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Abstract

This thesis investigates the development of optimisation-based, decision-making

frameworks for allocation problems related to manufacturing, warehousing, logis-

tics, and retailing. Since associated costs with these areas constitute significant

parts to the overall supply chain cost, mathematical models of enhanced fidelity are

required to obtain optimal decisions for i) pallet loading, ii) assortment, and iii)

product shelf space, which will be the main research focus of this thesis. For the

Manufactures Pallet loading problems (MPLP), novel single- and multi-objective

Mixed Integer Linear Programming (MILP) models have been proposed, which

generate optimal layouts of improved 2D structure based on a block representa-

tion. The approach uses a Complexity Index metric, which aids in comparing 2

pallet layouts that share the same pallet size and number of boxes loaded but with

different box arrangements. The proposed algorithm has been tested against avail-

able data-sets in literature. In the area of Assortments (optimal 2D packing within

given containers) , an iterative MILP algorithm has been developed to provide a

diverse set of solutions within pre-specified range of key performance metrics. In

addition, a basic software prototype, based on AIMMS platform, has been devel-

oped using a user-friendly interface so as to facilitate user interaction with a visual

display of the solutions obtained. In Shelf- Space Allocation (SSAP) problem, the

relationship between the demand and the retailer shelf space allocated to each item

is defined as space elasticity. Most of existing literature considers the problem with

stationary demand and fixed space elasticities. In this part of the thesis, a dynamic

framework has been proposed to forecast space elasticities based on historical data

using standard time-series methodologies. In addition, an optimisation mathemat-
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ical model has been implemented using the forecasted space elasticities to provide

the retailer with optimal shelf space thus resulting into closer match between supply

and demand and increased profitability. The applicability and effectiveness of the

proposed framework is demonstrated through a number of tests and comparisons

against literature data-sets.



Impact Statment

In this research, a range of topics related to real-life supply chain operations has

been considered, focusing on the area of manufacturing, warehousing, logistics,

and retailing. Where novel techniques using mathematical programming models as

well as dynamic time series linear models have been developed.

The first topic considered is in the area of the Pallet Loading Problem (PLP),

where a specific type of problem known as the Manufacturer’s Pallet Loading Prob-

lem (MPLP) has been considered. Two linear mathematical models have been

developed, producing less complex layouts for the pallet loading, where the com-

plexity of the pallet can be measured using a novel metric known as the complexity

index. Such complexity-reduced layouts are essential in the manufacturing plants

when speedy pallet construction is needed. This will affect the supply chain opera-

tion cost by allowing more pallets to be loaded in a shorter time frame.

The second problem in this research is in the domain of Cutting and Packing,

where the problem considered is known as Design of Assortments. The problem

statement has been developed by the 11th AIMMS-MOPTA Optimisation Mod-

elling Conference committee. A Mixed Integer Linear Programming (MILP) algo-

rithm has been developed to provide the user with diverse sets of assortments, using

a platform known as AIMMS. A Graphical User Interface (GUI) has been created

to allow the users to fine-tune the results with a visualisation interface. Such as-

sortments problems are needed in many real-life applications such as paper, wood,

textile cutting, and newspaper layouts.
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The final problem discussed is the Shelf Space Allocation Problems (SSAP),

where decisions on how much product to stock on shelves are essential. Such

problems are seen in all retail businesses, from small shops, supermarkets to de-

partmental stores. In this research, a dynamic framework using multiple standard

time-series methodologies for forecasting space elasticises has been considered,

with an application on real-life historical data.

All the problems considered in this research are essential in most supply chain

and manufacturing facilities. However, the mathematical models can be adapted

to different areas of research where similar problem structures apply. For exam-

ple, the Manufacturer’s Pallet Loading Problem (MPLP) can be applied to a wide

range of areas such as and not limited to; plant layouts, cuboid satellite layouts,

and microchips layouts for electrical equipment. The assortment problem can be

applied to the textile, paper, wood industry, and online website layout management.

Finally, the forecasting techniques used in the Shelf Space Allocation Problems

(SSAP) could be applied to any area where forecasting is essential, whether related

to pharmaceutical, food, or fashion industries.
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Chapter 1

Introduction

This chapter introduces the fundamental topics addressed throughout this

thesis, defining the main terminologies and project objectives followed by the

thesis outline.

1.1 Supply Chain
The supply chain architecture requires strategic decisions on where to place fa-

cilities, allocate resources, select and build supplier and distribution networks, and

organize the supply chain interfaces between different parties in an uncertain world.

In the early 1980s, the term Supply Chain Management (SCM) was initially intro-

duced by Oliver et al. (1982), and since then, it has gained considerable attention.

Researchers have attempted to offer a SCM structure since the early 1990s, where

Bechtel and Jayaram (1997) have reviewed a wide range of literature and estab-

lished specific SCM assumptions that need to be questioned in the future.

Shorter product life cycles and expanded product selection add to the expense

and complexity of the supply chain. Instead of looking at the problem from the

perspective of an individual organisation, outsourcing, globalisation, and market

fragmentation made it necessary to look at the problem from the perspective of the

whole supply chain. Furthermore, advances in information technology have facil-

itated real-time information exchange, cooperation, and decision-making amongst

firms. According to Min et al. (2019) the focus of the SCM has shifted over the
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years to meet different market trends and technological advances; for example, the

channel control has moved more toward the end-user or consumers. Where they no

longer only seek product and service benefits but also price cuts and promotions,

such changes have forced businesses with the help of technological advances to

come up with innovative ways to fulfill those personalised requirements.

In general, the SCM definitions have varied throughout the literature, but they

can all be classified into three divisions, according to Mentzer et al. (2001): a man-

agement philosophy, implementation of a management philosophy, and a set of

management processes. For a comprehensive definition and according to the Coun-

cil of Supply Chain Management Professionals (CSCMP) the SCM can be defined

as follows (Vitasek, 2016):

”Supply Chain Management encompasses the planning and management of

all activities involved in sourcing and procurement, conversion, and all logistics

management activities. Importantly, it also includes coordination and collabo-

ration with channel partners, which can be suppliers, intermediaries, third-party

service providers, and customers. In essence, supply chain management integrates

supply and demand management within and across companies. Supply Chain Man-

agement is an integrating function with primary responsibility for linking major

business functions and business processes within and across companies into a

cohesive and high-performing business model. It includes all of the logistics man-

agement activities noted above, as well as manufacturing operations, and it drives

coordination of processes and activities with and across marketing, sales, product

design, finance and information technology.”

Effective management of the supply chain demands a transition from manag-

ing specific roles to managing a series of integrated processes. And although there

is still no ”industry standard” for what these processes should, management has

concluded that processes must be implemented first to optimise product flows in or-

ganisations. The importance of getting standard business processes in place allows
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the use of one common language between all organisations in the supply chain to

connect with the processes of their companies with those of the other ones. Based

on the Global Supply Chain Forum, there are eight primary processes as the follow-

ing (Cooper et al., 1997):

• Customer Relationship Management

• Customer Service Management

• Demand Management

• Order Fulfillment

• Manufacturing Flow Management

• Procurement

• Product Development and Commercialisation

• Returns.

A full overlook on the SCM structure and the processes associated is presented in

figure 1.1:

Figure 1.1: Supply Chain Management Structure and Processes (Lambert and Cooper,
2000)

1.2 Pallet Loading
For efficient supply chains, the configuration of pallets is a critical function, as ef-

ficient handling can reduce unnecessary operational expenditures, such as loading,
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storage, transport, and workforce, and as a result, it will successfully drive customer

service satisfaction. The area has been given broad attention from both industry

and academia in the past 30 years and is recognised as Cutting and Packing (CP),

knapsack problems, strip packing, and bin packing. The problem has extensive ap-

plications in operations research, such as packing, cargo, transport, and warehouse

management. Mass production is an interest to most manufacturing companies, and

small pallet layout configuration changes can result in substantial space savings and

dramatically reduce storage and transportation costs. In terms of workforce, the

manual generation of layouts is expensive, so methods for packaging optimisation

are being pursued.

Dyckhoff (1990) defined common features and properties for such problems

and proposed a classification scheme to promote the sharing of knowledge across

various disciplines. He differentiates between the problems of packing involving

spatial dimensions and those involving non-spatial dimensions. The first category

consists of problems with cutting and packing or loading, described by up to three

dimensions in space, such as cutting stock problems, vehicle loading, and pallet

loading. The other category covers abstract problems of ”cutting and packing,”

including non-spatial aspects such as weight, time, or economic dimensions such

as budgeting, coin change, and line balancing.

Four significant features characterise Dyckhoff’s classification system (Dy-

ckhoff, 1990) for the Cutting and Packing (CP) problems; dimensionality; where

it is considered as the most significant aspect, and it determines the minimum

number of dimensions needed to characterise the pattern geometry ranging from

one-dimensional up to N-dimensional problems. The type of assignment; describes

whether it is appropriate to assign all objects and items or just a selection. Assort-

ment of objects; where it distinguishes between problems with similar or different

shapes of objects. And finally, the assortments of items or objects, where they can

be either congruent sizes, few items of different sizes, many items of different sizes,
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or many items of relatively few sizes.

In general, the pallet loading problem aims to load as many items as possible

into a pallet, and they could be divided into two types of problems; The Manufac-

turer’s Pallet Loading Problem and the Distributor’s Pallet Loading Problem. For

the Manufacturer’s Pallet Loading Problem, the manufacture has identical items

and requires them to be loaded on identical pallet sizes, which will later be loaded

onto trucks or containers for shipping. Usually, these problems require packing

in real-time, immediately at the end of the production line, and in some particular

cases, they could be done before shipping based on specific customer shipping

requirements or restrictions. On the other hand, the Distributor’s Pallet Loading

Problem appears at distributors warehouse, where they have to fulfil customer or-

ders containing several products of different sizes and load them on identical pallet

sizes. Due to the nature of having specific customer order requirements at the dis-

tributor’s warehouse that frequently change, such problems in this area are higher

in cost than those at the manufacturer’s sites.

1.3 Cutting and Packing

Cutting and Packing (CP) problems emerge in various industrial and logistical ap-

plications, such as metal, glass, textile, furniture, leather, and wood industries; for

that reason, they have gained wide attention from the research community. All

problems in this area have a similar underlying geometric framework, having two

components, small and large, involving either cutting small pieces of objects from a

big sheet/area or loading predetermined-sized pieces into a bigger container or bin.

The objective of the problem can either be minimising the trim or space loss, de-

creasing material or transportation costs, maximising the number of goods loaded,

or maximising the net profit.

The items to cut and the area of packing can either be homogeneous (identical
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in sizes) or heterogeneous (different sizes). The items to cut or pack can be regular

shapes (rectangular) or irregular (non-rectangular, circles, etc.) shapes as shown in

figure 1.2. Finally, such problems can be viewed from 1, 2, or multiple dimension

aspects and might allow item orientation depending on the application and industry

it appears within. The challenges in larger industries may be a mixture of two or

more of these fundamental types of problems.

Figure 1.2: Illustration of irregular items (Leao et al., 2020)

In general the problems could be defined as the following (Hinxman, 1980),

(Dowsland and Dowsland, 1992):

• Trim-loss problems: Where the main objective is to minimise the total cost of

stock by placing the order list of items into predefined stock sheets.

• Assortment problems:Where the main objective is to select the best items

from a stock sheet to fulfil an order list.

• Cutting stock problem : Where the main objective is to cut pieces from a set

of stock sheets for a specific order list. This problem can be divided into two

sub-problems; the Assortment problem (determining which sheets to main-

tain in stock) and the Trim loss problem ( determining which cutting pattern

to use to minimise waste).

• Knapsack problems: Where the main objective is to maximise the total value

of the items packed or loaded. Given that each item in the order has a value

assigned to it (Martello and Toth, 1990).
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• Loading problem: Where the main objective is to maximise the number of

boxes loaded into a pallet or minimise the total waste after loading. Such

problems as discussed above can either be homogeneous or heterogeneous

depending on which point of view they are being looked at; Manufactures or

Distributors.

1.4 Shelf Space Allocation
Since shopping is a daily occurrence in our lives, people tend to spend a lot on

daily shopping activities. Retail businesses such as supermarkets normally use this

phenomenon in order to make the most of their profit. They often conduct research

with the aim to influence the customers’ purchasing decisions. The need for these

retailers to maximise profits compels them to create a design for modelling cus-

tomer’s behaviour and setting simulation optimised frameworks. As an example,

choosing which products to stock on the shelves and how much space to allocate for

each product is a central and crucial decision as such decisions affect customer sat-

isfaction and retailer’s profit. Also when observing customer shopping behaviours,

it has been noticed that product choices are influenced by many in-store factors,

especially when unplanned purchases are made or certain loyal products are out of

stock. Such behaviours have raised retailers awareness in cleverly displaying the

products to achieve better product visibility and ensuring the right products at the

right time to enhance the customer shopping experience (Chandon et al., 2009).

