that the

emphasis has shifted from palletizing charts and mainframe

bureau results to microcomputer packages, complete with a

graphical representation of the most suitable layout. [Dow87a]

Thus the research has shifted from algorithms to determine these

charts to algorithms that will run in feasible time limits and produce

acceptable results. The algorithms that have resulted from this

research are presented in the rest of this chapter.

2.2 A N UPPER BOUND

Since the problem of packing boxes onto a pallet is known to be NP
complete [Dow87], it is unlikely that an efficient algorithm to solve the

problem exactly will be forthcoming. It is therefore necessary to define

some way of approximating the optimal solution as closely as possible

in a feasible amount of time.

Thus, in attempting to solve the pallet loading problem, it is customary

to apply some heuristic measure.

The closeness to which the heuristic's result ~esembles the exact result

can be evaluated by comparing the number of boxes each method packs.
It is usually easy to determine the number of boxes packed by the

heuristic methods, however it is not so easy to find the exact solution

with which to compare these results, since if it were, there would be no
need for the heuristic in the first place.
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It is, therefore, useful to have an estimate of the maximum number of
boxes that can be packed with which to compare the results obtained, as

this will provide an estimate of the accuracy of the heuristic being

applied. This estimate is provided in the form of an upper bound.

A simple rule to follow is that the total surface area of the boxes packed

cannot be more than that of the pallet. Thus, if N boxes are packed, we

have that

N * Box Area ~ Pallet Area,

or

N < Pallet Area
- Box Area·

This clearly gives an upper bound on the number of boxes that can be

packed, but is not always obtainable.

Consider, for example, the case of packing boxes of size 2x2 onto a 5x5

pallet. The upper bound is then N :s; [~:~] = [~] = 6. Thus the upper

bound on the number of boxes packed is 6. However, it is not possible to

pack more than 4 boxes without overlapping the edge of the pallet.
(figure 2.4)
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Figure 2.4: The best packing of a 2><2 box on a 5x5 pallet. The shaded

regions denote unusable space.

An improvement to the direct area/area upper bound was suggested by

Dowsland [Dow85]. This upper bound stems from the observation that if

boxes are placed orthogonally on the pallet, tpen there is an equivalent

packing layout in which the boxes have all been shifted as far as

possible to the top-left corner of the pallet. (figure 2.5)

Figure 2.5: A packing layout equivalent to figure 2.4, in which the boxes

have been shifted to the top-left of the pallet.

The position of each box in the layout can thus be expressed as an
1

integer combination of box lengths and widths from the top left corner of
the pallet. It then becomes clear that no box needs to extend to the right

of the point defined by the maximum of such combinations. A similar
argument can be applied to the other pallet dimension.

These two maximum lengths define a sub-pallet, known as a perfect

partition reduction of the original pallet, which can be used to give an

improved estimate of the maximum number of boxes that can be

packed. By applying an algorithm such as the one shown in algorithm

2.2 , the perfect partition reduction of a pallet can be calculated.
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The upper bound can thus be defined as

N < Reduced Pallet Area
- Box Area '

where the reduced pallet area is given as Reduced Length * Reduced

Width.

Algorithm 2.2

To evaluate a perfect partition reduction of a pallet.

proc Reduce_Length (MaxI.ength, BoxLength, BoxWidth)

MaxSoFar = 0

for X = 0 to MaxI.ength div BoxLength do

Y = (MaxLength - X * BoxLength) div BoxWidth

Total = (X * BoxLength) + (Y * BoxWidth)

if Total > MaxSoFar then

MaxSoFar = Total

endif

enddo

Return ( MaxSoFar )

endproc

proc Perfectyartition (X, Y, a, b)

Return ( (Reduce_I.ength(X, a, b) *Reduce_Length(Y, a, b)) mxi (a*b)

endproc

This method can be applied to the example of a 2x2 box being laid on a
5x5 pallet. The reduction of the pallet to a perfect partition of the boxes

gives a maximum of [~:~J = 4 boxes per layer. This is the achievable

maximum on the number of boxes that can be packed. (See figure 2.5)

The upper bound produced by the perfect partition reduction method,

however, cannot always be attained. This can be shown by considering

the following examples.
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For packing a 5885x2321mm container floor with boxes of size
230x155mm the perfect partition reduction of the container floor is

5885x2320mm, given by (2*230mm + 35*155mm) x (2*230mm +

12*155mm), and thus the upper bound is 382 boxes per layer.
I

However, for a slightly smaller box (230x154mm) the reduced container

surface is 5852x2310mm, which is given by (38*154mm) x (15*154mpl),

and so the upper bound produced is only 381.

If a layout of the larger box with 382 boxes per layer existed, then by

replacing each box in that layout with a smaller box, one would obtain a

layout of these smaller boxes containing more than the upper bound

allows, which is clearly not possible. Thus there can be no such layer of

the larger boxes, and hence the upper bound for the larger boxes cannot

be reached.

A further improvement on this upper bound estimate was produced by

Dowsland [Dow84] at about the same time as the perfect partition upper

bound. This method depends on what are termed equivalence classes of
problems.

It is intuitively obvious that packing a box of size 2x2 onto a 5x5 pallet is

the same problem as packing a 20x20 box onto a 50x50 pallet with only a

change of scale. It is perhaps less obvious that this is also the same as
packing a 248x18 box onto a 53x48 pallet.

The possible layouts for a given box on a particular pallet depend not

only on the absolute dimensions of the box a~d pallet, but also on their

relative dimensions which determine the set of efficient partitions of the
pallet on the box [Dow84].
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A feasible partition of the pallet length (X) on the box length and width

(a, b) is given as an ordered pair of non-negative integers (m, n) such

that

m*a + n*b ~X.

The partition is perfect if equality holds, and is efficient if it cannot be

improved by increasing either m or n.

The set of efficient partitions of a pallet length of 5 units over a box

length and width of 2 units each is

E{5,2,2} ={(O,2); (1,1); (2,O)}.

This is the same as the sets of efficient partitions that can be produced

by box dimensions (a,b) =(24, 18) and pallet dimensions between 48 and

53.

Dowsland showed that the upper bound on the number of boxes that can

be packed depends on the set of efficient partitions of the pallet on the

box (E{X,a,b) and E{Y,a,b}). It can be proved that the upper bound on
the number ofaxb boxes that can be packed onto a XxY pallet is equal to

the upper bound for all other problems in the same equivalence class.

In particular, it is equal to the upper bound for packing a box of
dimensions cxd on a VxW pallet where c, d, V and Ware chosen to

minimise the value of[':~ subject to

nc + md:::; V;

nc + (m+l)d > V, for all (n,m) in E{X,a,b};

~~}1} > V;
pc + qd ~ W;
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pc + (q+l)d > W, for all (p,q) in E{Y,a,b);

This is a more computationally expensive problem to solve than any of

the earlier methods, but produces an upper bound that has been shown
to be attainable in more than 78% of examples in a given range [Dow84].

Another upper bound estimate which can occasionally be applied is the

one suggested by Barnes [Bar79]. This provides a method of calculating
the number ofaxb rectangles that can be fitted into a large XxV

rectangle.

The method defines the maximum number of lxa rectangles that can

be packed by the following:

Let

x, Y~ a

and define m,n such that

n =X mod a

m =Ymod a

(O~n~a)

(O~m~a).

Then the amount of wasted space on the pallet is given as:

{
nm ifn+m ~ a

A = (a-n)(a-m) else.
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Similarly, for a lxb rectangle, the wasted space (B) can be calculated.

I

For a packed rectangle axb, the amount of wasted space can now be

calculated as R where R=R(X,Y) is the least integer satisfying:

R ~ max( A,B );

A = R mod a;

B = Rmod b.

The upper bound is then given as:

[
X*Y-RJ

Bound = a*b

This result holds for relatively prime a,b and sufficiently large X,Y.

The problem with this method is in the restriction to sufficiently large

X and Y.

As Dowsland is quoted in reference to Barnes's method,

"sufficiently large" implies that the ratio of containing rectangle

to contained rectangle is larger than that encountered in most

pallet loading problems. [Dow87]

The final upper bound algorithm which has been applied to the tested

cases for evaluating the packing heuristics is that suggested by

Dowsland [Dow87]. This method uses a combination of Dowsland's

earlier algorithm [Dow84] with the method of Barnes [Bar79]. Once the

minimum feasible partition has been calculated, Barnes' algorithm is

applied to the pallet resulting from the perfect partition reduction,

producing the final upper bound.
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The upper bound resulting from this combination of methods has been
achieved in over 90% of the tested cases. Example bounds are given in

table 2.2.

Test X Y a b Bound

a 38 38 7 3 ffi

b a) a) 7 2 28

c a) 15 7 4 10,

d a) 15 7 3 14

e 14 11 4 3 12

f 14 13 4 3 15

g 22 16 5 3 Z3

Table 2.2: Upper bounds for the test box and pallet sizes of table 2.1.

2.3 BASIC APPROACHES

Once an upper bound has been calculated, it remains to determine

whether that upper bound can be attained, and if so, how. Since, as has

been mentioned earlier, the problem is NP-complete, it is not always

practical to try to find the optimal solution, and thus some heuristic

measure will be applied.

The results obtained from these heuristic methods can be tested against

the expected optimal result in order to determine whether or not they

are acceptable.

What heuristic can be applied in evaluating a layout to use for packing

a pallet with boxes? The most fundamental and obvious method is

simply to pack all the boxes parallel and adjacent to each other starting
in one corner of the pallet, as shown in figure, 2.6.
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Figure 2.6: A basic packing of 200x150mm boxes on a lOOOxlOOOmm

pallet.

Since the boxes can be packed with either their length or width parallel

to the length of the pallet, this results in the number of boxes packed

being given by

N = max [:J[~J; [~J[~])

This will be referred to later as the basic method.

In the case of a 200x150mm and a 1000x1000mm pallet, the method

packs 30 boxes per layer. The shaded area at the bottom of the pallet

(figure 2.6) cannot hold any more boxes, as its width is only 100mm

where 150mm is required to hold another row' of boxes.

Deighton [Dei91] reports that this method reached upper bound in 23.5%

of his 207711 tested cases for packing a large container with boxes. Of

the 8565 cases defined by Dowsland [Dow87a], 20.57% attained the upper

bound when tested with this basic approach. Example layouts produced
are shown in figure 2.7.
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(a) 60

(c) 10*

(e) 9

(b) 20

(d) 12

(0 12

(g) 21

Figure 2.7: Tests of the basic packing layout. The numbers below each

figure show the number of boxes packed, and a star indicates that the

upper bound has been reached. The dimensions of the boxes and pallets

used are as in table 2.1.
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This clearly is not the best method to apply in all cases, but does have

certain uses as a lower bound against which other methods can be
compared. The method does, however, always provide an optimal

solution for square boxes.