Such management problems, according to Galai et al. (2016) known as Shelf

Space Allocation Problems (SSAP) have long been well-thought-out and studied

by scientists and marketing experts. For example, the first published studies on

Shelf Space Allocation Problems (SSAP) can be traced back to the seventies. How-

ever, because most optimisation models developed have practical restrictions, the

research findings are unlikely to be used in practise. The restrictions are assumed to

be caused by their simplicity as well as a lack of important practical characteristics.

Furthermore, their restrictions are tied to several difficult-to-approximate parame-
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ters. As a result, there has been a mismatch between software applications, business

operations, and research.

According to the US retailers survey (Keltz and Sterneckert, 2009), improve-

ment of the overall profitability and sales, reducing the stock levels, improving

product availability, and enhancing the customer shopping experience are the main

drivers for shelf space planning activities. However, due to several problems in that

area, the survey determined that the advantages obtained do not yet fulfil expec-

tations. Shelf space planning usually follows assortment planning, which is done

independently for each category (Koul et al., 2016). The assortment is frequently

done with a mid-term planning horizon in mind. Because it is preferred by store

space planning, this is sometimes referred to as micro-space planning. Individual

strategies are becoming increasingly unfeasible as the number of stores grows.

They usually result in the clustering of stores based on demand and space patterns.

Existing customer-centric trends, on the other hand, argue that ”one strategy does

not fit all” and defend store-specific space planning (Koul et al., 2016).

On the other hand, the retailers embrace the use of planograms to plan for

product placement. A planogram is an illustration of a specific part of a store. It

displays exactly where every product ought to be physically placed and the number

of faces the product should hold; an example of the planogram could be seen in

figure 1.3.

Today’s available commercial planogram tools are used mainly for visual and han-

dling purposes and have excessive human interference and manual adjustment due

to the limited existence of mathematical optimisation (Desmet and Renaudin, 1998;

Dreze et al., 1994; Hansen et al., 2010; Hubner and Kuhn, 2012; Irion et al., 2011).

Also, such software’s fail to include demand effects while planning the shelf allo-

cation of the products.
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Figure 1.3: Planogram Illustration in Retail shops

1.5 Project Objectives

This research work consists of real-life supply chain application problems, where

the first problem is related to the area of Pallet Loading Problem (PLP), the second

problem is in the domain of Cutting and Packing (CP), and the last is related to

Shelf Space Allocation Problems (SSAP). Such problems generally consist of two

sets of objects ’Large’ and ’Small’; the ’Large’ objects, or Bins refer to the pallet,

shelf or any other medium that would be used as a base of loading and configu-

ration, and ’Small’ items usually refer to boxes, products or items that would be

packed into the Bins. They share similar constraints in general, such as; loading the

items within the bin size and avoiding any overlapping between items (sharing the

same region in space); additional constraints could be including depending on the

objective of the model.

All the addressed problems arise in the domain of manufacturing, warehous-

ing, logistics, and retailing. Since transportation, warehousing, and storage costs

contribute the most of the total logistics cost, and in order to increase the material

handling efficiency in manufacturers, distributors, and retailers site, mathematical
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techniques are required to optimise the process of assortment, shelf space, and pal-

let loading. Thus, this work focuses on developing efficient new techniques using

mathematical programming; single- and multi-objective optimisation, as well as

dynamic time series linear methods to handle the problems in this area. The topics

addressed in this study and the main contributions made by this dissertation are

listed below.

1.5.1 Manufactures Pallet loading Problem (MPLP)

In the area of PLP, the Manufacturer’s Pallet Loading Problem (MPLP) tackling

homogeneous (identical) items have been investigated. Where the problem from a

2-Dimensional aspect using single- and multi-objective Mixed Integer Linear Pro-

gramming (MILP) models with applicable constraints have been studied. A block

approach; grouping boxes that share the same orientation along the x and y axis has

been implemented, considering the complexity of pallet loading, ensuring optimal

results are always found with less complex graphical layouts compared with exist-

ing literature data-sets. A novel complexity metric to calculate the complexity of

pallet loading has been created; that provides a new way to compare 2 pallets of the

same size with different graphical layouts. Also, a detailed comparison between the

single- and multi-objective Mixed Integer Linear Programming models has been

presented.

1.5.2 Cutting and Packing Problems (C&P)

In the area of Cutting and Packing (CP) a new problem statement defined as Au-

tomated Design of Assortments, presented for the first time in the 11th AIMMS-

MOPTA Optimisation Modelling Competition has been investigated. Where a

Mixed Integer Linear Programming (MILP) algorithm has been proposed to tackle

the problem by providing the user with a variety of item assortment (diversity of

solutions), ensuring the maximum number of items are packed into rectangular

containers. Along with the variety of assortments generated by the model, the
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exact geometric locations of items packed are given. The validity of the proposed

model has been tested using appropriate data-sets given by the competition com-

munity. The model was developed using AIMMS platform, where a user-friendly

GUI has been developed to facilitate user interaction with an option to tune the

near-optimality parameter and a graphical display of the solution assortments.

1.5.3 Shelf Space Allocation Problems (SSAP)

Such problems can be traced back to the seventies; however, the research outcome

in terms of mathematical models developed has many realistic limitations prevent-

ing it from being applied and used in practice. The limitations are thought to occur

due to their simplicity as well as lack of key practical features. In addition, their lim-

itations are linked to numerous parameters that are not easy to approximate, space

elasticises being one of the main parameters. As a result, misalignment between the

software applications, business processes, and research are seen. From this perspec-

tive, a dynamic framework using a selection of Time series linear methods; Linear

Regression (LR), Support Vector Regression (SVR), Auto-regressive Integrated

Moving Average (ARIMA), and Deep learning Long Short Term Memory (LSTM)

networks with single and recursive multi-step ahead models are proposed to fore-

cast the space elasticity utilising historical data. Where a comparison between all

approaches is presented and to further verify the completeness of the model, the

estimated space elasticities were used in the traditional SSAP model to compare the

number of facing and the projected increase in sales against the historical data.

1.6 Thesis Outline
As different problems in the domain of manufacturing, retails, and logistics have

been investigated, the remaining of the thesis is formatted in the following way;

four main chapters, each corresponding to the development of the problem state-

ment, where the literature review section for Chapter 2 and 3 is combined due to

both problems being in the same area of research, Chapter 4 and 5 have their own
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literature survey. Each chapter is then followed by its preliminary results and con-

cluding remarks, and a conclusion for the area of research is reported in Chapter 6.

Chapter 2, develops a single-objective model for the Manufacturer’s Pallet

Loading Problem (MPLP) in the 2-Dimensional aspect. The chapter begins with a

literature review on the Pallet loading problem in general, moving towards specific

MPLP problems and current research available. Next, the methodology, along with

the main components of the proposed algorithm, is described in detail. Afterward,

the theoretical and algorithmic frameworks are established, several case studies are

employed to demonstrate of the validity of the model. Based on the case studies, a

short discussion on the computational complexity of the proposed model is carried

out. Chapter 3, presents a multi-objective optimisation method for the same prob-

lem statement, following the same structure as chapter 2, with an additional section

of comparison between both the single- and multi-objective model determining the

main differences and improvements.

Chapter 4, focuses on Assortment problems in the field of Cutting and Packing

(CP), where the chapter starts by demonstrating related literature in the area, fol-

lowed by the problem definition and the Mathematical formulation of the proposed

model. Following that, the findings based on specific data sets acquired are shown.

Finally, the findings of the study are presented.

Chapter 5, is dedicated to identifying and exploring the area of Shelf Space

Allocation Problems (SSAP), where first a literature survey is conducted on the

topic followed by an overview of the problem statement. Next, the Methodology

to tackle the problem is proposed, followed by a section describing the data used,

and finally, the results and conclusions with some insights of improvements and

future work direction with remarks are presented. Finally, in Chapter 6, conclusions,

recommendations, and possible future research directions are highlighted.



Chapter 2

Single-Objective Manufacture’s

Pallet Loading Problem

In this chapter, a novel Mixed Integer Linear Programming (MILP) model

that generates layouts of an improved structure based on the block represen-

tation is presented. Where each block groups boxes with the same orientation

along the X and Y axis. The proposed optimisation-based approach has been

tested against available literature data sets with supported graphical layout

structures. A new Metric known as the Complexity measure is introduced,

where it aids in describing the complexity of pallet loading. Up to our

knowledge, this is the first model testing the block approach using a linear

mathematical model, as all previous block approaches have been tested

using heuristic algorithms

2.1 Introduction
Pallet configuration, also known as Cutting and Packing (CP), knapsack problems,

strip packing, and bin packing, is a key feature for efficient supply chains with ap-

plications in packing, cargo, shipping, and warehouse operations (Dyckhoff, 1990).

Due to the fact that cutting problems aim to find an efficient and optimal way to cut

large objects into smaller ones, while packing problems position small objects op-
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timally to shape a larger one, most researchers refer to packing, cutting, or packing

and cutting problems as pallet loading problems in the majority of the literature.

Many of the problems are structured in the same way, with two types of objects:

’Big’ and ’Small.’. The container, pallet, or any other medium used as a basis for

loading and configuration is referred to as a ’big’ object or Bin. ’Small’ items are

usually boxes or products that are packed into the Bins. Based on if similar or

different kinds of boxes or items are packed, the bins could be homogeneous or

heterogeneous (Scheithauer and Terno, 1996b):

• Distributor’s Pallet Loading Problem (DPLP): Loaded items are heteroge-

neous (Different)

• Manufacturer’s Pallet Loading Problem (MPLP): Loaded items are homoge-

neous (Identical)

For the Distributor’s Pallet Loading Problem (DPLP), usually, such problems

are looked into from a 3-Dimensional perspective, where heterogeneous pallet load-

ing is considered. Items can range from weak heterogeneity to high heterogeneity

(many items but few item types) and (few items and many item types), respectively.

Pallets or containers can also range from being identical, weakly, or strongly het-

erogeneous depending on the type used. The following typology summarizes the

above based on the objective of the problem at hand:

A- If the objective of the problem is input minimisation, then using the minimum

number of pallets/containers to pack all items is desirable. The combination of the

above-given class assortments generates the following six distinct problems:

• Single stock-size cutting stock problem (SSSCSP) for identical pallets/con-

tainers and weakly heterogeneous items.

• Single bin-size bin packing problem (SBSBPP) for for identical pallets/con-

tainers and strongly heterogeneous items.
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• Multiple stock-size cutting stock problem (MSSCSP) for weakly heteroge-

neous pallets and items.

• Multiple bin-size bin packing problem (MBSBPP) for weakly heterogeneous

pallets/containers and strongly heterogeneous items.

• Residual cutting stock problem (RCSP) for strongly heterogeneous pallets/-

containers and weakly heterogeneous items.

• Residual bin packing problem (RBPP) for strongly heterogeneous pallets and

items.

B- If the objective of the problem is output maximisation, then maximizing the

number of items packed onto a set number of given pallets/containers is needed. The

container could either be single or multiple. In this case, seven different problems

could be defined as the following:

• Identical item packing problem (IIPP) for single pallets/containers where the

items are identical.

• Single large object placement problem (SLOPP) for single pallets/containers

where the items are weakly heterogeneous.

• Single knapsack problem (SKP) for single pallets/containers where the items

are strongly heterogeneous.

• Multiple identical large object placement problem (MILOPP) for multiple

identical sized pallets/containers where the items are weakly heterogeneous.

• Multiple heterogeneous large object placement problem (MHLOPP) for mul-

tiple weakly or strongly heterogeneous sized pallets/containers where the

items are weakly heterogeneous.

• Multiple identical knapsack problem (MIKP) for multiple identical sized pal-

lets/containers where the items are strongly heterogeneous.
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• Multiple heterogeneous knapsack problem (MHKP) for weakly or strongly

heterogeneous sized pallets/containers where the items are strongly heteroge-

neous.

In this research, we focus on the Manufacturer’s Pallet Loading Problem (MPLP)

that is considered as a class of the Distributor’s Pallet Loading Problem (DPLP);

where based on the above topology, the problem is classified as an Identical item

packing problem (IIPP), and the objective of the model is output maximisation.

The key constraints common in this research area are usually the following:

• Item edges are parallel to borders of the bins

• Items must be packed within the dimensions of the bins

• Items can not overlap with one another

Additional constraints, including box orientation, cargo weight, stability, weight

distribution, and health and safety considerations, such as no combination of phar-

maceuticals and detergents in a single pallet, may be considered depending on the

problem at hand.