A point to notice about the method is that in the area where the boxes

are packed, there is 100% space usage, and the only waste is in the

shaded area (figure 2.6) along the edges of the pallet.

In some cases, it may be possible to improve the layout immediately by

adding some boxes, rotated 90° to those already packed, along the edge.
For example, consider packing a 5x5 pallet with 2x1 boxes. Using the

basic method, the number of boxes that can be packed is 10 (figure
2.8(a)). However, by rotating 2 further boxes through 90° and fitting

them along the edge of the pallet 12 boxes can 'be packed (figure 2.8(b)).

111',1111111.11
(a) (b)

Figure 2.8: Packing 2xl boxes on a 5x5 pallet. Basic layout Ca) is

improved by adding boxes along edge of pallet at 900 rotation.
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This method thus defines the number of boxes that can be fitted onto the

pallet as:

N =max (A,B)

where

and B is defined similarly by exchanging a and b throughout. The three

areas corresponding to the terms in this formula are shown in figure

2.9.

x

Y

Ymod I:

a*(X diva) X mod a

Figure 2.9: The three regions where boxes can possibly be packed on a

pallet.

For reference later, this method will be referred to as the improved
basic method.

Using this method, the results of the basic method were improved upon

in 35.67% of Deighton's examples and 47.76% of Dowsland's. Examples
are shown in figure 2.10.
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(a) 65

(c) 10*

I I
(e) 11

.~~

1----+----rml-rrJ'

(b) 26

(d) 14*

(f) 12

t--t---t---t---t-t---t--11

".,=".~"~,~".,.".,.,,".,.*,.,«.,,,"*~.".*,.z.,,«".*"1
(g) 21

Figure 2.10: The results of applying the extended basic algorithm to the

sample set of box and pallet dimensions.
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2.4 A BOUNDARY OPTIMISING APPROACH

Steudel first published this heuristic in 1979 [Ste79] with an updated
version appearing in 1984 [Ste84]. These algorithms consist of two

phases, the first being a perimeter optimisation, and the second an

inward projection.

The objective is to maximise the utilisation of the perimeter of

the large rectangle. In the second phase of the algorithm the

optimum arrangement of the rectangles along the perimeter is

projected inward to fill the centre portion of the large rectangle

so as to minimise the amount of unused area. [Ste79]

2.4.1 The basic algorithm

The perimeter optimisation phase uses dynamic programming in order

to evaluate the placement of boxes along the perimeter of the pallet so
that the maximum length of the perimeter is used.

The formulation is as follows:

Fn(Sn) = MAX {Xn*a + Yn*b + Fn-l(Sn-l) }

subject to:

Xn*a + Yn*b :::; Dn, n=1,2,3,4

where:
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Fn(Sn) = the maximum value of the sum of length and width

placements on edge n of the large rectangle with state

variable Sn entering that stage.

Xn = the number of small rectangles of length a placed lengthwise

along edge n.

Yn = the number of small rectangles of' width b placed widthwise

along edge n.

Dn = dimension of edge n (either X or Y).

Sn = the state variable that describes the initial state for edge n. Sn

has 3 possible values:

Sn =1:

Sn=2:

Sn=3:

Xn =0,

Xn =2,

Xn =1,

Yn =2;

Yn = 0;

Yn = 1.

This geometrically divides the pallet surface into 4 blocks, defined by:

B1: formed by Xl and Y4

B2: formed by X2 and Y1

B3: formed by X3 and Y2

B4: formed by X4 and Y3,

as shown in figure 2.11. Obviously, if anyone of the dimensions of these

blocks is zero, the block will be empty.
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Figure 2.11: The four blocks defined by the perimeter optimisation

phase.

The inward projection can take place once the perimeter optimisation

has been completed. In this phase, the optimal perimeter placement is

projected into the centre of the pallet by filling the four blocks. The

theory behind the algorithm is that since the perimeter placement is

optimal, this inward projection will result in an overall optimal layout.

This direct inward projection does not necessarily produce an optimal

layout, or even a feasible layout because of two possible problems that
must be catered for.

Two potential problems must be considered. For one, a

condition of overlap or interference between the blocks could

occur. ... The second problem is that the inward projection

could result in a layout pattern which has a central hole larger

than a small rectangle (box). [Ste79]

Figure 2.11 shows a layout that is clearly not optimal due to the

presence of a large 'hole' in the centre of the pallet, while figure 2.12
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shows a layout which is not feasible due to the overlap between the

centre boxes (shaded region).

-

Figure 2.12: A layout showing overlap between blocks 1 and 3.

Overlap between blocks 1 and 3 occurs if:

while overlap between blocks 2 and 4 occurs if

(Y1 + Y3)b > X and (X2 + Xi)a > Y.

Steudel's method of handling this problem condition [Ste79] was to treat

blocks 1 and 2 as fixed. Blocks 3 and 4 are then modified by changing
I

the values of X3, Xi, Y2, and Y3 in order to remove the overlap

condition. In the case of figure 2.12, this is done by reducing X3 by 1 and

increasing Y3 by 1 to obtain the layout in figure 2.13.

Figure 2.13: The final layout of figure 2.12 after removal of the overlap

condition.
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In cases where the perimeter optimisation results in a central hole, the
suggested solution is to search for another perimeter arrangement of

boxes that yields the same optimal perimeter usage. If one is found,
then the inward projection phase starts again with this new optimal

perimeter placement. If such an arrangement does not exist, then

again blocks 1 and 2 are held fixed and blocks 3 and 4 are modified to fill

the hole. The layout of figure 2.11 is modified to produce the final layout
offigure 2.14.

Figure 2.14: The layout resulting from removing the hole in figure 2.11.

This algorithm has also been tested by using the examples of Deighton

and Dowsland. The results produced by the basic method were

improved in 55.40% and 61.46% respectively. However, the basic

method produced better results than this method in 24.16% of
Deighton's tests and 13.96% of Dowsland's.

Example results are shown in figure 2.15.
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(a) 66

illil·t-----+-----t
(c) 9

I

(e) 12*

.J-----t---t
(b) 26

(d) 14*

(014

(g) 22

Figure 2.15: Example results produced by Steudel's 1979 algorithm.
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Bischoff and Dowsland [Bis82] demonstrated with the example of
packing a 48x40 inch pallet with 11x7 inch boxes that simple extensions

to the algorithm could result in an improved layout. (See figure 2.16)

Instead of holding blocks 1 and 2 fixed and modifying blocks 3 and 4,

they held blocks 1 and 4 fixed and modified blocks 2 and 3 to produce a

layout containing more boxes.

I

(a) (b) (c)

I

Figure 2.16: Bischoff and Dowsland's objection to Steudel's algorithm.

Packing a 48x40 inch pallet with llx7 inch boxes gives a central hole

after perimeter optimisation (a). This is removed by modifying blocks 3

and 4 (b) resulting in 22 boxes per layer. Modifying blocks 2 and 3 gives

a layout with 23 boxes per layer (c).

Steudel later updated his algorithm [Ste84] to include several

modifications to the strategies for handling each of the problem

conditions resulting from the inward projection phase.

2.4.2 Later Updates

In his 1984 paper, Steudel [Ste84] defined the perimeter optimisation
phase of the algorithm in the same way as the earlier paper, but

extended the inward projection phase of the algorithm to cater for the

problems that had arisen in the method. An optional third phase was

also added to the algorithm, in which an attempt is made to add boxes

at a different vertical orientation once the final layout has been

calculated.
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In order to remove overlap between blocks, the following two strategies

are evaluated, with the one giving the largest number of boxes per layer

being selected.

Strategy 1. Treat blocks 1 and 2 as fixed and modify blocks 3 and 4 by
changing the values ofX3 and Y3 to remove the overlap.

Strategy 2. Treat blocks 1 and 2 as fixed. Eliminate either block 3 or 4,

whichever is causing the overlap, and then redefine the two

adjacent blocks to fill the resulting void. This is
demonstrated in figure 2.17.

Figure 2.17: The result of applying strategy 2 to the layout offigure 2.12.

In [Ste84], Steudel defined a test for the central hole condition. This
involves checking that all the regions are non-empty, and then
checking the conditions

This problem is treated by evaluating the following strategies and
selecting the one which results in the maximum number of boxes being
packed per layer.
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Strategy 3. Treat blocks 1 and 2 as fixed. Expand block 4 to fill the hole

and reduce block 3 as required (figure 2.18(a)).

Strategy 4. Treat blocks 1 and 4 as fixed, expand block 3 to fill the hole

and reduce block 2 as required (figure 2.18(b)).

Strategy 5. If the central hole is only large enough for one extra box,

place one extra block in the hole, independently of the four

block convention (figure 2.18(c)).

Once each of these strategies have been evaluated, ties are broken in

favour of strategy 3 or 4 rather than strategy 5 wherever possible.

t===r==r==!r===;d=:~~I--l~

1--1--1--1--1--1---4~j_
Ca)

Cc)

Cb)

Figure 2.18: The results of applying the three hole removing strategies to

the layout of figure 2.11. Note that in Cc), Steudel only allows for 1 box in

the central region.
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(a) 66

(c) 10*

I

(e) 12*

•
(b) 26

(d) 14*

...-_..........,..__I-t~:I-_-t

(t) 14

(g) 22

Figure 2.19: The results of applying Steudel's extended method [Ste84] to

the example set of box and pallet sizes.
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This algorithm improved on the results of Steudel's earlier algorithm

[Ste79] in 36.05% of Deighton's and 37.73% of Dowsland's examples.

The improved basic method of section 2.2 produced better results than

this method in 6.51% and 5.22% of the tests. I

Even with the updated strategies, Steudel's algorithm does not always

find an optimal layout. Consider the example of packing boxes of size
230x170mm onto a 1260x1000mm pallet. Perimeter optimisation results

in the following values:

Xl :4 YI: 2

X2: 1 Y2: 1

X3: 4 Y3: 2

Xi: 1 Y4: 1

which gives a perimeter usage of 3320mm. Inward projection does not

result in a central hole large enough for another box, nor does it result

in any overlap, and so the number of boxes that can be packed is set at

12. (Figure 2.20 (a))

(a) (b)

Figure 2.20: The best layout produced by the perimeter optimisation

algorithm Ca) is not as good as that produced by a sub-optimal perimeter

usage (b).
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However, a sub-optimal perimeter layout defined by

Xl:7 Yl:0

X2:0 Y2:2

X3: 7 Y3: 0

)4:0 Y4: 2

which only occupies 3300mm along the perimeter of the pallet can be

used. This defines two large blocks that overlap in the centre. The
overlap condition is be removed by redefining X3 and Y4 each to be 0

resulting in 14 boxes per layer (figure 2.20 (b)).