2.2 Literature Review
As mentioned in the Introduction section, two sub-problems fall under the Pal-

let Loading Problem (PLP); the Manufacturer’s Pallet Loading Problem (MPLP);

which supports homogeneous pallet loading, and the Distributor’s Pallet Loading

Problem (DPLP); which is concerned of heterogeneous pallet loading and known by

its relatively more complex characteristics and longer computational time (Hodg-

son, 1982). In this thesis, the main focus is on the MPLP; where the aim is to

maximise the number of boxes loaded onto the pallets using a block representation.

Where each block groups boxes with the same orientation along the X and Y axis.

Below is the literature review related to this area.
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Mathematical models are used to configure the pallets effectively, where they

would determine the best product placement and try to optimise the number of

boxes or reduce the space wasted between the boxes during packing. Researchers

have considered two approaches to solving such problems: mathematical optimisa-

tion models and heuristic models. When pallet and box sizes are pre-specified and

available, mathematical models are applicable. Linear programming, as in (Argha-

vani and Abdou, 1996; Tsai et al., 1993), are one of the most popular mathematical

methods used in literature to solve such problems. Heuristic approaches use the

same definition but with different parameters and methods to reach feasible solu-

tions. Computation time increases significantly when exact algorithms are used,

while heuristic methods tend to minimise time and find near-optimal solutions.

When solving problems in this area, box placement decisions are made be-

fore pallet packing; there are three standard techniques; layer by layer building,

column stacking, and random stacking methods. The first method results in a lay-

ered pallet configuration where each layer is individually built up to the product

height, and then that is repeated until the maximum pallet height is reached. The

column stacking technique results in column stacked pallet load, where boxes are

packed vertically until the pallet height is reached, repeated for the entire pallet

load. Finally, the random stacking technique stacks the boxes one at a time with

no predefined box placement decisions allowing the boxes to freely locate as long

as they are within the pallet dimensions. The final technique proves to be better in

interlocking the boxes providing better stability.

Such problems have been known to be NP-hard; although exact algorithms

can deal with complex problem structures, they still struggle to provide optimal

solutions within reasonable computational time. An exact algorithm using a 0 1

mathematical model was proposed by Beasley (1985). Dowsland (1987a) used

graph theory to solve such problems, later Bhattacharya et al. (1998) proposed the

maximal breadth filling sequence depth-first algorithm. A branch-and-cut algorithm
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was proposed by Alvarez-Valdés et al. (2005a), and Lau et al. (2009) proposed a

hybrid approach for the multi-pallet loading operations. Martins and Dell (2007)

reported the set of all pallet loading problems instances with an area ratio (pallet

area divided by box area) of less than 101 boxes.

Martins and Dell (2008) proposed an exact algorithm using HVZ coding, rep-

resenting the horizontal box, vertical box, and zero box, respectively. Ji and Jin

(2009) proposed a best-first branch and bound algorithm using a staircase structure.

Many block heuristics have been developed, where each block is constructed using

boxes that share the same orientation, including G4- and G5- structure based heuris-

tics (Lim et al., 2012; Scheithauer and Terno, 1996a). A five block-based heuristics

for large-scale pallet loading problems was developed by Ji and Jin (2009). A high-

order non-guillotine (HONG) approach was proposed by Martins and Dell (2008),

which takes into account more than five-block structures. Although block heuris-

tics proved to solve most data-sets to near-optimal solutions, still more complex

examples struggle to reach an optimal or near optimal solution. Lins et al. (2003),

and Birgin et al. (2010) both proposed a recursive approach using an L-shaped

structure; they assume that their algorithm was optimal as it always found optimal

solutions for all test problems. A listing of some of the literature published in the

area of 2-Dimensional pallet loading and the solution method used can be seen in

table 2.1.

As it can be seen from table 2.1, the pallet configuration and loading problems

have been widely studied over the past by various researchers due to the fact that

the application in this area is extremely useful. Many researchers have explored

different solving methods ranging from exact algorithms, heuristics, and combining

both. As observed from the table, exact algorithms combined with heuristic ap-

proaches account for the majority of the models because the pallet loading problem

is defined as NP-hard, and such heuristic methods help reduce the computational

time.
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Table 2.1: Literature Published for the MILP (Vargas-Osorio and Zuniga, 2016)

Authors
Method used

Exact algorithm Heuristic method
Dowsland (1987a) X
Dowsland (1987b) X
Tarnowski et al. (1994) X
Morabito and Morales (1998) X X
Farago and Morabito (2000) X
Amaral and Wright (2001) X
Young-Gun and Kang (2001) X
Yamassaki and Pureza (2003) X
Alvarez-Valdés et al. (2005a) X
Birgin et al. (2005) X
Alvarez-Valdés et al. (2005b) X X
Pureza and Morabito (2006) X X
Wu and Ting (2007) X X
Ribeiro and Lorena (2007) X X
Martins and Dell (2008) X X
Kocjan and Holmström (2008) X X
Yi et al. (2009) X X
Birgin et al. (2010) X X

While all approaches seem to be effective in solving such problems, there

are still several real-world limitations, such as the difficulties in running massive

packing problem instances, the need for certain particular dimension boxes, and the

need for a long computational time to obtain reasonable and efficient performance.

Often, in some situations, it has been observed that some limitations can be over-

looked to reach a higher utilisation percentage, such as pallet weight due to product

packing restrictions or transportation weight. The same principle applies to ware-

house racks and truck height limits since these restrictions are seen in real-world

operations. It is worth noting that the literature cited in this chapter is in the core

of the original MPLP, still more research for the problem exists but with extended

problem statements and constraints, which have not been considered here.

This chapter proposes a novel Mixed Integer Linear Programming (MILP)

model that generates layouts of an improved structure based on the block repre-



CHAPTER 2. SINGLE-OBJECTIVE MANUFACTURE’S PALLET LOADING
PROBLEM 37

sentation. Where each block groups boxes with the same orientation along the X

and Y axis. Where next, we look into the problem statement in detail, followed

by the mathematical formulation. Later, we introduce a new metric known as a

Complexity measure followed by a Results and Discussion section where data-sets

from literature are used to test and validate the proposed algorithm supported with

graphical layouts of the pallet loading. Finally, concluding remarks are given, not-

ing the main contribution of this chapter.

2.3 Problem Definition
For pallet loading and configuration, warehouses are usually restricted by many

internal constraints, including pallet sizes, rack height, and any client demands for

pre-shipment configuration modifications. The aim is to build up the pallet to ac-

commodate the most amount of weakly homogeneous (identical) boxes as soon as

the product comes off the production lines. Based on the delivery market, different

pallet dimensions are usually used. The following assumptions are made:

• All Bins (pallets) and Items (boxes) used are required to be rectangular

• All Items (boxes) can rotate in a 2D, as seen in figure 2.1

• Items (boxes) cannot overlap with each other

• One layer of pallet layout is generated in 2D and could be replicated to

achieve the pallet height desired by manufacturers

Figure 2.1: 2-Dimensional Box orientations

Overall, the proposed problem can be stated as follows:
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Given:

• Dimensions of items (Boxes) in length and width

• Dimensions of Bins (Pallets)

• Upper bound on the number of blocks

Determine:

• The number of boxes loaded in each block with its exact geometrical location;

so as to maximise the number of boxes for a given size pallet

2.4 Mathematical Formulation
As seen in figure 2.1 and table 2.2, the pallet configuration problem can be defined

as a single sized box with a given dimension that can rotate in 2D defined as αk and

βk, where k is the number of possible orientations, either k = 1 or k = 2. Blocks

i and j must be used to configure and stack these boxes orthogonally within the

pallet, each with the same individual box orientation. These blocks are grouped

into a pallet with length and width limits of Xmax and Y max, respectively. Figure 2.2

shows the block solution, which consists of 5 blocks, each of which is made up of

several individual boxes arranged in the same orientation. The detailed mathemati-

cal formulation is defined below:

Table 2.2: Possible box orientations

α β

K1 length width
K2 width length

2.4.1 Nomenclature

The indices and parameters associated with the proposed model are listed below:

Indices
i, j Blocks, where j is an alias of i

k Possible orientations

r,r Boxes forming blocks
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Figure 2.2: 5-Block illustration

Parameters
Xmax, Y max Pallet dimension in Length and Width

αk, βk Box dimension

U , M Appropriate Upper-bound values

UB Upper-bound on the objective function

ε Relativity small number

The formulation is based on the following key variables:

Binary Variables
Yik 1 if orientation k is used for block i; 0 otherwise

wwi Penalty binary variable for each block i

ZLir r boxes along the X axis for each block i

ZWir r boxes along the Y axis for each block i

E1i j,E2i j Non overlapping binary, a set of values that prevent

blocks i and j from overlapping in the X and Y direction

Tirr Auxiliary variable

Positive Variables
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BLi Length of each block i

BWi Width of each block i

SLi Number of boxes across the length of the X axis for each block i

SWi Number of boxes across the width of the Y axis for each block i

Xi, Yi Coordinates of geometrical center of block i

Bi Number of individual boxes forming each block i

Integer Variables
NLi Number of boxes across the X axis forming block i

NW i Number of boxes across the Y axis forming block i

2.4.2 Optimisation Model

The combination of cardinality r · r determiners the number of boxes selected for

each block i using the Auxiliary binary variable Tirr; where it is equal to 1 if that

combination of block size is chosen and is zero otherwise; as the following in equa-

tion 2.1:

Bi=∑
rr

r · r ·Tirr ∀i (2.1)

For the blocks to be used in a sequence; i.e., in order, an ordering constraint has

been introduced as in the following equation, equation 2.2:

Bi ≥ Bi+1 ∀i (2.2)

Length Orientation:

The number of individual boxes for each block i across the X axis are found by

introducing equations, 2.3 and 2.4. Equation 2.5 guarantees that a length is only

determined if the binary variable Yik is active. Finally, equation 2.6 determines the

total length used by each block i, which is the box length chosen αk multiplied by

the number of individual boxes chosen in SLik.
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NLi=∑
k

SLik ∀i (2.3)

NLi=∑
r

r ·ZLir ∀i (2.4)

SLik ≤U ·Yik ∀i,k (2.5)

BLi=∑
k

αk ·SLik ∀i (2.6)

Width Orientation:

The width is controlled in a similar approach as the following:

NWi=∑
k

SWik ∀i (2.7)

NWi=∑
r

r ·ZWir ∀i (2.8)

SWik ≤U ·Yik ∀i,k (2.9)

BWi=∑
k

βk ·SWik ∀i (2.10)

Lower Bound:

Lower bound design constraints have been considered as in equations 2.11 and

2.12. Where a lower bound on the coordinates of the geometrical center of each

block i and j has been considered to avoid intersection of blocks with the origin of

axis.

Xi ≥
BLi

2
∀i (2.11)
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Yi ≥
BWi

2
∀i (2.12)

Upper Bound:

Upper bound constraints in a similar way, ensure that the blocks are allocated within

the pallet dimensions and the rectangular space is defined by the corners (0,0) of the

pallet dimensions Xmax, Y max as follows:

Xi +
BLi

2
≤ Xmax ∀i (2.13)

Yi +
BWi

2
≤ Y max ∀i (2.14)

Non-overlapping:

Non-overlapping binary variables E1i, j and E2i, j are introduced here to avoid

blocks i and j from occupying the same space/area in the X and Y axis as presented

in Papageorgiou and Rotstein (1998). The Big M upper-bound value used here

varies depending on the problem dimension/size, where it is equal to the pallet

length Xmax.

Non overlapping in the X direction:

Xi−X j +M(E1i j +E2i j)≥
BLi +BL j

2
∀ j ≥ i (2.15)

X j−Xi +M(1−E1i j +E2i j)≥
BLi +BL j

2
∀ j ≥ i (2.16)

Non overlapping in the Y direction:

Yi−Yj +M(1+E1i j−E2i j)≥
BWi +BWj

2
∀ j ≥ i (2.17)

Yj−Yi +M(2−E1i j−E2i j)≥
BWi +BWj

2
∀ j ≥ i (2.18)
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2.4.3 Design Constraints

The number of boxes in each direction must be less than or equal to the maximum

number of boxes that can be positioned in that direction as in equations 2.19 and

2.20:

Tirr ≤ ZLir ∀i,r,r (2.19)

Tirr ≤ ZWir ∀i,r,r (2.20)

Due to the geometry of the proposed approach, where similar optimal solutions

occur, alternate symmetrical layout solutions can be found, requiring longer CPU

times. So, in order to increase CPU performance, symmetry-breaking restrictions

are imposed, as seen in Westerlund and Papageorgiou (2004); by fixing the first box

to the ’bottom left corner’ in the following manner:

X1 =
BL1

2
(2.21)

Y1 =
BW1

2
(2.22)

BL1≥BW1 (2.23)

Finally, in order to minimise computational effort, an upper limit on the objective

function has been set to the maximum utilisation percentage for the pallet/box size

as follows:

UB =
Xmax · Ymax

αk1 · βk1
(2.24)
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2.4.4 Objective Function

As previously mentioned, this model aims to increase the utilisation percentage of

the pallet, which is accomplished by increasing the number of individual boxes r in

each block i and j. We also add a penalty ε , a relatively small number set to 0.001

here, to ensure that we optimise the number of boxes included in each block while

also minimising the number of blocks used to adhere to the complexity measures

discussed later in the chapter.

max ∑
i

Bi− ε ∑
i

wwi (2.25)

We need to ensure that the binary variable wwi is active only when Yik is active as in

equation 2.26 to be apply the penalty in the objective function equation 2.25. And

to ensure boxes are only assigned to blocks that have been selected, equations 2.27

and 2.28 have been introduced:

∑
k

Yik=wwi ∀i (2.26)

∑
r

ZLir=wwi ∀i (2.27)

∑
r

ZW ir=wwi ∀i (2.28)

Thus, Model s MPLP consists of Objective function equation 2.25 subject to con-

straints 2.1-2.24 and 2.26-2.28.

2.5 Complexity Measure
As previously mentioned, the proposed model’s key goal is to help provide less

complicated graphical layouts of the pallet loading problem, and to that end, a new

metric called the Complexity measure is introduced. The metric can be used to

compare two pallet layouts that have the same pallet size Xmax and Y max, as well as

the same number of packed boxes Bi, but were created using different mathemati-
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cal methods, resulting in different box arrangements. The following mathematical

formula can be used to define the layout complexity measure:

ζ=
V rchange+Hrchange

(2∑i Bi)−xr−yc
(2.29)

Where ζ represents the average number of orientation changes between the boxes

in the pallet and can take any value between 0 and 1, with the following description

of complexity:

• 0 indicates a least complex arrangement

• 1 indicates a most complex arrangement

Vertical and Horizontal orientation changes in the X and Y axis of the pallet are

captured by the V rchange and Hrchange variables, respectively. The number of

boxes loaded in the pallet is provided by the MILP model proposed above and is

denoted by Bi . As seen in figure 2.3, the xr and yr variables reflect the number of

boxes in the first row and column along the X and Y axis, respectively.

Figure 2.3: Calculation of Xr and Y c for Complexity Index ζ
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The flowchart presented in figure 2.4 demonstrates the calculation method in

detail. We first calculate the Xr and Y c values, the number of boxes on the first row

and column of the pallet. We then calculate the vertical V rchange and horizontal

Hrchange changes simultaneously, assigning a value of zero for the first row and

column boxes across the pallet, as these boxes are the pallet’s starting points and

no rows or columns of boxes occur before them. We then move in the vertical and

horizontal direction of the pallet, looking for a change in orientation between any

box and its adjust box; if a change is detected, a value of 1 is assigned, and if no

change is seen, a value of 0 is given. The process is repeated for every box until all

boxes have been assigned a value of (0 or 1). The number of orientation changes

is then summed up and applied in the complexity index equation, equation 2.29 to

find the value of ζ .

In more detail, and to better understand the definition of the complexity index (0-1)

values, consider two different pallet loading scenarios: one with just one block

and the other with several small blocks equal to the number of individual boxes

in the pallet. Cases (a) and (b) are shown in Figure 2.5, respectively. When only

one block is used, the complexity index ζ equals zero, indicating a simple pallet

configuration, where all the individual boxes that make up the block are positioned

in the same direction, resulting in V rchange and Hrchange values of zero. In the

second case, each block has a different orientation from its adjacent box with no

blocks combining them. When applying the complexity index equation above, ζ

will be equal to 1, indicating a very complex arrangement. Table 2.3 shows the

calculations of both layouts generated. The above Complexity index formulation

will be used in the next section to compare the proposed approach model layouts

with various Literature layouts.

Table 2.3: Complexity Index for One and Multi Block Examples

Approach VC HC ∑Bi Xr Yc ζ Number of Blocks
One Block 0 0 9 3 3 0 1
Multi Block 15 16 20 5 4 1 20
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Figure 2.4: Complexity Measure Flowchart
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(a) One block layout (all boxes sharing the same orientation)

(b) Multi block Layout (all adjacent boxes have different orientations)

Figure 2.5: Complexity index (0-1) examples
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2.6 Results and Discussion

2.6.1 Benchmark Instances

To assess and evaluate the presented model’s performance, the results were com-

pared to the Benchmark instances published in Silva et al. (2016) review paper

on the pallet loading problems. The instances cover a wide range of instances

from literature since 1982 up to recent years, ranging from small, medium to large

instances. They have also been tested in at least two pallet loading models from

literature being solved in either heuristic, exact methods, or both. Therefore they

represent a wide range of instances that can be used in evaluating the performance.

The instances are presented in table 2.4, instances (1-25) and (35-45) have been

solved using both exact algorithms and heuristic approaches. While for instances

(26-34) and (46-55), they have been solved using only heuristic approaches. The

pallet dimensions are presented as Xmax and Y max for the X and Y direction. α

and β are the individual box dimensions, z and s MPLP are the number of boxes

loaded into the pallet from literature and the s MPLP model, respectively. The time

required to run each instance using the s MPLP model is presented in the CPU

column and measured in seconds. The last column in the table indicates where the

instances have been tested in the literature.

It should be mentioned that the instances were solved using the GAMS mod-

elling system with the CPLEX Mixed Integer Linear Programming optimisation

package, on an Intel®Xeon®E5-1620 CPU with 16GB RAM PC and with a rel-

ative termination tolerance of 1 %. The computation times for the instances were

between 5 seconds for simple instances to 1000 seconds for more challenging ones

(average around 400s). It should be noted that the computational effort times re-

ported here vary from one instance to the other based on many factors, such as the

pallet to box ratio, which is defined as L.W /α .β . Also the number of boxes being

loaded and the non-overlapping constraints have a direct effect on the CPU times.

But given that these problems are classified as NP-hard, the computing times are

considered to be within a reasonable computational effort range. Furthermore, the



CHAPTER 2. SINGLE-OBJECTIVE MANUFACTURE’S PALLET LOADING
PROBLEM 50

Table 2.4: Literature Data-Set (a) with s MPLP model results (Silva et al., 2016)

# L W α β z s MPLP CPU
(s)

Papers where instances were used

1 1000 1000 205 159 30 30 16.64
2 1000 1000 200 150 33 33 615.8

(Bischoff and Dowsland, 1982),
(Young-Gun and Kang, 2001),
(Wu and Ting, 2007)

3 14 10 3 2 23 23 4.3 (Dowsland, 1984),
(Young-Gun and Kang, 2001),
(Wu and Ting, 2007)

4 22 16 5 3 23 23 10.6
5 86 82 15 11 42 42 863.1

(Dowsland, 1984),
(Arenales and Morabito, 1995),
(Bhattacharya et al., 1998),
(Morabito and Morales, 1998),
(Young-Gun and Kang, 2001)

6 30 22 7 4 23 23 32.2
7 46 34 11 6 23 23 63.2
8 50 36 11 7 23 23 53.87
9 53 51 9 7 42 42 617.8
10 63 60 11 8 42 42 331.2
11 76 73 13 10 42 42 1000

(Dowsland, 1984),
(Arenales and Morabito, 1995),
(Bhattacharya et al., 1998),
(Young-Gun and Kang, 2001),
(Wu and Ting, 2007)

12 87 47 7 6 97 97 1000 (Neliβen, 1995),
(Bhattacharya et al., 1998),
(Morabito and Morales, 1998),
(Amaral and Wright, 2001),
(Young-Gun and Kang, 2001),
(Pureza and Morabito, 2006),
(Wu and Ting, 2007),
(Martins and Dell, 2008)

13 57 44 12 5 41 41 1000 (Neliβen, 1995),
(Morabito and Morales, 1998),
(Young-Gun and Kang, 2001),
(Pureza and Morabito, 2006),
(Wu and Ting, 2007),
(Martins and Dell, 2008)

14 40 33 7 4 46 46 193.2 (Neliβen, 1995),
(Bhattacharya et al., 1998),
(Young-Gun and Kang, 2001),
(Wu and Ting, 2007)

15 3750 3063 646 375 46 46 175.6
16 1200 800 176 135 38 38 114.7
17 34 23 5 4 38 38 123.8

(Neliβen, 1995),
(Bhattacharya et al., 1998),
(Young-Gun and Kang, 2001),
(Wu and Ting, 2007)

18 300 200 21 19 149 149 535.2 (Scheithauer and Terno, 1996b),
(Morabito and Morales, 1998),
(Martins and Dell, 2008)
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Continued
# L W α β z s MPLP CPU

(s)
Papers where instances were used

19 40 25 7 3 47 47 623.2
20 52 33 9 4 47 47 531.1
21 56 52 12 5 48 48 422.6

(Scheithauer and Terno, 1996a),
(Morabito and Morales, 1998),
(Pureza and Morabito, 2006),
(Wu and Ting, 2007),
(Martins and Dell, 2008)

22 43 26 7 3 53 53 389.5
23 153 100 24 7 90 90 470.1

(Morabito and Morales, 1998),
(Lins et al., 2003),
(Pureza and Morabito, 2006),
(Birgin et al., 2010),
(Wu and Ting, 2007),
(Martins and Dell, 2008)

24 42 39 9 4 45 45 348.1
25 124 81 21 10 47 47 692.2

(Morabito and Morales, 1998),
(Pureza and Morabito, 2006),
(Wu and Ting, 2007),
(Martins and Dell, 2008)

26 100 64 17 10 36 36 247.3
27 100 82 22 8 45 45 498.45

(Amaral and Wright, 2001),
(Ribeiro and Lorena, 2007)

28 100 83 22 8 45 45 503.7
29 32 22 5 4 34 34 313.6
30 32 27 5 4 42 42 395.3
31 40 26 7 4 36 36 335.2
32 53 26 7 4 48 48 168.4
33 37 30 8 3 45 45 207.5
34 81 39 9 7 49 49 195.5
35 61 38 6 5 77 77 597.7 (Lins et al., 2003),

(Pureza and Morabito, 2006),
(Birgin et al., 2010),
(Wu and Ting, 2007),
(Martins and Dell, 2008),
(Ribeiro and Lorena, 2007),

36 63 44 8 5 69 69 263.8
37 61 35 10 3 71 71 426.3
38 61 38 10 3 77 77 658.3
39 93 46 13 4 82 82 432.4
40 106 59 13 5 96 96 545.9

(Lins et al., 2003),
(Pureza and Morabito, 2006),
(Birgin et al., 2010),
(Wu and Ting, 2007),
(Martins and Dell, 2008)

41 141 71 13 8 96 96 164.5
42 108 65 10 7 100 100 212.4
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Continued
# L W α β z s MPLP CPU

(s)
Papers where instances were used

43 86 52 9 5 99 99 657.1
44 74 46 7 5 97 97 543.4

(Lins et al., 2003),
(Pureza and Morabito, 2006),
(Birgin et al., 2010),
(Wu and Ting, 2007),
(Alvarez-Valdés et al., 2005a)

45 67 44 6 5 97 97 581.7 (Lins L, 2003),
(Pureza and Morabito, 2006),
(Wu and Ting, 2007)

46 49 28 8 3 57 57 467.8
47 57 34 7 4 69 69 524.8
48 67 37 11 3 75 75 162.4

(Lins et al., 2003),
(Birgin et al., 2010),
(Martins and Dell, 2008)

49 67 40 11 3 81 81 280.2
50 74 49 11 4 82 82 181.9
51 2296 1230 136 94 219 219 321.2
52 2536 1312 144 84 273 273 515.3

(Birgin et al., 2010),
(Ribeiro and Lorena, 2007)

53 2252 1470 144 84 271 271 510.7
54 1470 1458 144 84 175 175 689.4
55 2296 1230 135 92 226 226 350.4

Average time 395.9

s MPLP model obtained the same results in terms of the number of boxes packed

into pallets as those reported in the literature, but with less complex layouts, as

clearly demonstrated in the next section.

As stated before, the main advantage of the proposed model is its ability to

freely choose the number of blocks needed to construct the pallet. However, due

to computational effort, the number of blocks i, j have been given an upper bound

of 15 blocks in all instances tested. This number has been sufficient in solving all

problems, where the model in all instances tested has used a maximum of 7 blocks.

Another point to mention is the upper bound on the number of individual boxes r,r

forming each block; it has been set as the max number of boxes that could fit along

the X or Y axis if the smallest dimension is used: max(L,W )/min(α ,β ). The value

of this upper bound changes depending on the size of each instance.
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2.6.2 s MPLP Model Layouts

The presented algorithm in this study, as previously stated, has a structure similar to

that of heuristic block approaches as the 4-block pattern, G4-structure, and 5 block

structure. The resemblance arises from the concept of combining boxes with the

same orientation into a single block. Apart from being an optimisation-based model,

the proposed algorithm differs from heuristic approaches in that it is an n-block

approach in which the boxes are not forced into a predefined number of blocks.