2.4.3 Further Analysis

Steudel's algorithm [Ste79, Ste84] makes the assumption that an
optimal perimeter layout will result in an optimal overall layout when it

is projected into the centre of the pallet. As has been shown above, this

assumption is not always valid.

Sometimes, it may be necessary to use a sub-optimal perimeter layout

in order to produce a better overall result. It does, however still make
some sense to use combinations of box lengths and widths that best

utilise the length of the pallet side being considered.

Analysis of Steudel's perimeter optimising phase reveals that the

dynamic programming routine used selects the combination with the

maximum length usage out of 81 possible combinations. These
combinations correspond to the value of the state variable (Sn) of each

edge of the pallet. Since there are three possible values which each

state variable can assume, and each of the four state variables can
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assume any of these three values independently of the value of any other

state variable, there are 34 (81) possible combinations to consider.

Since there is such a limited number of possible edge placements to

consider, and at most three strategies need to be examined for each of

these, instead of selecting the optimal perimeter placement, one could

select the one that provides the best overall layout.

The extended algorithm could then be defined as in Algorithm 2.3

Algorithm 2.3

Extended version of Steurel's algorithm.

proc Extend_Steudel

for Sl = 1 .. 3 do

for S2 = 1 .. 3 do

for S3 = 1 .. 3 do

for S4 = 1 .. 3 do

Set_Up_Perimeter(Sl, S2, S3, S4)

Project_Inwards

Check_Against_Best_Sa_Far

enddo

end::io

enddo

enddo

endproc

The algorithm for projecting the perimeter arrangement into the centre

of the pallet can also be extended slightly. If there exists a central hole,

then the strategies can be evaluated as for the 1984 algorithm, except

that strategy 5 can be modified to pack more than a single box into the

central hole if this is possible.
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This unpublished method (referred to later as the Improved Steudel
method) produced results that are necessarily as good as those

produced by either of Steudel's algorithms, as it contains the optimal

perimeter layout as used by Steudel's algorithms as one of the cases

that is tested.

It improved on the results of Steudel's updated algorithm [Ste79] in

16.20% of Deighton's tests, and 10.94% of Dowsland's, but still resulted

in less boxes than the improved basic method in 1.73% and 1.06% of the

test cases.

Examples of the layouts produced are shown in figure 2.21.
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(a) 67

(c) 10*

I

(b) 28*

(d) 14*

(e) 12* (f) 14

(g) 22

Figure 2.21: The results obtained by applying the new extended version

of Steudel's heuristic to the example datal set of table 2.1.
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2.5 THE FIXED PATTERN APPROACH

Smith and DeCani published a method which was the forerunner of a

group of similar heuristics. The basic algorithm is to select some
general layout pattern, and then evaluate all the layouts that conform to

that general pattern, selecting the combination with the best overall

results as the one to apply.

2.5. 1 S m i th and De Can i 's He u r is ti c

The Smith and DeCani heuristic [SmiBO] examInes all layouts that

conform to the general four-region pattern. These regions are similar

to the four regions of Steudel's algorithm (figure 2.11), but the size of

each is calculated in a different way from that used by Steudel.

For each layer, Smith and DeCani's algorithm examines all the layouts
of boxes that form a cyclic pattern of four regions of the type shown in

figure 2.22, and selects as its solution the layout containing the largest
number of boxes.
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A E F
1 , , , , , , , , , , , , , , , , , , X1 1,,,,,,,,,,, "Y1 C

Figure 2.22: The layout pattern considered by Smith and DeCani's

heuristic.

Assume that a box of size axb is to be packed onto a:pallet of size XxY.

Clearly, the maximum values for Xl and Y4 are given by

Xl max = [~J, and

The procedure considers each possible pair of values for Xl and Y4,

and

choosing the value of YI and X4 to be

and
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in order to fill the top length and the left side of the pallet.

The. smallest value that X2 can assume in o~der to allow CD to extend

below AB (figure 2.22) is given as

X2 min =r:b
}

and the maximum value that it can assume is

X2max =[;]

Each of these values is selected in turn, forcing the value of Y2 to be

fixed at

Y _[Y-X2aJ
2 - b .

Similarly, X3 can assume values between

t~b}

and

[~].

setting the value of Y3 to

The allowable values of X2 and X3 are rest!icted by these minimum

values in order to ensure that AB ~ CD and EF ~ GH (figure 2.22). This
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makes the overlap situation which occurred In Steudel's algorithm

impossible.

The number of boxes that can be packed using any combination of

region sizes is simply

In order to cycle through all the combinations, an algorithm such as

that shown in algorithm 2.4 can be followed. This algorithm will cycle

through all the combinations of region sizes'l and return the maximum·

number of boxes that can be packed.

Algorithm 2.4

Smith and DeCani' s algorithm.

proc Smith (X, Y, a, b)

Max = 0

for Xl = 0 .. X diva do

for Y4 = 0 .. Y div b do

Yl = (X-Xl*a) div b

for X2 = (Y4*b) diva .. Y div a do

for X3 = (Y1*b) diva •. X div a do

Y2 = (Y-X2*a) div b

Y3 = (X-X3*a) div b

X4 = (Y-Y4*b) div a

if X1Y4 + X2Yl + X3Y2 + X4Y3 > Max then

Max = X1Y4 + X2Y1 + X3Y2 + X4Y3

Record( Xl, X2, X3, X4, Yl, Y2, Y3, Y4)

endif

enddo

enc:kio

enddo

enddo

Return( Max )

endproc
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Smith and DeCani also prescribe that the ~lgorithm be run twice for

each box size. The first run is made, then the box dimensions (a and b)

are swapped, and the second run made. The best result of the two runs

is then selected as the final.

It is clearly easy to improve the code of algorithm 2.4. For example,
lines 4 and 5 could be swapped, as the value assigned to YI does not

depend on the current value ofY4, but only on Xl, and so the calculation

can be taken out of the loop. The algorithm has, however, been left in

this form for clarity.

This algorithm improved on the results obtained by the improved basic

method in 53.35% of Deighton's tests and 51.55% of Dowsland's, and
I

never gave results that were not as good. Examples of the layouts

produced are given in figure 2.23.

Thus the Smith and DeCani algorithm does achieve fair results,

showing that it is feasible to apply some heuristic measure to the pallet

loading problem in order to reduce the time taken in determining

which layout to use.

However, Smith and DeCani's algorithm does not achieve optimal

results for all box and pallet combinations, and several improvements
to it have been found.
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(a) 67 (b) 27

(c) 10*

I

(d) 14*

(e) 12*

(g) 22

(t) 14

Figure 2.23: The result of applying Smith and DeCani's algorithm to the

data of table 2.1.
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2.5.2 Bischoff and Dowsland's Method

Bischoff and Dowsland [Bis82] produced a method similar to that of

Smith and DeCani. The basic method is still the same, in that a set

pattern is chosen, and

layouts which form a pattern of this type are examined

systematically [Bis82].

The two algorithms do however differ in a number of ways. The basic

layout pattern obviously is different, with the inclusion of a fifth region

into that of Smith and DeCani; and, a different method of cycling

through the combinations is used.

The positions of the five regions in the layout pattern considered by this

method and the relative orientations of the boxes within the regions are

shown in figure 2.24.

--.
~1

2

~ r 5

4

--.
3

Figure 2.24: The relative positions and box orientations of the five

regions of Bischoff and Dowsland's algorithm.
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The orientation of the boxes in each of the four main regions is fixed (as

indicated by the arrows in figure 2.24), while in the central region,

either of the two possible orientations can be assumed so as to pack the

maximum number of boxes into that region.

The sizes of the regions are allowed to cycle through all possible values.

Unlike Smith and DeCani's algorithm, which included bounds that

ensured feasible layouts, this process does not always produce a feasible

layout. Infeasibility results from an overlap between diagonally

opposite regions in the layout, and can easily pe tested for by evaluating

the same tests as were used by Steudel [Ste79]. If any overlap is

encountered, the layout combination is excluded from further

consideration by the algorithm.

In order that the fifth region is as large as possible, the four major

regions must be positioned in the corners of the pallet. This results in

the length and width of the fifth region being given as:

X' =X - (Yl+Y3)b; and

Y' =Y - (Y4+Y2)b

if region 2 extends below region 1 as in figure 2.24, and

when region 1 extends below region 2.

The number of boxes that can be fitted into this region using the basic
method is therefore given as:

N = max ~:I~}[~I~])
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The final algorithm to use is given as Algorithm 2.5. Once again, the
I

code has been left unoptimised so as to improve readability.

Algorithm 2.5

Bischoff and Dowsland's algorithm.

proc Bischoff (X, Y, a, b)

MaxSoFar = 0

for Xl = 0 .. X div a do

for X2 = 0 •. Y diva do

for X3 = 0 .. X div a do

for X4 = 0 .. Y div a do

Yl = (X-Xl*a) divb

Y2= (X-X2*a) divb

Y3 = (Y-X3*a) divb

Y4 = (Y-X4*a) divb

if No_Overlap then

if X2*a > Y4*b then

X' = X - (Yl+Y3)b

Y' = Y - (Y2+Y4)b

else

X' = X - (X1+X3) a

Y' = Y - (X2+X4)a

endif

ij = max( (X' diva) * (Y' div b) ;

(X' div b) * (Y' diva»

if ab + cd + ef + gh + i j > MaxSoFar then

MaxSoFar = ab + cd + ef + gh + ij

Reconi(a, b, c, d, e, f, g, h, i, j)

endif

endif

enddo

enddo

enddo

enddo

Return ( MaxSoFar )

endproc
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(a) 67

:::::::::::=::::::::::::::::::::::::::::::::::::::::::::::::::::::.::::::::::::::::::::::::::::::::::::::::::::::::

(c) 10*

I

:.:.:..:.:

(b) 28*

(d) 14*

(e) 12*

(g) 22

(f) 14

Figure 2.25: The example results demonstrating Bischoff and

Dowsland's five region algorithm.
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This algorithm improved on the results produced by Smith and
DeCani's algorithm in 2.99% and 2.55% of the tested cases, and never

produced results that were not as good as Smith and DeCani's.

See figure 2.25 for examples of the layouts produced by Bischoff and

Dowsland's algorithm.

2.5.3 Further Improvements

Although, as has been shown, the Bischoff and Dowsland algorithm

improves on that of Smith and DeCani in some cases, it still does not
provide the optimal solution for every box and pallet combination. Some

improvements have been made to the algorithm, and these are

presented in this section.

A detailed analysis of the various layouts considered by the Smith and

DeCani algorithm shows that a large num1;>er of clearly sub-optimal
layouts are considered. For example, when packing a 20x20 pallet with
a 7x2 box, all the layouts of figure 2.26 were considered as possibilities.