Where, depending on the problem size, the boxes are freely grouped into blocks

on the pallet dimension. Up to our knowledge, the linear-based approach for block

layout in this research has not been provided elsewhere, and the originality of the

Complexity measure for layout comparisons is a novel approach. The complexity

metric will be examined in the next section, with comparisons between the s MPLP

model and Literature approach layouts. A selection of multiple cases from table 2.4

was evaluated and compared; instances 4, 5, 14, 17, 21, 18, and ultimately instance

51, as they span a range of pallet/box sizes.

2.6.3 Graphical Layout Comparison

Starting by instance number 4, in table 2.4, a visual comparison is shown in figure

2.6 which shows how the s MPLP layout generated by the s MPLP model is more

simplified when considering the number of blocks, where the boxes are grouped

into only 2 blocks as opposed to the literature layout used in Young-Gun and Kang

(2001) that employs a heuristic 5 block approach, which has used a total of 7 blocks.

The simplification associated with the s MPLP model has a distinct benefit for the

supply chain cost, as it will decrease the pallet loading time in both human and

robotic loading.

Figure 2.7 presents the process for calculating the number of Vrchange and

Hrchange orientation changes across the X and Y axis for each box. Each box

will have a value of 0 or 1, with 0 denoting the absence of a previous neighbour-

ing box orientation change and 1 denoting that a box’s orientation has changed

compared to its neighbouring adjunct box. For each box, we add the number of
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modifications to determine the total number of changes. Once the Complexity met-

ric described in equation 2.29 is applied to compute the Complexity Index ζ , we

may conclude the results, which are listed below in table 2.5.

(a)Literature Layout (b) s MPLP Layout

Figure 2.6: Layouts of Instance 4: (a)-Young-Gun and Kang (2001)

Figure 2.7: Calculation of Complexity Index for Instance 4
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Table 2.5: Complexity Index for Instance 4

Approach VC HC ∑Bi Xr Yc ζ Number of Blocks
s MPLP 5 0 29 8 4 0.10 2
Literature 11 6 29 6 5 0.36 7

As it can be observed from table 2.5, the complexity index ζ for the s MPLP model

is 0.10, which is closer to zero resulting in a less complicated box arrangement com-

pared to literature complexity index ζ of 0.36, which is more complicated. It should

be noted that the main drive for the low complexity index value for the s MPLP

model approach is the penalty term added in the objective function, that results in

a lower number of blocks used. In literature, it is noticed that the V Rchanges and

HRchanges; number of orientation changes are more, as opposed to the V Rchanges

and HRchanges observed in the s MPLP model. A noteworthy comparison is the

total number of blocks used to load the pallet: in the literature layout, 7 blocks were

used, whereas, in the s MPLP model, only 2 blocks were used.

In a similar manner, Instance 5 from table 2.4 is analysed, and figure 2.8 illustrates

the layout from literature generated using a AND/OR-graph technique as in Are-

nales and Morabito (1995) and the layout from the s MPLP model, respectively.

The Complexity Index comparison is displayed in table 2.6, and the Complexity

calculation method is shown in figure 2.9. The s MPLP model has a ζ value of

0.025, whereas the literature has a ζ value of 0.33. For the s MPLP model and

literature, the number of blocks required to construct the pallet are 6 and 8, respec-

tively. Although the difference in the complexity index ζ and the number of blocks

needed to construct the pallet may not appear to be substantial, when considering

facilities that load thousands of pallets every day, considerable time savings may be

realised.

For instance 14 from table 2.4, the layouts of both literature (Birgin et al., 2010)

and the s MPLP model can be seen in figure 2.10. The Complexity Index for both

cases can be seen in table 2.7. The layout presented in the literature is quite hard
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(a)Literature Layout (b) s MPLP Layout

Figure 2.8: Layouts of Instance 5: (a)-Arenales and Morabito (1995)

Table 2.6: Instance 5 Complexity Index

Approach VC HC ∑Bi Xr Yc ζ Number of Blocks
s MPLP 11 7 42 6 7 0.25 7
Literature 12 12 42 6 6 0.33 8

to load due to many orientation changes in the pallet, where 9 blocks have been

used. While for the s MPLP model, all the boxes sharing the same orientation

are grouped, requiring only 3 blocks to construct the pallet, resulting in a simpler

layout. As a result, the s MPLP model has a complexity index ζ of roughly 0.123,

indicating a less complex layout compared to the literature complexity index ζ of

0.376, indicating a more complex layout structure.

Table 2.7: Instance 14 Complexity Index

Approach VC HC ∑Bi Xr Yc ζ Number of Blocks
s MPLP 9 1 46 5 6 0.123 3
Literature 25 4 46 10 5 0.376 9

Moving to instance 17 from table 2.4, the layouts are shown in figure 2.11, where

again it could be seen that the s MPLP model outperforms the literature layout

(Birgin et al., 2010) by reducing the number of blocks from 13 blocks to only 4

blocks. Leading to a lower complexity index value ζ of 0.187 for the s MPLP

model compared to the literature complexity index ζ of 0.468 as seen in table 2.8.
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Figure 2.9: Calculation of Complexity Index for Instance 5

(a)Literature Layout (b) s MPLP Layout

Figure 2.10: Layouts of Instance 14: (a)-Birgin et al. (2010)
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(a)Literature Layout (b) s MPLP Layout

Figure 2.11: Layouts of Instance 17: (a)-Birgin et al. (2010)

Table 2.8: Instance 17 Complexity Index

Approach VC HC ∑Bi Xr Yc ζ Number of Blocks
s MPLP 7 5 38 7 5 0.187 4
Literature 22 8 38 7 5 0.468 13

When we look at Instance 18 from table 2.4, we can see that the number of boxes

to be loaded is considered high; 149 boxes. The layouts are shown in figure 2.12,

and the comparison of Complexity Indexes are shown in table 2.9. The literature

layout provided in Scheithauer and Terno (1996a) was generated employing a G4-

heuristic approach. The layout is quite difficult in terms of implementation in real

life since changing the orientation between mostly all neighbouring boxes is a time-

intensive procedure. When compared to the s MPLP model developed, the amount

of changes in orientation from one block to the other has been minimised, and the

boxes that share the same orientation have been grouped into blocks. As a result,

the s MPLP model has a complexity index ζ of roughly 0.091, which is very close

to zero, indicating a less complex layout as compared to the literature complexity

index ζ of 0.97, which is extremely high near 1 indicating a more complicated and

challenging layout structure.

In a similar approach to the above, we look into instance 21 from table 2.4, provid-

ing the layouts of both literature (Martins and Dell, 2008) and the s MPLP model in
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Table 2.9: Instance 18 Complexity Index

Approach VC HC ∑Bi Xr Yc ζ Number of Blocks
s MPLP 15 10 149 15 10 0.091 4
Literature 126 140 149 15 9 0.97 141

(a)Literature Layout (b) s MPLP Layout

Figure 2.12: Layouts of Instance 18: (a)-Scheithauer and Terno (1996a)

figure 2.13. It could be seen from table 2.10 that the number of boxes to be loaded

is relatively high; 99 boxes and the s MPLP model was able to load all the boxes in

3 blocks only with a complexity index ζ of 0.078. Whereas for the literature layout

presented, 9 blocks have been used with a complexity index value of 0.14.

(a)Literature Layout (b) s MPLP Layout

Figure 2.13: Layouts of Instance 21: (a)-Martins and Dell (2008)

Table 2.10: Instance 21 Complexity Index

Approach VC HC ∑Bi Xr Yc ζ Number of Blocks
s MPLP 8 6 99 12 8 0.078 3
Literature 13 12 99 11 9 0.14 9
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Finally, for instance, 51, and from figure 2.14, it could be seen that the s MPLP

model produces less complex layouts by using only 5 blocks, with a complexity

index of 0.12. While for the literature layout (Birgin et al., 2010), the number of

blocks used was more than double the ones used in the s MPLP model, i.e., 11

blocks with a complexity index of 0.15 as shown in table 2.11.

(a)Literature Layout (b) s MPLP Layout

Figure 2.14: Layouts of Instance 51: (a)-Birgin et al. (2010)

Table 2.11: Instance 51 Complexity Index

Approach VC HC ∑Bi Xr Yc ζ Number of Blocks
s MPLP 23 11 147 11 10 0.12 5
Literature 26 15 147 15 9 0.15 11

By analysing the above comparisons, it can be concluded that the s MPLP algo-

rithm’s alternative layouts are significantly more straightforward in terms of layout

complexity yet still achieve the same optimum solution as those reported in the

literature. The proposed model groups the maximum number of boxes along the

X and Y axis together through blocks minimising the number of orientations in

the space. In conclusion, we believe that the less complex and challenging layouts

produced by the s MPLP model are crucial in the supply chain operations as they

will reduce both; time and cost.
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2.7 Conclusions
In this chapter, a single objective MILP model is offered as a solution to the Manu-

facturer’s Pallet Loading Problem (MPLP). The suggested methodology maximises

the number of boxes loaded on the pallet by grouping them into blocks based on

their orientation. Depending on the magnitude of the instances, the number of

blocks necessary varies from one problem to the other. The method has been tested

on various data sets and consistently produces the best results in a relatively accept-

able amount of time, ranging from 5 for small instances to 1000 seconds for larger

ones. Given the NP-hard nature of such problems, the observed computational ef-

forts are deemed acceptable. Additionally, the model specifies the precise geometric

placement of the blocks and generates simpler graphical layouts that surpass those

in the literature.

The primary contribution of this study is the use of a linear block technique

to arrange boxes with the same orientation across the X and Y axis into blocks,

hence minimising orientation changes inside the pallet. Additionally, a unique and

novel Complexity Measure is introduced, which enables comparing two pallets of

the same size but with distinct graphical layouts. Where a new index named ζ has

been introduced, it may take any value between 0 and 1, describing the complexity

of the pallet layout constructed using any approach. For the instances examined, the

Linear s MPLP model resulted in a lower complexity index value while maximising

the number of boxes loaded through the use of blocks. We feel that such a decrease

will benefit the whole supply chain operations, and future comparison of time and

cost might be used to back up the claims.

In the next chapter, the current single objective model is extended to a multi

objective model, where the complexity index measure is integrated into the model,

offering a more robust solution methodology.



Chapter 3

Multi-Objective Manufacture’s Pallet

Loading Problem

This chapter is an extension to the previous one by proposing a multi-

objective Mixed Integer Linear Programming (MILP) model based on

the epsilon constraint approach to generate improved layouts with low

complexity index values. The complexity index formulation is now integrated

into the MILP model rather than a post-processing step. The previous

chapter’s instances are tested again to evaluate the model’s performance,

including a set of more complex instances. Finally, the computational ef-

fort of the multi-objective model is compared with the single-objective model.

3.1 Introduction
In general many of the optimal packing configuration layouts presented by math-

ematical programming or heuristic are very complex and not applicable to current

supply chains when effective, robust, and speedy operations are essential. So a

Multi-Objective Mixed Integer Linear Programming (MILP) model to tackle the

complexity of such problems ensuring optimal results are always found with less

complex graphical layouts, is presented in this chapter. The novel model presented

groups the boxes with the same orientation along the X and Y axis as a single block
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without limiting or forcing a number of ”blocks” to be used as in the heuristic block

approaches studied in literature. The proposed approach has been tested against

several available data sets from literature, supported by graphical layouts for com-

parison.

For the remainder of this chapter, Section 3.2; defines the problem statement, fol-

lowed by the mathematical formulation in Section 3.3. Section 3.4; presents the

results with comparisons of existing literature. Also a comparison is made between

the multi-objective model presented in this chapter and the previous single objective

model. Finally, findings and concluding remarks are highlighted in Section 3.5.

3.2 Problem Definition
The problem statement here is the same as defined in Chapter 2; some notations

have been changed to differentiate the models from each other. In general, the

pallet configuration problem proposed is an arrangement of single boxes that hold

the same orientation across the X and Y axis. Where each single box has a length

and width defined as αk and βk and k is the number of possible orientations;

throughout this chapter k has been set to k = 2 as we look into the problem from a

2-Dimensional aspect; figure 3.1 demonstrates the orientations. These single boxes

r are grouped into blocks known as i and j, and for each block i they share the same

orientation and form a matrix size equivalent to (r · r).

Figure 3.1: 2-Dimensional Box orientations

The main objective is to maximise the number of items packed, assuming that
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the loading occurs immediately after the products are ready from the production

lines. Again the assumptions made throughout this chapter are the same listed in

Chapter 2, in brief; all the Bins (pallets) and Items (boxes) are rectangular, where the

items (boxes) can rotate in 2D across the X and Y axis. No overlapping is allowed,

and the pallet layout generated is for one layer and would be repeated for additional

layers until the maximum height required by the manufacturer is reached.

The overall problem can be stated as follows:

Given:

• Items (boxes) length and width dimensions

• Bins (pallets) length and width dimensions

• Upper bound on the number of blocks allowed

Determine:

• The number of boxes loaded in each block with its exact geometrical location;

so as to maximise the number of boxes for a given size pallet while reducing

the complexity of loading by grouping boxes that share the same orientation

in blocks.

3.3 Mathematical Formulation

3.3.1 Nomenclature

The indices and parameters associated with the m MPLP model are listed below:

Indices
i, j Blocks

k Possible orientations

r,r Boxes forming blocks

h Digit of the binary representation
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Parameters
L, W Pallet dimension in Length and Width

αk, βk Box dimension

The following key variables have been used to formulate the problem statement:

Positive Variables
BLi Length of each block i

BWi Width of each block i

nLi Number of boxes across the length of the X axis for

each block i

nWi Number of boxes across the width of the Y axis for

each block i

Xi, Yi Coordinates of geometrical center of block i

Xli Bottom left corner X point for block i

YWi Bottom left corner Y point for block i

Xri Number of boxes that lay on the X axis for each block i

Y ci Number of boxes that lay on the Y axis for each block i

XrY ci Number of boxes that lay across the X and Y axis on

the first row and column of the pallet

HVC Summation of horizontal and vertical changes in the pallet

ζ Complexity index

g Denominator of the Complexity index

Integer Variables

BOi Number of boxes forming each block i

Auxiliary Variables
Tirrk ≡ ZLirk* ZWirk

Zhh ≡ g * uh
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Binary variables
Eik 1 if orientation k for block i is selected; 0 otherwise

pi 1 if block i exist, 0 otherwise

ZLirk 1 if box r size in orientation k is selected for the length

of block i , 0 otherwise

ZWirk 1 if box r size in orientation k is selected for the width

of block i , 0 otherwise

E1i j,E2i j Non overlapping binary

zXi,zYi 1 if block i lays on the Y or X axis respectively; 0 otherwise

uh 1 if the nth digit of the binary representation of variable

HVC is equal to 1; 0 otherwise

The following figure; 3.2 represents the main notations used across this chapter:

Figure 3.2: Block Notations

3.3.2 Optimisation Model

To formulate the problem statement above we start by calculating the number of

boxes selected for each block i as introduced in equations 3.1 and 3.2, where nL

is the number of boxes across the X axis of each block i and nW is the number of
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boxes across the Y axis of each block i as the following:

nLi = ∑
rk

r ·ZLirk ∀i (3.1)

nWi = ∑
rk

r ·ZWirk ∀i (3.2)

The total length BLi and width BWi used across the X and Y axis for each block

i is presented below in equations 3.3 and 3.4. Where equation 3.3 calculates the

total length of each block i by multiplying the length αk with the number of boxes

selected r ·ZLirk across the X axis. And equation 3.4 calculates the total width of

each block i by multiplying the width βk with the number of boxes selected r ·ZWirk

across the Y axis.

BLi = ∑
k

αk ∑
r

r ·ZLirk ∀i (3.3)

BWi = ∑
k

βk ∑
r

r ·ZWirk ∀i (3.4)

Lower bound constraints are introduced here to avoid intersection between the geo-

metrical centroids of blocks i and j as in equations 3.5 and 3.6:

Xi ≥
BLi

2
∀i (3.5)

Yi ≥
BWi

2
∀i (3.6)

Upper bound constraints in a similar way force blocks i and j to be placed within

the pallet dimensions L and W as in equation 3.7 and 3.8:

Xi +
BLi

2
≤ L ∀i (3.7)
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Yi +
BWi

2
≤W ∀i (3.8)

To prevent blocks i and j overlapping or occupying the same geometrical location in

the X and Y axis the binary variables E1i, j and E2i, j are introduced Papageorgiou

and Rotstein (1998), where the Big-M upper bound selected equals to the pallet

dimension in the X axis. The following equations capture the non-overlapping con-

straints:

Non overlapping in the X direction:

Xi−X j +M(E1i j +E2i j)≥
BLi +BL j

2
∀ j ≥ i (3.9)

X j−Xi +M(1−E1i j +E2i j)≥
BLi +BL j

2
∀ j ≥ i (3.10)

Non overlapping in the Y direction:

Yi−Yj +M(1+E1i j−E2i j)≥
BWi +BWj

2
∀ j ≥ i (3.11)

Yj−Yi +M(2−E1i j−E2i j)≥
BWi +BWj

2
∀ j ≥ i (3.12)

To determine the total number of boxes BOi in the pallet; the auxiliary binary vari-

able Tirrk is introduced, where it determines the size of the block selected through

the cardinality r · r, and it is equal to 1 if the matrix size forming the block is se-

lected and zero otherwise as in equation 3.13. And to ensure that the auxiliary

variable Tirrk is only active when a matrix size is selected across the X and Y axis,

equations 3.14 and 3.15 are introduced.

BOi = ∑
rrk

r · r ·Tirrk ∀i (3.13)

Tirrk ≤ ZLirk ∀i,r,r,k (3.14)
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Tirrk ≤ ZWirk ∀i,r,r,k (3.15)

To ensure boxes are assigned to blocks only if that block has been selected, equa-

tions 3.16 and 3.17 are introduced using binary Eik, and to ensure that an orientation

is assigned only if that block has been selected equation 3.18 is included.

∑
r

ZLirk ≤ Eik ∀i,k (3.16)

∑
r

ZWirk ≤ Eik ∀i,k (3.17)

∑
k

Eik ≤ pi ∀i (3.18)

3.3.3 Complexity Measure

The complexity measure equation as described in Chapter 2; aids in comparing 2

pallet layouts that share the same pallet size L and W as well as the same num-

ber of boxes loaded BOi but generated using different mathematical or heuristic

approaches, which as a result; provide different box arrangements. From equation

3.19, The HVC captures the horizontal and vertical orientation changes in the X

and Y axis of the pallet, and BOi is the number of boxes loaded in the pallet. The

difference here arises in the way the Xr and Y c are calculated, where they represent

the number of boxes in the first row and column along the X and Y axis starting

from the bottom left corner of the pallet (0,0) rather than the top first row and col-

umn of the pallet as presented in the previous chapter. The new concept is provided

in figure 3.3. ζ again captures the average number of changes between the boxes

in the pallet, and it takes any value between 0 and 1; 0 indicating a less complex

layout, whereas 1 indicates a complex layout.
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ζ =
HVC

(2∑i BOi)−Xr−Y c
(3.19)

Figure 3.3: Calculation of Xr and Y c for Complexity Index ζ for model m MPLP

The above equation for the complexity measure, equation 3.19 is in a non-linear

form, and since the model proposed is a MILP model, the following presents the

linearisation steps used to determine the variable values. In order to obtain the Xr

and Y c values, equations 3.20 - 3.36 are introduced. Where first the bottom left

corner XL and YW of each block i is determined using equations 3.20 and 3.21 for

the X and Y axis, respectively.

XLi = Xi−
BLi

2
∀i (3.20)

YWi = Yi−
BWi

2
∀i (3.21)

Two binary variables zXi and zYi are introduced to give a value of 1 if the block i has

a bottom left corner on the Y or X axis respectively and 0 otherwise, an example

is given in figure 3.4 and the mathematical formulation is captured in equations

3.22-3.25.
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XLi ≥ 1− zXi ∀i (3.22)

XLi ≤M · (1− zXi) ∀i (3.23)

YWi ≥ 1− zYi ∀i (3.24)

YWi ≤M · (1− zYi) ∀i (3.25)

Figure 3.4: Calculation of binaries ZX and ZY

Equations, 3.26 and 3.27 multiply the binary variables zXi and zYi with nLi and nWi;

the number of boxes in each block across the length and width of the pallet, to

determine the number of boxes in each block and to calculate the Xr and Y c values.

Xri = zYi ·nLi ∀i (3.26)

Y ci = zXi ·nWi ∀i (3.27)

Since the above two equations 3.26 and 3.27 are in a non-linear form and include a
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bi-linear term, we linearise them using the big-M technique. For Xr the following

equations 3.28-3.30 have been introduced, where the U1 is equal to the (floor) of the

pallet length over the box length L/ αk, to ensure we have an integer upper-bound.

Xri ≤U1 · zYi ∀i (3.28)

Xri ≤ nLi ∀i (3.29)

Xri ≥ nLi−U1 · (1− zYi) ∀i (3.30)

In a similar way we linearise equation 3.27 using the big-M technique for Y c and

the U2 is equal to the (floor) of the pallet width over the box width W/βk:

Y ci ≤U2 · zXi ∀i (3.31)

Y ci ≤ nWi ∀i (3.32)

Y ci ≥ nWi−U2 · (1− zXi) ∀i (3.33)

Now that we have obtained the values for Xr and Y c the summation of them will

give us the XrY c value to substitute later in the complexity index; equation 3.19:

XrY c = ∑
i

Xri +Y ci (3.34)

To capture the HVC, the horizontal and vertical orientation changes in the X and Y

axis of the pallet; equation 3.35 is introduced, where the number of boxes across

the first row and column of the pallet for each block i is subtracted from the XrY c
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value calculated in the above equation (3.34):

HVC =
[
∑

i
nLi +nWi

]
−XrY c (3.35)

The denominator of equation 3.19 is represented here as g, and it captures twice the

number of boxes used in the pallet minus XrY c; the first row and column of boxes

across the X and Y axis. We multiply the number of boxes in the pallet by two as it

is known that each box can obtain a maximum number of two changes if a change

is seen in the vertical and horizontal direction except for the first row and column

of pallet(XrY c), as these boxes have an upper limit of one change since they are the

starting boxes and no other boxes appear before. Equation 3.36 captures the above:

g = (2 ·∑
i

BOi)−XrY c (3.36)

From the above, the complexity index equation 3.19 is reformulated using the new

variable g as seen in equation 3.37:

ζ =
HVC

g
(3.37)

As the above complexity index is in a non-linear form, and it involves an integer

variable g that could be expressed by its binary representation, equation 3.38 is

introduced. Where uh indicates whether the nth digit of the binary representation of

variable g is equal to 1, and H = log2(maxg).

g =
H

∑
h=1

2h−1 ·uh (3.38)

Equation 3.37 can now be linearised by introducing an auxiliary variable Zhh ≡

g · uh and the following constraints as in equations 3.39- 3.42, where the upper

bound U3 here is the maximum number g can hold, which as explained above is

equal to maximum number of changes a box can hold in the pallet.



CHAPTER 3. MULTI-OBJECTIVE MANUFACTURE’S PALLET LOADING
PROBLEM 74

HVC =
H

∑
h=1

2h−1 ∗Zhh (3.39)

Zhh ≤U3∗uh ∀h (3.40)

Zhh ≤ ζ ∀h (3.41)

Zhh ≥ ζ −U3(1−uh) ∀h (3.42)

noindent To demonstrate the proposed method for the HVC; the horizontal and

vertical changes, figure 3.5 is introduced, where; the calculations for the horizontal

and vertical changes are made simultaneously; at the first stage, it is assumed that

all boxes on the first row and column starting from the (0,0) point hold a value of

zero, due to the fact that they are the starting points in the pallet and no rows or

columns of boxes exist before them. As we move throughout the pallet horizontally

and vertically, we check whether a change in the block size has been detected; if so,

a value of 1 is assigned to all the boxes on the first row/column of the block, and if

no change is seen the box is given a value of zero.

3.3.4 Objective Function

From the above, a multi-objective optimisation model is formulated, where the ob-

jective is to maximise the number of boxes loaded in the pallet BOi, while minimis-

ing the complexity index ζ to obtain less complex graphical layouts. To solve the

model, the ε-constraint method (Chankong and Haimes, 2008) is adapted , where

only one of the objective terms is optimised, and the other is converted as a con-

straint using an appropriate upper-bound. The number of boxes BOi is kept in the

objective function, and the complexity index ζ is converted as a constraint bounded
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Figure 3.5: Vertical and Horizontal changes calculation method

by an appropriate upper value. Thus a single-objective model is obtained as follows:

max ∑
i

BOi (3.43)

s.t. ζ ≤ ε (3.44)

Along with the block constraints (3.1-3.18), the complexity measure constraints

(3.20-3.25), (3.28-3.36) and (3.38-3.42). This constitutes model m MPLP.