Everyone of these layouts is clearly sub-optimal because of the presence

of a large central hole (similar to that defined by Steudel [Ste79]),

because one of the dimensions of some region is zero, or simply because
it is a bad choice of dimensions.
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Ca)

Cc)

Cb)

Cd)

Ce) Cf)

Figure 2.26: Several clearly sub-optimal layouts that are considered by

Smith and DeCani's algorithm.

The first, and most obvious improvement to the method is to allow for
an efficient means of filling the central region. For some of the
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combinations of the region sizes -around the pallet this fifth region can

be quite large, and packing it as a single region may not be optimal.

Since filling the central region can be viewed as the same problem as

packing a pallet, any of the pallet loading algorithms can be applied. In

particular, the improved basic method of section 2.2 which uses a main

region and allows rotated boxes along the edges has been used with

some success [Dei91]. This results in a 7-region layout pattern as

shown in figure 2.27.

1

2

4

3

Figure 2.27: The format of the 7-region layout pattern being introduced.

The three shaded regions correspond to using the extended basic method

to fill the central hole in Smith and DeCani's layout

Recursively calling one of the heuristic measures has also been

attempted, but this proved too time consuming for practical application.
Even when the recursion is limited to only one level, several hours may
be required to define a packing layout.

Another improvement has also been suggested [Dei91]. This involves

an ll-region layout as shown in figure 2.28 that is a superset of Smith

The Pallet Loading Problem Page 60



and DeCani's 4-regions, Bischoff and Dowsland 5-regions and the new

7-region layout.

2 2'

4

4'

4"

5

~' I

5"

3

3'

Figure 2.28: The relative positions of the 11 regions in Deighton's

improved layout.

The algorithm allows the sizes of the four major regions (1, 2,3 and 4) to

vary, covering as much of the pallet as possi9le (as does the Smith and

DeCani algorithm), while the dimensions of the other regions are

defined to fill any remaining space around these regions, and thus are
fixed.

The motivation for this extension results from a detailed analysis of

Smith and DeCani's algorithm. Consider for example the

configuration shown in figure 2.26(d). There is space for several

further regions of boxes, as shown by the cross-hatched boxes in figure
2.29.
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Figure 2.29: The layout resulting from filling the empty space in figure

2.26 (d).

The algorithm follows the approach of Smith and DeCani in that two

passes are made, each with a different orientation being used for
positioning boxes in each region. The execution time of the algorithm

can be reduced by noting that when the greater of the box's dimensions

is parallel to the length of the container in region 1, region 2' will
necessarily be empty, as will regions 3' and 4". Similarly, when the

orientation of boxes in region 1 is rotated, region 4' will be empty. These

restrictions can be coded into the algorithm to reduce the number of
calculations made within the loops.

The algorithm can be stated as in algorithm 2.6.
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Algorithm 2. 6

Deighton's new ll-region algorithm

proc 11_Regions ( X, Y, a, b)

Max = 0

for Xl = 0 .. X div a do

for Yl = 0 .. Y div b do

for X2 = {(Yl*b) la} .. Y div a do

Y2 = (X-Xl*a) div b

for X3 = {(Y2*b) la} .. X div a do

Y3 = (Y-X2*a) div b

X4 = (Y-Yl*b) div a

Y4 = (X-X3*a) div b

X2' (X-Xl*a-Y2*b) diva

Y2' (X2*a) div b

X3' (Y-X2*a-Y3*b) div a

Y3' (X3*a) div b

X4' (X-X3*a) div a

Y4' (Y-Yl*b-X4*a) divb

X4" = (X-X3*a-Y4*b) div a

Y4" = (X4*a) div b

XS = (X-Y2*b-X2'*a-Max(Y4*b+X4"*a,X4'*a)) diva

YS = (Y-Yl*b-Y3*b-X3' *a) div b

XS" = (Y-Yl*b-Y3*b-X3'*a) div a

YS" = (X-Y2*b-X2'*a-Max(Y4*b+X4"*a,X4'*a)- XS*a) div b

YS' (XS*a) div b

XS' (Y-Yl*b-Y5*b-Y3*b-X3'*a) div a

T = Xl*Yl+X2*Y2+X3*Y3+X4*Y4+X5*Y5+X2'*Y2'+X3'*Y3'+X4'

*Y4'+XS'*Y5'+X4"*Y4"+XS"*YS"

if T > Max then

Max = T

endif

enddo

endd.o

enddo

enddo

Retum(Max)

endproc
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(a) 68

1

(b) 28

~11-----+--,
(c) 10

I

(e) 12

(g) 22

(d) 14

(0 14

Figure 2.30: Example results of the new ll-region algorithm.
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This method has resulted in fair success. Deighton reports an
improvement in 0.56% of his 207711 tested cases over the method of

Bischoff and Dowsland, resulting in the upper bound being reached in

85.8% of the tests. The upper bound was also reached in 94.34% of

Dowsland's test cases. Figure 2.30 shows examples of the layouts

produced.

2.6 AN EXACT ALGORITHM

As has been noted earlier, and is commonly stated in the literature, the

pallet loading problem is NP-complete. A consequence of this is that it

is unlikely that an efficient algorithm will be found that will solve the

problem exactly.

Despite this, Dowsland has attempted to develop an algorithm that will

generate optimal results for any box and pallet combination within a

given range. The basis of the algorithm is a graph theoretic
formulation of the problem [Dow87].

The formulation of the problem is as follows:

Given the problem of packing a set of a by b boxes (a ~ b) onto

an X by Y pallet (X ~ Y) we define a 'pallet loading' graph GXYab

to be the graph whose vertices represent the set of possible box

positions on the pallet such that two vertices are adjacent if the

box positions they represent overlap. [Dow87]

In order to produce a solution to the pallet loading problem, a

maximum subset of vertices must be found which are mutually non

adjacent. That is, a maximum stable set must be found in the graph.
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The problem of finding maximum stable sets in a graph is known to be
NP-hard [Lou82], and so there has been no saving in modelling the

pallet loading problem in this way.

Dowsland [Dow87] shows that the pallet loading graph is a large graph,

having

IV I =(X+l-a)(Y+l-b) + (X+1-b)(Y+1-a)

vertices. For example, packing of a 400x300mm box onto a

1000x1000mm pallet produces a graph of 842602 vertices - this for a

layout that has an upper bound of 8 boxes as the maximum that can be
packed. An example of the pallet loading graph for packing a 5x5 pallet

with 3x2 boxes is given in figure 2.31. Clearly, it is not feasible to

attempt to solve problems of this magnitude. It is therefore necessary, '
first, to reduce the size of the graph.

Figure 2.31: The graph used to evaluate the optimal packing of3x2 boxes

on a 5x5 pallet. (G55 3 2), , ,
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2.6.1 Reducing The Problem Size

Two methods for reducing the size of the graph have been discussed by

Dowsland, who suggests that they be used in tandem in order to achieve

the best results.

The first reduction method uses an earlier result due to Dowsland

[Dow84]. This states that the solution to a packing problem depends not

only on the absolute dimensions of the pallet and box being packed, but

on the integer combinations of box lengths and widths which can be

fitted into the pallet dimensions. Using this result so called equivalence

classes of problems can be defined such that each problem in a class

has the same optimal layout as every other problem in the same class.
If one can find this optimal layout for anyone box and pallet

combination, the same layout can be applied to every other problem set

in the class. In particular, the problem that gives the graph with the

least number of vertices can be used to produce a solution.

I

The above example of a 400x300 box and 1000xlOOO pallet is equivalent to
a 4x3 box and a 10x10 pallet. The graph for this reduced problem

contains only 112 vertices, clearly a substantial saving over the 842602

for the original problem, but still a fairly unmanageable size.

The second reduction method follows from the observation made in

another of Dowsland's earlier papers. [Dow85J The ability to reduce
any layout to a perfect partition layout as discussed earlier implies that
any box can be shifted so that it is placed at a point that is an integral

combination of box dimensions from the left and top of the pallet. There

is, therefore, no need to define vertices in the pallet loading graph

which do not correspond to points that can be expressed in such a way.
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Applying this restriction to the same example as before results in a

graph that contains only 40 vertices. This graph can then be used to

determine the layout for the original packing problem. Similarly t the
graph G5 5 3 2 of figure 2.31 is reduced to that of figure 2.32 t which is

much more manageable.

Figure 2.32: The reduced form of the graph for packing 3x2 boxes onto a

5x5 pallet.

Once the graph has been formed t it still remains to find the maximum

independent set. Dowsland suggests the method of Loukakis and

Tsouros [Lou82] although she points out that any graph theoretic

algorithm to solve the problem can be used equally successfully. (See

Appendix B for a description of the Loukakis and Tsouros algorithm.)
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The method has been implemented and tested with several packing

problems. The graphs used must necessarily be small in order for the

computation time required to be reasonable. A graph of 40 nodes took

around 5 minutes to solve. One of 220 nodes ran for 3 days on an IBM

compatible PC without producing any relevant output. Thus the

algorithm in this form seems to be of little practical use.

2.6.2 Introducing The Problem

The problem of the vast computation time required to solve the pallet

loading problem had been tackled by Dowsland and published two years

before the paper describing the algorithm [Dow85a]. This paper
describes the same algorithm as the paper discussed above [Dow87], but

places different amounts of emphasis on various parts of the algorithm.

Dowsland [Dow85a] states that none of the graphs tested directly with

the Loukakis and Tsouros algorithm produced results within

reasonable time constraints, and thus further restrictions need to be
placed on the algorithm.

The first modification to the algorithm at this stage is to introduce the
upper bound estimate that was discussed in section 2.2.

If we make the assumption that the bound is always correct then

it can be added to the basic search tree, both as a bounding

condition to avoid searching branches which can never yield a

set of the desired size, and to stop execution once a set of this

size has been reached. [Dow85a]
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Of a limited sample set of problems, Dowsland reported that around
77% were solved within the required time constraints [Dow85a]. This

still leaves too many problems which are not solved within the specified

time for the algorithm to be generally ~cceptable, and so more
information from the physical problem needs to be incorporated into the

algorithm in an attempt to tighten the bounds on the search.

At this stage, the upper bound is again used (this time indirectly) in

order to reduce the amount of testing required.

The upper bound can be used to determine the maximum amount of

wasted space in the final packing.

Wasted_Space =-x*y - a*b*Upper_Bound

Since the search procedure of Loukakis and Tsouros [Lou82] works by

building up partial layouts, to which nodes representing boxes are

added, it is possible to determine the amount of space in the partial

layout which can never be used by adding another box to that layout.

Whenever this wasted space becomes larger than the total wasted space

in an optimal layout, the algorithm can backtrack.