Knowing that ζ is between 0 and 1 the model is solved over several iterations, where

at the first run ε is set to the upper-bound 1 and is updated after each run with the

new ζ value obtained until ζ reaches a value of 0. The above model will ensure that

the layouts generated are as simple as possible while reaching the optimal solution

for the number of boxes loaded in the pallet. Moreover, to test the validity of the

proposed model, the following section will present the Pareto curves and compare

the layouts generated with different literature layouts.
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3.4 Computational Results

3.4.1 Benchmark Instances

The model was implemented using GAMS modeling system and with CPLEX

Mixed Integer Linear Programming optimisation package, on an Intel®Xeon®E5-

1620 CPU with 16GB RAM PC and with a relative termination tolerance of 1 %.

The proposed model has been tested against 2 data sets from literature; the first is

the same data used in Chapter 2, and it is displayed in table 3.1. The second data set

is displayed in table 3.2, and represents actual data from the Brazilian ports (Ribeiro

and Lorena, 2008). In both tables, z is the total number of boxes loaded from lit-

erature, m MPLP is the solution obtained from the MILP model proposed in this

chapter. The pallet dimensions are presented as L and W , the box dimensions are α

and β , and finally, the CPU time required to solve each instance using the proposed

approach is reported as CPU and measured in seconds. For table 3.2 a comparison

between literature and the m MPLP model run times has been presented, where an

additional column named LiteratureCPU has been added. For table 3.1 the compu-

tational times with literature could not be performed due to the lack of data.

It should be noted that the number of blocks i, j for all tested instances as in

model s MPLP, has been set to 15 blocks, where the proposed algorithm can freely

choose the number of blocks required. Also, the max value for r,r has been set to the

max number of boxes that could fit along the X or Y axis if the smallest dimension is

used as the following: max(L,W )/min(α ,β ), and this number is different depending

on the problem size.

The proposed approach for the data set (a) in table 3.1 has provided a better

complexity index value in addition to the reduction of the number of blocks used

while loading the same number of boxes as reported in the literature with a reason-

able computational time average of less than 140 seconds. For data set (b) 3.2, a

considerable reduction in times could be seen, where literature times have averaged

8910.6 seconds, the m MPLP model has averaged about 300 seconds while having

the same number of blocks loaded per pallet. The detailed results are presented in

the following section.
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Table 3.1: Literature Data-Set (a) with m MPLP model results (Silva et al., 2016)

Instance L W α β z m MPLP CPU (s)
1 1000 1000 205 159 30 30 3.7
2 1000 1000 200 150 33 33 433.5
3 14 10 3 2 23 23 0.1
4 16 11 3 2 29 29 0.2
5 86 82 15 11 42 42 22.4
6 30 22 7 4 23 23 28.1
7 46 34 11 6 23 23 29.8
8 50 36 11 7 23 23 35.5
9 53 51 9 7 42 42 301

10 63 60 11 8 42 42 222.9
11 76 73 13 10 42 42 247.3
12 87 47 7 6 97 97 231.6
13 57 44 12 5 41 41 265.9
14 40 33 7 4 46 46 4.2
15 3750 3063 646 375 46 46 13.7
16 1200 800 176 135 38 38 9.1
17 34 23 5 4 38 38 10.8
18 300 200 21 19 149 149 432.7
19 40 25 7 3 47 47 283.5
20 52 33 9 4 47 47 203.2
21 85 66 8 7 99 99 231.8
22 43 26 7 3 53 53 155.9
23 153 100 24 7 90 90 231.5
24 42 39 9 4 45 45 148.4
25 124 81 21 10 47 47 158.3
26 100 64 17 10 36 36 23.7
27 100 82 22 8 45 45 3.7
28 100 83 22 8 45 45 15.9
29 32 22 5 4 34 34 5.1
30 32 27 5 4 42 42 4.2
31 40 26 7 4 36 36 8.3
32 53 26 7 4 48 48 45.9
33 37 30 8 3 45 45 68.7
34 81 39 9 7 49 49 18.2
35 61 38 6 5 77 77 173.4
36 63 44 8 5 69 69 204.3
37 61 35 10 3 71 71 387.3
38 61 38 10 3 77 77 238..4
39 93 46 13 4 82 82 218.9
40 106 59 13 5 96 96 136.8
41 141 71 13 8 96 96 153.8
42 108 65 10 7 100 100 207.5
43 86 52 9 5 99 99 326.3
44 74 46 7 5 97 97 217.8
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Continued
Instance L W α β z m MPLP CPU (s)

45 67 44 6 5 97 97 273.6
46 49 28 8 3 57 57 152.7
47 57 34 7 4 69 69 112.6
48 67 37 11 3 75 75 75.8
49 67 40 11 3 81 81 85.8
50 74 49 11 4 82 82 69.3
51 1600 1230 137 95 147 147 123.8

Average time 138.4

Table 3.2: Literature Data-Set (b) with m MPLP model results (Ribeiro and Lorena, 2008)
Instance L W α β z m MPLP CPU (s) Literature CPU (s)

L1 2296 1230 136 94 219 219 51.5 4768
L2 2536 1312 144 84 273 273 205.4 24637
L3 2252 1470 144 84 271 271 285.3 9634
L4 1470 1458 144 84 175 175 156.3 2889
L5 2296 1230 135 92 226 226 122.5 6268
L6 1804 1230 137 95 168 168 232.8 907
L7 2466 1230 137 95 231 231 832.4 7460
L8 1804 1750 137 95 240 240 232.5 16249
L9 2426 1230 137 95 227 227 612.6 7384

Average time 303.4 8910.6

3.4.2 m MPLP Model Layouts and Complexity Comparison

The proposed model in this chapter and as previously mentioned, is a similar

structure compared to heuristic block methods, such as the 4-block pattern, the G4-

structure, and the 5-block structure. The similarity arises in the idea of grouping

boxes that share the same orientation in one block. It differs from heuristic ap-

proaches, apart from being an optimization-based model. It has the functionality of

being a multi-block approach where the boxes are not forced in a certain predefined

maximum number of blocks. The boxes are freely grouped into blocks on the pallet,

depending on the problem size.

In the following section, we will be looking into the comparisons between the

proposed approach layouts and Literature layouts. A selection of instances from

table 3.1 have been tested and compared; instance number 4 followed by instance
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5, 14, 17, 18, 21 and 51 as they cover different sizes of complexity ranging from

small, medium to large.

3.4.3 Graphical Layout Comparison

Starting by instance number 4 from table 3.1, the layout from both literature

(Young-Gun and Kang, 2001) and the m MPLP model is presented in figure 3.6.

The Pareto curve for several iterations for different values of ε is presented in figure

3.7. As seen when the ε value is reduced, the complexity index ζ is reduced, and

the number of boxes loaded in the pallet is also reduced until only one block is

selected having a ζ value of zero, where all boxes in that block share the same

orientation. So a trade-off between the complexity of loading and the number of

boxes to load is something the user can select depending on the products being

packed and if certain packing restrictions apply, such as single orientation packing.

For this instance, 29 boxes are loaded with a complexity index of 0.10 and 25 boxes

could be loaded with a complexity index of 0.

(a)Literature Layout (b) m MPLP Layout

Figure 3.6: Layouts of Instance 4: (a)-(Young-Gun and Kang, 2001)

Table 3.3: Instance 4 Complexity Index

Approach VC HC ∑Bi Xr Yc ζ Number of Blocks
m MPLP 5 0 29 8 4 0.10 2
Literature 11 6 29 6 5 0.36 7

From figure 3.6 the number of blocks used in the proposed approach are only
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Figure 3.7: Pareto curve for Instance 4

Figure 3.8: Calculation of Complexity Index for Instance 4
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2 blocks, while in literature 7 blocks have been used. This significant improvement

of reducing the number of blocks from 7 to only 2 blocks is an advantage for the

supply chain operations; the detailed steps of calculations for the HVC have been

presented in figure 3.8. As seen, a box is assigned a value of 1 once a change of

block size is detected in the horizontal and vertical space, and a value of 0 if no

changes are detected. The number of changes is summed up, and the number of

boxes on the first row and column Xr and Y c are calculated, then the complexity

index ζ is found. The results are displayed in table 3.3 where it could be seen that

the complexity index ζ for the m MPLP model is 0.10, very close to zero; which

results in a less complex graphical layout compared to literature complexity index

ζ of 0.36, i.e., a more complex graphical layout. Looking at both the complexity

index ζ value and the number of blocks used on the pallet, the proposed model

clearly outperforms the graphical literature layout in terms of complexity while

loading the same number of boxes.

A comparison between the layouts generated from the m MPLP model against

literature layouts for instances 5, 14, 17, 18, 21 and 51 are presented in figure 3.10,

the Pareto curves are displayed in figure 3.9 and the complexity index calculation

is presented in table 3.4. It could be seen that the layouts generated for all the

instances for the proposed approach have more simple graphical layouts than those

presented in the literature. The simplicity arises in both the number of blocks used

and the complexity index ζ found by the formula presented in equation 3.19.

For instance 5, compared with literature layout (Arenales and Morabito, 1995),

it could be noticed that the layout generated from the m MPLP model has a ζ value

of 0.28 with 42 boxes loaded compared to literature ζ value of 0.33. If less complex

layouts are required, a zeta value of 0 will load a total of 35 boxes, all sharing

the same ordination in only one block as in 3.9. The number of blocks needed

to construct the layout are 7 blocks for the m MPLP model compared to 8 blocks

for literature. It might seem that the number of blocks or complexity measure is

not far from the literature, but when looking into daily operations of hundreds or

even thousands of pallets to handle, such reduction in complexity would make a
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Table 3.4: Complexity Index detailed calculations

Instance Approach VC HC ∑i BOi Xr Yc ζ Number of Blocks

5
m MPLP 13 7 42 6 7 0.28 7
Literature 12 12 42 6 6 0.33 8

14
m MPLP 6 1 46 10 6 0.09 3
Literature 26 5 46 9 5 0.40 9

17
m MPLP 7 5 38 8 5 0.19 4
Literature 21 8 38 6 5 0.45 14

18
m MPLP 15 10 149 12 9 0.09 4
Literature 126 140 149 15 9 0.97 142

21
m MPLP 11 5 99 12 9 0.09 3
Literature 14 12 99 11 9 0.15 7

51
m MPLP 25 10 147 15 11 0.13 5
Literature 35 17 147 11 9 0.19 11

difference and ease the supply chain operations.

For instances, 14 and 17 compared with literature layout (Birgin et al., 2010);

again, the number of blocks have been reduced from 9 and 14 blocks in literature

to 3 and 4 blocks only for the m MPLP model, respectively, that is more than 50

% reduction in the number of blocks needed to construct the pallet. Also, the com-

plexity index ζ has been reduced from 0.40 to 0.09 for instance 14, and from 0.45

to 0.19 for instance 17; resulting in less complex layouts from the m MPLP model.

Again the Pareto curves are displayed in figure 3.9.

For instance 18, the m MPLP model layout outperforms the literature layout

(Scheithauer and Terno, 1996b) with a vast difference in the complexity index ζ ,

being reduced from 0.97 in literature to only 0.09 for the m MPLP model, resulting

in a much simpler layout formed using only 4 blocks. Similarly, instances 21 (Mar-

tins and Dell, 2008) and instance 51 (Birgin et al., 2010) show a great reduction

of over 50 % in the number of blocks used to construct the pallet with a lower

complexity index ζ value.
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Figure 3.9: Pareto curves

From the above comparisons, the layouts generated by the m MPLP model

compared to those from literature show a very promising complexity index differ-

ence. Where the layouts have a reduced number of blocks and lower Complexity

indexes ζ , while reaching the same optimum solutions for the number of boxes

loaded per pallet as in literature. The following section compares the single and

multi-objective models; s MPLP and m MPLP, respectively.
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Figure 3.10: Graphical layouts comparisons
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3.4.4 Models s MPLP and m MPLP Comparison

Both models, s MPLP and m MPLP aim to maximise the number of boxes loaded

onto the pallet; the main difference arises in how the complexity index ζ is found.

In the s MPLP model, ζ is found by a post-processing step, where it is calculated

manually for each instance and only used as a comparison method for the complex-

ity of pallet loading. In contrast, for the m MPLP model, the complexity index is

integrated within the model, offering a unique feature of a trade-off between the

complexity of loading and the desired number of boxes to be loaded by tuning the

value of ζ based on user or specific managerial/customer decisions.

Below in tables 3.5 and 3.6 a comparison between the single- and multi-

objective models; s MPLP and m MPLP, respectively, is displayed. The com-

putational effort is presented using the same data-sets from the previous section;

data-sets (a) and (b). Where three additional columns have been added; s MPLP,

m MPLP, and % of change, they represent the single-objective model computa-

tional time, the multi-objective model computational time; both measured in sec-

onds and the % of time improvement between the s MPLP and the m MPLP model.