By adding this restriction to the earlier algorithm, a new algorithm was
developed which

makes maximum use of this idea by defining an ordering on the

vertices of GXYab which means that wasted areas can be

recognised early in the tree. [Dow85a]

The Pallet Loading Problem Page 70



Using this restricted search algorithm, 97 out of 100 tests performed by
Dowsland were solved within the specified time [Dow84], excluding the

time required for setting up the graph.

2.6.3 Saving Time

I

There are still the problem 3% of cases for which more than the

acceptable limit on computation time was required. In yet another
paper [Dow87a], Dowsland described a computer package that can

guarantee an optimal layout within five minutes on a PC.

It has been shown that an exact solution to the problem can be found for

every case (e.g. by using the exact algorithm described by Dowsland

[Dow85a]) but the execution time required may well exceed the time

constraints that would make it feasible.

In order to solve this problem, Dowsland has suggested a computer

package that will combine an algorithmic analysis of the solvable

problems with a database of previously cBJculated results for the

problems which require more than the specified limit on computation

time [Dow87a].

The approach suggested is to attempt to solve all the possible problems
within the given time limit. Those problems which require more than

the specified amount of time can be solved on a mainframe and their

results stored in a database. When a user requests a layout for a

particular box on a given pallet, the program first searches the

database. If the results for the given problem are contained in the

database, they can be presented to the user immediately. If they are not
in the database, they can be calculated (within reasonable time

constraints) and then presented.
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The problem with creating such a database is that all possible problems
must be attempted. Since there are obviously an infinite set of box and
pallet sizes that could be used, this is not feasible. In order to overcome

this, Dowsland returned to the concept of equivalence classes of packing

problems. It is obviously clear that only one combination from each

equivalence class needs to be tested, as every equivalent combination

has the same optimal solution. A further restriction on Dowsland's test

set is that only common box and pallet dimensions are tested. This

restricts the box and pallet ratios to:

(X*Y)
1 ~ (a*b) ~51

As long as a manageable finite set of box and pallet dimensions can be
generated, the pallet loading problem will be solved. Dowsland gives a

description of a manner of determining the box and pallet sizes which

cover this range, resulting in 8565 unique combinations. The method is
as follows

Since any packing problem (X', V', a', b') is contained in a region of the
three-dimensional pallet chart [Dow84] bounded by the constraints:

na + mb ~ X

na + (m+l)b > X, \in, m s.t. X-b < na + mb ~ X

a(nmax+1) > X,

together with a similar set of constraints for Y, every region has at least
one edge of the form:
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x =nxa + mxb

Y =jya + kyb

which moves between regions when

na + rob =nxa + IDxb

or

which occurs when the box ratio ~ satisfies

a m-mx mx-m
b = nx-n = n-nx

or

Since the ratios between X and Y, a and band XY and ab are within

confined ranges, the values in the above equation can be given by

X
mx~ b

X
n <X-a

y
kY~b

. y
J <Y-a

X
n<-+l-a
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· X 1J<-+-a

As none of these values may be negative, they define a finite set of box

ratios (a/b) at which an edge moves between regions. This is

determined by examining the maximum values that a and b may

assume.

The maximum value for a (amax) occurs when

and

m=O

then

amax = Max [~J +1

~ Max ~ (XY/ab)(XIY)(aIb) + 1

=Max ~ 51*2*4 + 1

=~408 + 1

=21

Similarly, bm ax can be shown to equal 11. Thus for the range of

problems considered by Dowsland, the set of box ratios at which an edge

moves between regions is given by i such that

c, d > 0, integers

c~21

d~ 11
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and

c, d mutually prime.

This process results in 79 values. By adding the two end-point ratios
(1/1 and 1/4) and taking one point between each consecutive pair of

ratios, 80 box ratios are found, which collectively cut every region in the

3 dimensional pallet chart at least once.

A covering set of problems can thus be calculated by considering all the

pallets of the form

x =nc' + md'

and

Y =kc' + jd'

which fall into the required range. These can then be evaluated, with

duplicates from the same equivalence class being removed, and a total
of 8565 box and pallet combinations resulting.

Each of these can then be packed using the exact algorithm, and any

that take more than the limit on the amount of time to produce a result

can be stored to the database for later use.
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(a) 0
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(c) 10*

(e) 12*

I
-
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(b) 28*

(d) 14*

1-----+---+--.....1
I

(0 14

I

1

(g) 23*

Figure 2.33: The optimal solutions to the packing examples as

determined by Dowsland's combined algorithms. Note that the result

was not determined for case I (a).
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Dowsland's final algorithm is applied to find the optimum packing of

any box on a pallet where the box and pallet ratios satisfy

Since this does not cover a large portion of the test data used by

Deighton, the algorithm was not tested with these examples. The

example test from table 2.1 (a) was also not used, as the area ratio falls

outside that required by Dowsland's algorithm. (This test resulted in a

reduced graph containing 1034 nodes).

The test data derived from Dowsland's papers was, however, tested,

and the the upper bound was attained in 98.03% of the cases. Figure

2.33 gives examples of layouts produced.

2.7 CONCLUDING REMARKS

This chapter has shown that it is feasible to attempt to solve a problem

such as the pallet loading problem on a personal computer.

The problem that has been considered is restricted by the condition that

only orthogonal 2~-dimensional layouts of identical boxes are

considered. For a range of commonly used box and pallet sizes, it is

possible to calculate an exact solution using a combination of graph

theory techniques and heuristics. Boxes must however sometimes be

packed into large storage devices, such as shipping containers, and for
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this case the exact method requires too mu;ch computation time. In

preference, one of the heuristic measures that have been discussed

should be applied.

When the restrictions to orthogonal, 2~-dimensionallayouts of the same

sized boxes are lifted, no similarly elegant solutions are available, as

will be shown in the next chapter.

It has also been pointed out [Car85] that there are cases for which the

optimal layout, as defined above, is not the best layout to use. This

occurs when there are other conditions that must be taken into account.
Such conditions may include stability during transport, or the ability of

the stack to be lifted by applying pressure to the sides.

The pallet loading problem is generally tackled by attempting to

maximise the number of rectangles that can be fitted

orthogonally within a larger containing rectangle. These

methods may produce solutions which do not satisfy such real

life problems as load stability or transportability. [Car85]

Applying these extra constraints, however, forces the problem away

from the pallet loading problem to some other packing problem with its

own particular restrictions, and so it must be tackled by a method that

will employ the physical attributes of the problem to find a solution.
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CHAPTER 3

OTHER CONTAINER PACKING
PROBLEM S

The Pallet Loading Problem, discussed in chapter two, has been

extensively studied over the last few years, and, as has been shown, a

number of algorithms attempting a solution to the problem have been

published. This, however, is not the case for the general packing

problem. The various restrictions that characterise the pallet loading
problem can either be tightened or relaxed, resulting in a new problem,

which must have new methods developed in order to take advantage of

the restrictions to provide a solution.

In this chapter various container packing problems are discussed

together with their suggested solutions.

Initially some problems where the restriction to a single box dimension

is retained are discussed. Two authors have considered ways of

extending the pallet loading problem. Carpenter and Dowsland
[Car85a] considered the pallet loading problem from a more practical

viewpoint than the pure mathematical optimisation applied in chapter

two. The restriction that the pallet load be stable under a number of

conditions was added and given higher priority than maximum volume
usage. In other words, if a more stable layout can be attained with
slightly fewer boxes in it, then it is considered more feasible, as the risk
of damage to the product during transportati~nand storage is reduced.
Han, et al [Han86], on the other hand, attempted to improve the overall
three-dimensional volume utilisation by relaxing the restriction to flat
horizontal layers.

Other problems that have been tackled and are discussed in this

chapter include the IPLS (Interactive Pallet Loading System)

Other Container Packing Problems Page 79



formulation of Hodgson [Hod82] and Carlo et' al [Car85]; the multiple

box size algorithms of George and Robinson [Ge080] and Haessler and

Talbot [Hae90]; and the use of robots to execute the physical packing as

discussed by Malstrom, Meeks and Flemming [MaI86] and Penington

and Tanchoco [Pen88].

3.1 A STABLE LAYOUT

Carpenter and Dowsland [Car85] point out that

Distribution staff are not only concerned with maximising pallet

utilisation; the stability of pallet stacks for transportation, both

within and outside the warehouse environment, is a further

important consideration.

As a result of this observation, a method is required that will pack a
maximum number of boxes per pallet while satisfying such real-life

constraints as load stability and transportability.

All the methods that have been discussed in the previous chapter

attempt to find a layout that will result in a maximum volume

utilisation, and place no emphasis on stability of the loads produced.

In order to add such constraints to the algorithm, it is necessary to
evaluate individual requirements for each new box, depending on such

attributes as box size, construction, rigidity and weight.

For the stability of the load to be ensured, there must be no vertical

columns of boxes which are not interlocked with the rest of the pallet

load, as well as no boxes that are not sufficiently supported from below.
Walls of boxes that do not interact with the rest of the load should also
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be avoided. These constraints imply that there must be an interaction

between adjacent layers of the load.

Carpenter and Dowsland expressed these conditions by imposing the

following three conditions on all the boxes in the load.

• Each box must have its base in contact ,with the pallet surface or
with at least two boxes in the layer below. Contact of less than X%

is ignored.

• Each box must have at least Y% of its base in contact with the layer

below (or 100% in contact with the pallet surface).

• There must be no straight guillotine cuts traversing more than Z%

of the maximum length or width of the load.

Sometimes pallets are not used as a base on which the loading takes
place, but boxes are stacked in some formation, and transported in

these stacks by 'clamp trucks', which clamp and lift the stack by

applying pressure to opposite faces. In order for this to be possible,

there must be interaction between boxes on th,e same layer of the stack.

Carpenter and Dowsland's test for this condition is that at least one
pair of opposite sides must be flat, and that at least J% of the length of
each box parallel to that pair of edges must be in contact with other

boxes in that layer.

The relative degree of importance of these criteria will depend on the

nature of the boxes being packed, and thus it will be necessary to

calculate values for X, Y, Z and J for each packing situation for which a

stable load is required. Typically, the values that are applied fall in the
ranges
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5 ~X~ 15;

75 ~y ~ 95;

50 ~ Z ~ 100; and

40 ~J ~ 100.

Each of these values has an impact on the resulting stability of the load.

For example, as the value of X increases, more loads will test unstable.

(If X > 50% then no loads will ever test stableD

Because of the advantages of simplicity, it is a usual requirement that

the layout pattern used for the first and all odd numbered layers is a

reflection or a rotation of that used for the second and all even
numbered layers (Figure 3.1). Carpenter and Dowsland mention that

no practical advantage was found by removing this restriction and

using multiple layer formats.

In order to analyse the results produced it is first necessary to

'compress' the loaded boxes so as to have a minimum amount of
unused space within the layout. This can be achieved easily by pushing

all the boxes in the load as far to the top left corner of the pallet as

possible. Stability and clampability of the load can then be calculated by
checking the given conditions for each box in the load individually.
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Ca)

(c)

Cb)

(d)

Figure 3.1: Possible layouts for alternate layers of a pallet load, showing

Ca) original layout, (b) 1800 rotation, Cc) reflection through short axis,

and (d) reflection through long axis.

As a result of their processing, Carpenter and Dowsland show that a

single-region packing configuration can never be stable, as it will

necessarily consist of guillotine cuts. One and two region layouts have

the greatest chance of being clampable, but are usually not stable.

Three and four region layouts are generally the most stable. They also

make the point that boxes with a square base can never produce a stable
layout, as there can be no interlocking between columns unless some of
the boxes overhang empty space.

The user thus has the ability to trade optimum volume utilisation off

against load stability by modifying the percentage values specified. It

is, however, common practise to stabilise a load by inserting packing

material into it. For example, sheets of corrugated cardboard are

occasionally inserted between layers of boxes to make the load more

stable, and thus allow a pure mathematical optimisation to be applied.
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3.2 THREE DIMENSIONAL OPTIMISATION

Han et al [Han86] attempted to extend the pallet loading problem in
order to achieve an overall optimal three-dimensional layout. Their
algorithm attempts to load a maximum number of identical small
rectangular prisms (of size axbxc) into a single larger one (XxYxZ) by

relaxing the pallet loading problem's restriction to flat horizontal

layers.

Their algorithm uses a similar approach to the pallet loading
algorithms of chapter two, but instead of producing a number of layers

over the base of the pallet and selecting the best combination of these

layers, it repeatidly packs the base of the pallet and one of the two

possible vertical faces.

The packing in the L-shaped region formed by the base and vertical side

being considered optimises only over the current region and, once

established, is not modified later to produce a' better overall layout, that

is, no backtracking is catered for.

The method used in the optimisation of this L-shaped region at each
stage of the algorithm is to pack the base with boxes in each of the three

possible vertical orientations and then to select the orientation that
gives the largest percentage area cover. The same procedure is then
applied to the vertical faces, but instead of using a fixed vertical

orientation, the orientation of the boxes with respect to the vertical face

of the pallet is held fixed. Once again, the face layout with the largest

percentage cover overall is applied. This ensures that once the packing

has taken place, it results in a flat surface and a flat wall on and

against which the next layer can be packed (figure 3.2).
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The pallet size is then reduced by ignoring, the dimensions of the L

shaped region that has been packed, and repeating the process with the

remainder of the pallet until no more boxes can be packed.

Figure 3.2: An optimised packing layout over the L-shaped region

formed by the base and end of the pallet volume.

The algorithm results in a layout that can be separated into a number

of optimum layers through the application of only guillotine cuts. Each

of these layers is optimum from the viewpoint that it uses a maximum

percentage of the volume it occupies.

The original method as described by Han required the application of
Steudel's heuristic [Ste79] for the placing of the boxes within the layers.
As it has been shown (see chapter two) thp.t this is not an optimal

method in a large number of cases, the algorithm was modified to use

the Smith and DeCani heuristic [Smi80] for this optimisation.
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In order to test this algorithm, 10000 randomly generated box and pallet

combinations were generated in the range

1000 ~ X ~ 1999,

1000 ~ y ~ 1999,

1000 ~ Z ~ 1999,

100 ~ a ~ 499,

100 ~b ~ 399,

100 ~ c ~ 299.

These were packed using Han's algorithm, as well as the strict pallet

loading problem solution of Smith and DeCani [Smi80]. Of the 10000

cases, Han's algorithm improved on the strict layering solution in 948

(9.48%) cases, and gave the same results in a further 1248 (12.48%). In

the other 7804 cases (78.04%), using Smith and DeCani's algorithm

with strict layers produced an overall layout containing more boxes.

A further test was then carried out. Here, the Smith and DeCani

algorithm was run three times, once optimising over the base of the

pallet and extending this to the height, once optimising over the end of

the pallet and extending this down the length, and finally optimising

over the side and extending the results across the width of the pallet.

The best result obtained from these three ~s was tested against those
of Han's algorithm. The results of this testing showed that Han's

algorithm gave better results than the strict layers approach in only 151
cases (1.51%), and fewer boxes per pallet in 9006 (90.06%) of the tests.

Apart from producing results which provide only questionable

advantages, Han's algorithm has a number of other drawbacks.

Firstly, it requires more execution time than a direct pallet loading

approach, as the optimisation over the layers needs to be carried out at

each stage of the algorithm with the reducing pallet dimensions. This

Other Container Packing Problems Page 86



obviously requires more applications of whichever two-dimensional

optimisation algorithm is being used.

Secondly, the algorithm is only applicable to situations where the boxes

can assume any vertical orientation. If the boxes have to remain
upright when packed, then the end and side optimisations will be of no

value.

A third drawback of the algorithm is that the suggested layouts are

necessarily more complex than those produced by the algorithms of
chapter two. This poses two problems: they are harder to depict using a
computer (figure 3.3); and the physical packing is more difficult to

execute manually. The outcome of this is that the cost of packing the

pallet will increase, reducing any savings which would be made by

shipping possibly one extra box per pallet.

Figure 3.3: A diagram representing the packing of 314x273xl16mm

boxes onto a 1727xl123x1956mm pallet using Han's algorithm. (Ringed

numbers indicate the number of boxes packed within the corresponding

slice. Other numbers are slice di~ensions)
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A final drawback of the algorithm is that, when analysed by the

stability constraints of Carpenter and Dowsland [Car85a], the layouts
produced are always unstable because of the walls built in the vertical

plane.

As one final comment on the algorithm, it should be pointed out that
the authors give a detailed analysis for packing a 48x24x40 inch pallet

with 11x6x6 inch boxes. This analysis results in 195 boxes per pallet.

The Smith and DeCani algorithm [Smi80] used directly with the same

data, packs 196 boxes.

3.3 MULTI PLE BOX SI ZES

Two separate problems can be addressed under this heading; one being

the case where all boxes have their own unique dimensions, and the

other attempting to pack multiple instances of each of a number of

different box types. In either case, whatever the problem to be solved,

the dilemma of George and Robinson may be encountered:

We have found no previous papers dealing with this precise

problem. [Geo80]

and thus a new heuristic will have to be developed.

In this section, some of the problems th~t have appeared In the
literature are reviewed, and their solutions presented.
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3.3.1 An Interactive Solution

Hodgson described an interactive method for packing multiple sized
boxes onto a pallet [Hod82]. The system he described is called

Interactive Pallet Loading System (IPLS) and was developed to assist

the United States Air Force (USAF) with the transportation of military

supplies.

Because of the nature of the expected loads, Hodgson required that his

algorithm be interactive, and provide a packing layout that could be

modified by the packers if necessary. Load stability is not an important

aspect in this application, as the loads are stabalised by covering them

with a nylon net that is pulled tight, holding the boxes in place.

The approach taken is a two-phase method. In the first step, the user
guides the program by selecting a set of 'Base Boxes' onto which

vertical columns of boxes are stacked so as to maximise use of the

resulting volume. This volume is defined by the base dimensions of the

base box and the maximum allowable height of the pallet load. Boxes

are stacked strictly one on top of another into this area, with none

protruding out of the column dimensions. This step can easily and

without too much computation time, be solved by a complete search.
The user is given the opportunity to modify these columns if desired.

In the second step of the solution procedure, the program places the
columns of boxes produced by the first stage onto the floor of the pallet.

Since the columns are set up optimally in the first step, the quality of

the results produced depends only on the percentage surface area
covered by the base boxes.
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Hodgson's method of placing the columns onto the pallet results from a
simplification of an exact dynamic programming technique.

This optimal technique depends on defining a partition of the pallet

floor such as that of figure 3.4. At any stage of the loading algorithm,

the left-hand subpallet is completely loaded, and the right-hand

subpallet is empty. The partition can be extended by adding one of the

remaining boxes to the load, thereby increasing the number of boxes

packed. Since any of the unpacked boxes could be added to any point in

the partition at every step in the algorithm, and either of the two

possible orientations would need to be considered, this optimal

technique becomes infeasible, as too much time would be needed to

consider all the options.

... the computer time required to solve the dynamic program

likely would be well beyond any sensible limit for real-world

applications. [Hod82]

(0,0)r------------------.
Left-hand subpallet

...................,,
:.- Partition P,

y

Right-hand sub pallet

x---~j;,y)

Figure 3.4: A partition of the pallet floor.
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Because the optimal approach is not computationally feasible, Hodgson

defined a simplification of the method which reduced the amount of

computer time required and made the solutions attained more

applicable to the physical problem.

A rectangular partition of the pallet floor is defined as a partition which

has a profile in the form of a single rectangle (figure 3.5).

(0,0)

(x,y)

Figure 3.5: A rectangular partition of the pallet floor.

By restricting the partitions considered to rectangular ones only,

Hodgson was able to redefine the dynamic programming phase of the

algorithm in such a way that a feasible amount of computer time is
used. This dynamic program extends the current rectangular
partition to form a new one by adding boxes along both sides of the
partition. (Figure 3.6)
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(0,0)

(x', y')

(X,V)

Figure 3.6: Extending the rectangular partition (x,y) to a new

rectangular partition (x' ,y').

The boxes are packed into this new L-shaped area by dividing it into two

regions as shown in figure 3.7, and optimally packing boxes into these

two regions.

,,,,,,,
--------,.(~~~) :, ,
~-----------~--(x', y')

(a)

,,,,,,, ,
- - - - - - - - - ~ )( ,.y~ - ~,
--------------ex' ,y I )

(b)

Figure 3.7: The two decompositions of the L-shaped region into

rectangular sub-regions.

The layouts thus produced by Hodgson's algorithm are separable by a

number of guillotine cuts (figure 3.8). This, although not guaranteeing

an optimal layout, does give a number of advantages. It was mentioned
that a set of guidelines were required for the packers, which could be

modified when the physical packing took place. The restriction to
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I ,

guillotine cuts implies that the packers can move boxes within the

rectangular regions in which they are packed, thus keeping volatile

liquids and explosives at the edge of the load as required by the USAF

regulations, and also giving some control over the centre of gravity of

the loaded pallet.

· '· '· '--· '· '· ', '· '· ',.- ---- -- - ""•· ,---- -,
._-----------_. ,•· '•

•
•
.L.....__~

•
•L..- -" • '

-------------~---------~----_ .•

Figure 3.8: The guillotine cuts (dotted lines) used to decompose the

layout formed by Hogdson's algorithm. Figure 3.9 shows the

corresponding layout.

The procedure of packing boxes is further simplified by adding the

restriction that the box with the largest base dimensions must always

be packed first. This restriction, introduced' by Hodgson, results from

observing the physical packing process, and is often necessary for load

stability.

As an example of typical results that are produced by this algorithm,

consider packing a square pallet, with sides of length 60 inches, with

boxes as described in table 3.1. (The example is from [Car85].) The

final layout produced by Hodgson's algorithm is shown in figure 3.9.
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Box No Length Width

1 00 25

2 00 ~

3 Z3 22

4 25 ~

5 ID ID

6 ID I 15

7 25 10

8 15 15

9 12 10

Table 3.1: The boxes used for demonstrating Carlo's algorithm.

1

2

8 6

Figure 3.9: The result of applying Hodgson's algorithm to Carlo's

example set.

Carlo et al [Car85] adapted Hodgson's algorithm so that it could be run
on a micro-computer. The reasons for this were that the micro allowed
greater user interface capabilities for training staff, as well as the

capability of producing graphical output which would help the packers

perform the physical packing of the pallet.

Carlo retained the same interactive column generating phase, but

defined a new base loading algorithm.
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Since the stacking part of the procedure is optimal, the key to

the quality of the solutions generated ... for the three

dimensional problem lies in the dynamic programming base

loading heuristic. [Car85]

For Carlo's application, Hodgson's base loading procedure could not be

applied, as it required too much computer storage space and time for

implementation on a PC. A new adapted version of the algorithm was

therefore developed.

This new algorithm relies on a random ordering of the boxes eventually

to provide a satisfactory solution. The steps in the algorithm will be

demonstrated with reference to the data used, to demonstrate Hodgson's

method.

The algorithm begins by sorting the boxes in order of decreasing base

area, and orienting them so that their longer base dimensions are

parallel to the width of the pallet. (This is implicit in the ordering of the
boxes in table 3.1.) The first box in the list is then positioned in the top

left corner of the pallet. Subsequent boxes are packed forming a column

down the pallet length, not exceeding the width of the first box in the

column, until no more boxes will fit below those already packed in the
column (figure 3.10).

,
1

2

6

Figure 3.10: The first stage in Carlo's base loading algorithm.
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The section of the pallet defined by the length of the pallet and the width

of the first box packed is then disregarded, and the algorithm begins

again with the reduced pallet and the remaining boxes (figure 3.11).

3

5

8

Figure 3.11: The second column of boxes is packed into the unshaded

region of the pallet.

The algorithm finally terminates when there are no more boxes to

pack, or none of the remaining boxes will fit onto the remaining
subpallet. In figure 3.12, the remaining sub~allet is only 7 units wide,
whereas the minimum box dimension is 10 units, and so no more boxes

can be packed.

Figure 3.12: No more boxes will fit onto the unshaded subpallet.

The initial layout is defined to be the seed layout, and new layouts are

generated by randomly ordering and orienting the boxes, and then
following the same steps with the modified box list. As soon as a layout
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with a greater area covering is generated, it becomes the new seed

layout, and the process continues.

When a user specified amount of time has elapsed, the algorithm

terminates, returning the current seed as the layout to use. Figure 3.13

shows the best result produced within one hour of processing on a IBM

compatible PC.

5 ....L

3

Figure 3.13: The best layout found within an hour of processing with

Carlo's algorithm.

This algorithm has an advantage that the user can decide on a trade-off

between processing time spent and results obtained. Because the

layouts produced can be decomposed by a set of guillotine cuts vertically

down the pallet, they allow the packers to move explosives and volatile

liquids to the edges of the pallets by changing the order of the boxes in
the columns or by re-ordering the columns. This also allows some
control over the centre of gravity of the final load.

An extension to the algorithm as specified by Carlo is to allow the boxes

to be rotated if they will not fit into the available space. This results in
the same solutions being found in less computation time.
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Another extension that has been developed is to remove the restriction
that the boxes be able to be reordered in the final packing, that is,

remove the restriction to guillotine cuts. This is achieved by pushing
boxes into the gaps left along the right hand edge of the previous layout,

and allowing columns to start at positions other than the top of the

pallet once no more columns will fit there. This allows boxes to be

placed in regions that in the original algorithm would be left as

unusable.

For example, the first seed layout shown in' figure 3.12 is adapted to
appear as in figure 3.14. Note that box number 7 has been included to

start a new column part of the way down the side of the pallet as none of

the boxes could be used to start a column at the top of the pallet.

1

2

3

5

11

6 Illli,....~ ...JII
Figure 3.14: The initial seed layout produced by the extended algorithm.

The best layout produced by this algorithm for the same boxes in the
same amount of time as figure 3.13 is shown in figure 3.15. This
results in 95.2% surface cover as opposed to 87.5%, but at the cost of a

rigid layout that cannot be modified by the packers at packing time.

Hodgson's original algorithm generated 87.36% volume usage.

This demonstrates that restricting the layouts to those that can be

formed by a sequence of guillotine cuts may well adversely affect the
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optimality of the volume usage. This point has been noted by a number

of authors [Ste79, Bis82, Dec79].

9
-

3

6

5
.:.;.:.:-:.:.:.;.:.;.:.:.:.:.;.:.:.:.

Figure 3.15: The best layout produced by the new algorithm.

3.3.2 Multiple_Instances Of The Sam e Box Type

George and Robinson [Geo80] produced a method of solving a particular

packing problem. Their problem involves finding an order of packing

and producing a list of instructions for positioning the boxes so that an

entire given load can be stacked inside a container. The loads
considered typically consist of up to 20 different types of boxes. The

boxes can all be rotated in any orientation and none is restricted as to
the number of boxes that can be stacked on top of it.

The proposed method fills the container one layer at a time, each layer
being a slice of the length of the container occupying the whole width

and height. The length usage is defined by the dimensions of the first
box packed.

The boxes are first prioritised according to their dimensions and

number of boxes of the same type. This priority is used in order to
ensure that similar boxes are packed in proximity to each other.
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A box type is given 'open' status once some but not all of the boxes of
that type have been packed into the container. The first box packed into

each layer is selected as the open box w~th the greatest number

remaining, or, if no boxes are of open status, the box with the highest

priority is used.

If the first box type packed into the layer does not completely fill the

layer, either because there are not sufficient of the boxes, or because

there are spaces along the edges of the layer which although too small

for that box may contain a box of a different type, then the left over space

is filled with boxes of a different type.

These other box types are chosen so as to make maximum use of the

space left around the layer, as well as any space left in front of the

previous layer. Once these boxes have bee~ selected they are packed
into the available space. In order to facilitate this process, the layers

are always formed in such a way that their front surface takes the

shape of a step function, that is, there are no boxes that jut out from the
surface (figure 3.16).

(a) (b)

Figure 3.16: A layer surface showing a step function (a) and non-step

function (b).
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Using their method, George and Robinson succeeded in producing

packing layouts for the examples originally commissioned, as well as

for a number of theoretical cases. One of the authors calculated

solutions by hand, while the other worked on the computer solution.

All the problems were solved by hand before the computer solution was

completed, however, the exercise proved useful from the point that

several ideas that were developed while the hand calculations were

being carried out could be included in the computer program, which

then is in the position that it can apply these ideas to other examples

more quickly than by using hand calculations.

3.3.3 Packing Pallets

The objective of Haessler and Talbot's research [Hae90] was to develop a

fast computer program that can be used at order entry time to size an

order and produce a layout for that order so as to result in increased

vehicle utilisation and reduced freight cost.

The background for this is that a supply company sends stock to

retailers in either railcar or truck trailer loads. When a retailer sends

in an order for new stock, the order can be adjusted up or down slightly,
in order to use the available transport methods more efficiently. The
computer program can be applied so that the, retailer can immediately,
while putting in the order, be informed of these adjustments to the

original order, so that they can be approved or rejected early.

As the research was carried out for a particular wholesale distributor,

that distributor's precise problem had to be solved. A set number of

stock items are available. These are packed into corrugated cardboard

cartons and stacked on pallets to form unit loads. Each item thus has
fixed dimension in its layers (37x44 inches to 43x52 inches). The
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required mix of stock is then to be packed into a railway truck or trailer

for transportation. These trucks and trailers also have fixed
dimensions. The railway trucks are assumed to have dimensions
730xl08x130 inches, and the trailers 650x95x109 inches.

Although recommended, it is not essential that all orders are in

multiples of unit loads. Tier (layer) quantities or even single boxes can

be ordered. From a packing point of view, since the products are stored

in unit loads, it is easier, cheaper, and quicker to pack entire units

rather than loose boxes although the volume utilisation may be

influenced adversely.

Usually, full unit loads are packed, wherever possible, with layers of

boxes being stacked on top of them to fill any available height. Loose

boxes are finally packed in by hand to fill any voids in the layout. It is

also common to try to restrict these voids to places near the doors of the

trailers and trucks to facilitate easy loading.

The overall procedure that was adopted by Haessler and Talbot is firstly

to estimate the number of stacks that will fi~ into the required vehicle.

The order is then adjusted to allow the creation of these stacks. An

attempt is then made to place the stacks within the vehicle. If the

stacks cannot all be fitted, the number of stacks required is reduced by
one, the necessary adjustments made to the order, and the fitting
process repeated. If all the stacks can be positioned, the number of
stacks is incremented, updating the order quantities, and again the
fitting process starts again. This is repeated until the optimal number

of stacks for the vehicle is found. The adjusted figures on the amount of
each stock item are then put forward for confirmation.

The stacks are fitted into the vehicles using two separate algorithms,

one for railway trucks, and a different one for trailers. Because the
railway trucks are sufficiently large, there is necessarily enough space
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for two stacks next to each other across the width. (Maximum width of

two unit loads is 104 inches against the width of the trucks which is 108
inches.) Trailers, on the other hand are slightly narrower (95 inches),
and thus may not be wide enough to accommodate two stacks in either

orientation. Three layouts are therefore considered for trailers (figure

3.17), depending on the dimensions of the actual pallets.

A B c

Figure 3.17: The three pallet layout forms used for loading a trailer with

boxes.

Haessler and Talbot report considerable savings through using this
computer program, as well as increased customer satisfaction in that

the sizing of the orders can be calculated as the order is entered, and

they can either agree to any changes or request a different order

immediately.

3.4 ROBOTI C PA LLETI SERS

Malstrom, Meeks and Flemming [Mal86] and Pennington and

Tanchoco [Pen88] have investigated the use of robots to carry out the

physical palletising of boxes. Typically this could be effective in a

medium speed environment where boxes arrive for packing in no pre

defined order. Although both authors consider the case where the
boxes are not all of the same size, they include a common restriction

that the boxes all have an identical height dimen~ion in order that flat

layers may be produced on which the next layers can be packed.
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Malstrom, Meeks and Flemming developed a linear programming

formulation for solving their loading problem. This method requires

that 100% utilisation of the pallet deckboard be attained. Since such

optimal usage is not always possible, they make use of a dummy box,
having surface dimensions of Ix 1 units. An upper bound on the

number of these dummy boxes that can be used is found by evaluating

the basic layout of section 2.2 for each of the box types individually on

the pallet, and setting the upper bound equal to the minimum wasted
area of the resultant layouts.

The next step in the method is to define a number of 'strips'. These

represent all the possible combinations of the set of unique box

dimensions that fully utilise the length of the pallet. The formation of

these strips is a simple I-dimensional problem, and the strips thus

produced are assumed to be 1 unit wide. These can be represented in a
two-dimensional array, A, where

aij = the number of times box dimension i is used in strip j.

i= l ..number of unique dimensions,

j = 1.. number of strips.

As an example of such an array, the va1ues shown in table 3.2

correspond to the set of strips possible for packing boxes of size lx2, 2x2,

and 3x2 onto a 5x4 pallet. The corresponding strips are shown in figure
3.19.
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j

1 Length 1 2 3 4 5

1 1 5 3 1 2 0,

2 2 0 1 2 0 1

3 3 0 0 0 1 1

Table 3.2: The matrix entries corresponding to the strips formed by box

dimensions 1,2 and 3 over a pallet length of 5.

11111J= 1

j = 2 ~~_2_---"

j=3~ 2 2

j=4~ 3

j = 51 2 3

Figure 3.18: The 5 strips corresponding to the values shown in table 3.2.

The linear programming formulation now requires that the function

r

z = L,[lswsxs + l'sw'sx's]
s=l

be maximised, subject to the constraints
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m r+1
L,aijYj =L[qiswsxs + q'isw'sx's], for i=l..k; and

j=l s=l

Xn ~ Calculated Bound

where

z =total area used

m =number of strips

r =number of distinct dimensions

Is =length of box s

Ws =width of box s

Xs =number of boxes of type s in layout

Yj =number of times strip j is used in final layout

{
I if box type s has dimension i

qis = 0 else

Xn = number of dummy boxes;

and any symbol followed by a prime (') represents a 900 rotation of the

box.

Using this linear programming formulation, the example data from

figure 3.18 and table 3.2 give the results offi~e 3.9.
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1x2
3x 2

2x2

3x 2
1x2

Figure 3.19: The resultant layout produced from the strips offigure 3.18.

Pennington and Tanchoco, on the other hand, pointed out that such a

pure arithmetic optimisation may not be feasible because it does not
take into account the possibility of interference between the robot's

grippers and the boxes that are already packed on the pallet. They then

developed an algorithm that takes into account the physical attributes of

the robot.

The algorithm must consider box placements on the pallet so

the gripper cannot interfere with the boxes already packed on

the pallet. [Pen88]

In order to accomplish this, and to take into account the fact that the

robot gripper they were using is approximately one third of the width of

their pallet, they developed a method that fills the pallet in three

sections, as shown in figure 3.20.
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I
I

1

2

I
I

Figure 3.20: The three regions of Pennington's algorithm. The

positions of the grippers relative to each region are shaded. The

numbers show the order in which the sections are filled in order to avoid

interference.

f

Each of the three regions is filled with single boxes in a single
orientation, (c.f. Basic Method of section 2.2) with the largest available

box type being considered first.

Both the Malstrom, Meeks and Fleming paper [Mal86l and that of

Pennington and Tanchoco [Pen88l result from tests carried out with

scale models of robots, pallets and boxes, although the results are just
as applicable to the full sized problem and a larger robot.

The papers are also both limited from the point ofview that all the boxes
being packed must have a common vertical dimension. This restriction

will need to be relaxed before it can be applied to any physical packing
problems.
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3.5 CONCLUDING COMMENTS

The general container packing problem cannot be tackled directly, as

any procedure that will work well for one particular sub-problem will

inevitably be useless when applied to a similar problem with slightly

different restrictions.

As a result of this observation, it has been noted that for any packing

problem that is encountered, problem specific heuristics must be

developed in order to find the best solution to that exact problem.
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CHAPTER 4

CONCLUSIONS

The general packing problem occurs in a variety of different forms, and

has numerous industrial and commercial applications.

The problem is NP-complete, and, as a consequence, most published

research has been directed at finding good approximations to the optimal

solution in reasonable amounts of computing time, rather than

attempting to solve the problem exactly. Various heuristic measures

have been developed, and each of these uses the physical attributes of the

particular problem it addresses, to refine its solutions. As a result of

this, the methods which have been developed are problem specific and no

general method that will efficiently solve all packing problems has been

found.

A general method is like a size 48 cloth, it can cover everybody

but does not fit very well. [Dow85a]

This work has addressed the packing problem from the point of view of

packing boxes into a shipping container or onto a pallet. This problem,
known in operations research literature as the container packing

problem, is commonly encountered in situations where bulk quantities of
goods need to be transported or stored. In particular, the pallet loading

problem in which a maximum number of identical rectangular cartons

are to be packed onto a pallet in flat horozontal layers, has received much
attention.
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Since it is desirable for a number of reasons to solve the problem, and no
easy solution is likely due to the NP-completeness of the problem, it is

reasonable to apply heuristics that use the speed and processing power of

modern computers to determining a solution. Because of the wide
availability of cheap, yet powerful micro-computers and PC's, and the

user-friendly graphic based interface of which they are capable, it was

decided to investigate methods that could solve the packing problems

within reasonable time constraints using these computers.

A search of the available literature resulted in a number of methods for

solving the packing problems being found. For the pallet loading

problem, three general approaches have emerged. The first of these
requires that an optimal placement of boxes along the perimeter of the

pallet be found and extended into the pallet centre, in order to maximise

the total overall number of boxes packed. The second approach involves

selecting a pre-defined layout pattern, and examining all combinations

that conform to that general pattern, in order to determine the best

combination to use. The third approach uses a combination of graph

theory techniques and heuristics to find a solution. Although this last

approach finds an exact solution, it requires far more computation time

than the other two methods, and in a number of cases requires
mainframe computer power, or is completely infeasible.

By including the upper bound on the number of boxes that can be packed,
the amount of computation time required to reach a solution can be
reduced. This has been employed by Dowsland in a number of ways in
order to produce an exact method that will solve most problems in a given
range within reasonable time constraints.

For the general container packing problem no such neat arrangement of

ideas exists, as each author has addressed a particular problem, and the

approaches that will solve one problem efficiently may be completely
useless when applied to a different yet similar problem.
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APPENDIX A

PALLET LOADING RESULTS

To facilitate camparison of the methods for solving the Pallet Loading
problem, the examples presented in Chapter Two are reproduced here.
Results produced for packing each example by the various methods are

grouped together on a single page. The figures marked with an asterix (*)

denote that the upper bound was reached.

The test examples used for demonstration are given in table A.1 (Reproduced
from Table 2.2)

Test X y I b Bounda

a 38 38 7 3 68

b a> ID 7 2 28

c a> 15 7 4 10

d a> 15 7 3 14

e 14 11 4 3 12

f 14 13 4 3 15

g 22 16 5 3 23

Table A.I: The examples used for demonstrating the Pallet Loading Heuristics

of Chapter 2. The upper bound on the number ofboxes that can be packed is

shown.
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APPENDIX B

MAXIMUM INDEPENDENT SETS

Dowsland's formulation of the pallet loading problem in terms of graph

theory concepts [Dow87] requires that a method be applied to find a

maximum independent set in the graph. A maximum independent set

of a graph G is a set M of vertices of G such that no two vertices in M are

adjacent.

Since Dowsland's algorithm is not dependent of the manner in which

the maximum independent set is found, any method that solves this

problem could be applied. The method of Loukakis and Tsouros [Lou82]

was recommended by Dowsland.

This algorithm uses a branch and bound approach to solve the problem.

Since finding maximum independent sets is NP-hard [Lou82], as the

size of the graph increases, the computation time required for solving
the problem increases rapidly.

The development of the algorithm requires the building of a search tree.

Any node of this search tree can be fully described by a quadruple of the
form

+ ...,
Q =(M, M ,M,R(M»

where
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M is the current independent set,

M+ is a set containing no elements of M,

R(M) is the set of nodes that can be used to extend M, and

1\1: is the set ofvertices not adjacent to M.

To move from one node to the next in the search, a vertex from the set

R(M) is added to the set M to produce an independent set of higher
order. The other sets of vertices are then updated to these changes.

The bounding phase of the algorithm implements varIOUS tests to

determine wether or not a specific subset will contain a maximum

independent set. These tests are based on the current elements of Q
resulting from the previous branching phase. If this bounding process

removes a node, then backtracking occurs, with the most recently

added element of M being removed and inserted into M+.

The following three tests are used for the bounding process:

MTl Let Q=(M, M+,~, R(M)), UE R(M) and n(Adj(u) (1 Adj(R(M)))=l

then any vertex set containing all of M and none of M+ u {u}

cannot be a maximum independent set.

MT2 Let Q=(M, M+,~, R(M)), UE 1\1 and Adj(u) (1 R(M) = {} then

adding any element of R(M) to M cannot produce a stable set.
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MT3 Let Q=(M, M+, M, R(M)) and M* be the maximum stable set
found so far. Then if n(M) + n(R(M)) ~ n(M*) then no

augmentation of M by elements ofR(M) can improve on M*.,

The final algorithm is then stated formally as in algorithm A.1.

This algorithm formed the basis of Dowsland's method for the pallet
loading problem, but only once the bounds had been tightened by
introducing constraints from the physical problem was the approach

feasible, as the computation time required was reduced.
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Algorithm A.l

To find a rraximJm independent set in a graph.

proc MaxIndSet (G)

M = []

+
M = []

M= []

R(M) = []

*M = []

repeat

while not (I R (M) I+ IM I ~ IM* I) or MI'3 do

u = FirstOf (R (M) )

if Adj (u) rt R(M) [] then

u = u*

endif

M = M U [u]

M= M- Adj (u)

R(M) = R(M) - ([u] U Adj (u) )

enddo

if R(M) = [] and IMI > IM* I then

M* = M

endif

if not (M= [] and IR (M) I ~ IM* I or Ml'3 then

r = LastNotMarke:j()f (M)

FR = M - [1. .r-l]

M=M-FR
+ +M = M rt [r] - [r+1. .Max]

.., .., +
M = M U Mj (FR) rt M - Mj (M)

R(M) - V(G) - (M U Adj (M) U M+)

endif

until M=[] and IR(M) I~ IM* I or MI'3

Retum(M*)

endproc
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