It could be seen from table 3.5 that both models s MPLP and m MPLP were

capable of loading the same number of boxes as those reported in literature and

previously displayed in tables 2.4 and 3.1. The average computational time for the

s MPLP model is just under 400 seconds, whereas for m MPLP model, the average

time is under 140 seconds. The reduction in the computational effort from 400

seconds to about 140 seconds from the s MPLP model to m MPLP, respectively,

shows around 185% time effort improvement.

Now, when exploring Data-set (b), presented in table 3.6 it could be seen that

the sizes of the instances tested here are considered very large, having an average

pallet size of 2150X1348 cm and an average box size of 139X91 cm. Furthermore,

when looking into the computational times, the s MPLP model averages about 600

seconds, and the m MPLP model has an average of about 300 seconds. Again,

considering the NP-hard nature of the problem and the sizes of the instances, the

computational effort reduction of about 50% is considered very good.
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Table 3.5: Comparison between s MPLP and m MPLP computational times
for data-set (a)

# L W α β Boxes
loaded

s MPLP
(s)

m MPLP
(s)

% of
change

1 1000 1000 205 159 30 16.64 3.7 350%
2 1000 1000 200 150 33 615.8 433.5 42%
3 14 10 3 2 23 4.3 0.1 4200%
4 16 11 3 2 29 10.68 0.2 5240%
5 86 82 15 11 42 863.1 22.4 3753%
6 30 22 7 4 23 32.2 28.1 15%
7 46 34 11 6 23 63.2 29.8 112%
8 50 36 11 7 23 53.87 35.5 52%
9 53 51 9 7 42 617.8 301 105%
10 63 60 11 8 42 331.2 222.9 49%
11 76 73 13 10 42 1000 247.3 304%
12 87 47 7 6 97 1000 231.6 332%
13 57 44 12 5 41 1000 265.9 276%
14 40 33 7 4 46 193.2 4.2 4500%
15 3750 3063 646 375 46 175.6 13.7 1182%
16 1200 800 176 135 38 114.7 9.1 1161%
17 34 23 5 4 38 123.8 10.8 1046%
18 300 200 21 19 149 535.2 432.7 24%
19 40 25 7 3 47 623.2 283.5 120%
20 52 33 9 4 47 531.1 203.2 161%
21 85 66 8 7 99 422.6 231.8 82%
22 43 26 7 3 53 389.5 155.9 150%
23 153 100 24 7 90 470.1 231.5 103%
24 42 39 9 4 45 348.1 148.4 135%
25 124 81 21 10 47 692.2 158.3 337%
26 100 64 17 10 36 247.3 23.7 943%
27 100 82 22 8 45 498.5 3.7 13372%
28 100 83 22 8 45 503.7 15.9 3068%
29 32 22 5 4 34 313.6 5.1 6049%
30 32 27 5 4 42 395.3 4.2 9312%
31 40 26 7 4 36 335.2 8.3 3939%
32 53 26 7 4 48 168.4 45.9 267%
33 37 30 8 3 45 207.5 68.7 202%
34 81 39 9 7 49 195.5 18.2 974%
35 61 38 6 5 77 597.7 173.4 245%
36 63 44 8 5 69 263.8 204.3 29%
37 61 35 10 3 71 426.3 387.3 10%
38 61 38 10 3 77 658.3 238..4 176%
39 93 46 13 4 82 432.4 218.9 98%
40 106 59 13 5 96 545.9 136.8 299%
41 141 71 13 8 96 164.5 153.8 7%
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Continued
# L W α β Boxes

loaded
s MPLP
(s)

m MPLP
(s)

% of
change

42 108 65 10 7 100 212.4 207.5 2%
43 86 52 9 5 99 657.1 326.3 101%
44 74 46 7 5 97 543.4 217.8 149%
45 67 44 6 5 97 231.7 273.6 113%
46 49 28 8 3 57 117.8 152.7 206%
47 57 34 7 4 69 124.8 112.6 366%
48 67 37 11 3 75 62.4 75.8 114%
49 67 40 11 3 81 80.2 85.8 227%
50 74 49 11 4 82 61.9 69.3 162%

Average 395.9 138.7 185%

Table 3.6: Comparison between s MPLP and m MPLP computational times
for data-set (b)

# L W α β Boxes
loaded

s MPLP
(s)

m MPLP
(s)

% of
change

L1 2296 1230 136 94 219 321.2 51.5 84%
L2 2536 1312 144 84 273 515.3 205.4 60%
L3 2252 1470 144 84 271 510.7 285.3 44%
L4 1470 1458 144 84 175 689.4 156.3 77%
L5 2296 1230 135 92 226 350.4 122.5 65%
L6 1804 1230 137 95 168 618.4 232.8 62%
L7 2466 1230 137 95 231 974.2 832.4 14%
L8 1804 1750 137 95 240 492.7 232.5 60%
L9 2426 1230 137 95 227 873.9 612.6 29%

Average time 605.13 303.47 49.8%

The model statistics vary when testing different instances due to the fact that

the values for the sets r,r are different from one problem to the other depending on

the magnitude of the pallet/boxes tested. Where the value for the set is calculated

using the following equation: max(L,W )/min(α ,β ), indicating the max number of

boxes that could fit along the X or Y axis if the smallest dimension is selected.

Based on the above and to show how both models, the s MPLP and the m MPLP

compare, Instance 1 from table 3.1 has been selected. The model statistics are

displayed in table 3.7. And as seen, the m MPLP model continuous and discrete

variables are higher than those reported for the s MPLP model, but due to the ε
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constraint method used, where the model is constrained, resulting in a reduced

search space; therefore, the computational times reported are better.

Table 3.7: Model statistics comparison

Model
s MPLP m MPLP

Number of discrete variables 435 653
Number of continuous variables 706 1258
Number of equations 28 44

3.5 Concluding remarks
In this chapter, a novel multi-objective Mixed Integer Linear Programming (MILP)

model using the ε constraint method has been proposed to address the Manufac-

turer’s Pallet Loading Problem (MPLP) problem, in which the number of boxes

loaded is the single-objective to be optimised and the complexity index ζ is trans-

ferred into a constraint. The model proposed maximises the number of boxes loaded

on the pallet while grouping boxes that share the same orientation into blocks. The

number of blocks required can vary from one problem to the other depending on

the problem size. The algorithm has been tested against a wide range of data sets,

and the same optimum results have been obtained. Also, the algorithm provides

the exact geometrical location of the blocks and provides less complex graphical

layouts that outperform those from the literature. Finally, a comparison between the

single- and multi-objective models (s MPLP, m MPLP) computational effort was

presented, where the multi-objective model has a significant improvement overall

in all instances tested.

The main contribution lies in using a multi-objective linear approach that

groups boxes of the same orientation across the X and Y axis into blocks, reduc-

ing the number of orientation changes within the pallet using a novel Complexity

measure. The Complexity measure here offers an excellent advantage for the user,
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offering a set of layouts ranging from one block to multi blocks, where a trade-off

between the complexity of loading and the desired number of boxes to be loaded is

user-tailored.



Chapter 4

Automated Design of Assortments

This Chapter addresses Automated Design of Assortments under the 11th

AIMMS-MOPTA optimisation Modelling Competition. A Mixed Integer

Linear Programming (MILP) algorithm that can assist in providing the

user with a variety of item assortments has been developed. An Integer

cut approach has been applied to provide a diverse set of solutions, not

allowing the same solution to be repeated amongst the set of iterations.

The model has been tested against the data sets provided by finding the

maximum number of items to be packed into rectangular containers with

their respective exact geometric locations. A user-friendly GUI has been

developed in AIMMS platform to facilitate user interaction with an option to

tune the near-optimality parameter and a graphical display of the solution

assortments.

4.1 Introduction

The problem defined as ”Automated Design of Assortments” was presented in the

11th AIMMS-MOPTA optimisation Competition 2019, and up to our knowledge,

no prior study has been done on such problems. As a consequence, we instead offer

a summary of the literature on its sub-problem in the Cutting and Packing (CP) area.
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4.2 Literature Review
As discussed in the introduction, the Cutting and Packing (CP) problems have

gained wide attention over the past years. The topic manifests itself in several

ways, with varying titles depending on the industry it impacts. Such as cutting

stock, trim loss, bin packing, strip packing, vehicle loading, pallet loading, con-

tainer loading, assortment, design, layout, capital budgeting, memory allocation,

and multiprocessor scheduling problems as described by Dyckhoff (1990) and the

complete phenomenology of C&P problems can be seen in figure 4.1.

Such problems, in general, contain two items, small and large, either cutting

small lengths of items from a large sheet or area or loading predefined sized items

into a larger container or bin, subject to the objective function defined. An example

of the typical structure of the C&P problem can be seen in figure 4.2. The objective

can either be minimising the trim or space loss, minimising the cost of materials or

transportation, maximising the number of items loaded, or the total profit. The first

mathematical definition of the problem could be traced back to the 1930s (Kan-

torovich, 1960), but no attention was given to such problems until the 1960s when

the paper was translated to English according to Dowsland and Dowsland (1992).

Such problems can be viewed from a 1, 2, or multi-dimensional aspect, and the

shape of items can vary between rectangular to irregular shapes for both the small

and large items. The first typology of Cutting and Packing (CP) problems was de-

fined by Dyckhoff (1990), where they have classified the problem according to its

dimensionality, the type of assignment, assortment of large items, and the assort-

ments of small items. The drawback of Dyckhoff’s typology has been discussed

in detail by Wäscher et al. (2007) indicating the weaknesses and shortcoming of

the classification system, where the authors have introduced an improved typology

to define a more consistent system for this area looking into all sub-problems of

the C&P problems based on nearly 300 papers published in the area over the last

decade.
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Figure 4.2: Typical Cutting and Packing problem structure

Also, Lodi et al. (1999) have defined another typology for the two-dimensional

Cutting and Packing (CP) problems based on the orientation and cuts of the items,

where they have defined four types of problems, below is the typology proposed:

• 2BP O G: where the items are Oriented (O); cannot rotate, and the guillotine

(G) cut is necessary

• 2BP R G: where the items may Rotate (R) by 90°and the guillotine (G) cut is

necessary

• 2BP O F: where the items are Oriented (O) and the cutting is Free (F)

• 2BP R F: where the items may Rotate (R), and the cutting is Free (F)

In literature, many solving techniques for the problem have been proposed,

ranging from heuristics to mathematical modeling. Coffman et al. (1984) offers

a concise description of the different approximation algorithms proposed for the

Bin-Packing Problem, as well as those that are relevant to the Cutting Stock Prob-

lem. The authors analyse the algorithms’ worst-case and average behaviours. The
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fact that such problems are well known to be NP-hard motivates the substantial

investment in heuristic approaches. One of the exact methods proposed for the

Bin-Packing Problem is Marcotte (1986), where a branch-and-bound method using

appropriate lower bounds for the problem in combination with heuristic approaches

at each node was considered. Scholl et al. (1997) method combining the branch

and bound method with reduction methods, lower limits, and heuristics, as well as a

tabu search procedure, yielded better results. As seen in these methods, quick com-

puting of high lower bounds is crucial; an alternative approach to computing lower

bounds for the problem were suggested by Fekete and Schepers (2001) where the

authors reduce the CPU time required to verify the viability of subsets of rectangles

that is if they can be loaded in the container and thereby form a feasible assortment.

The C&P problems have been solved with considerable advantages using lin-

ear programming-based algorithms; Gilmore and Gomory (1963) were the leaders,

merging column generation with rounding to achieve near-optimal solutions. Cut-

ting planes or merging column generation with branch-and-bound have been used in

more recent attempts (De Carvalho, 1999; Degraeve and Peeters, 2003; Scheithauer

et al., 2001; Vanderbeck, 1999). Other Mixed Integer Linear Programming (MILP)

models have been developed to reduce the number of variables and constraints as

in Belov et al. (2009); where the model constraints identify if items overlap on

the X and Y axis and only one solution is allowed in the assortment. Egeblad and

Pisinger (2009) use binary variables to determine the position of each pair of items,

indicating if the pairs are placed over, under, right, or left of one another.

4.3 Problem Definition

According to the Mopta 2019 competition, the problem statement is to develop a

model that can assist the user in creating a variety of good assortments of items.

Where a set of items I that range from i = 1, ...,N is given with its dimensions in

width wi and height hi. An assortment is a subset S which belongs to I, and an

assortment S is feasible if the items can be packed in a rectangular container of
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width W and height H without overlapping; that is, each item s belongs to S can

be assigned a left-bottom corner coordinate (xs,ys) such that the rectangles Rs is

included in the container, and the items cannot be rotated. The value vS of a feasible

assortment S is the total surface occupied by the items, and the user is interested in

assortments that maximise vS over feasible assortments or achieve near optimality.

It is requested to test the model proposed using two data sets and two different

container sizes as the following:

• Container size of 300X400 and 200 different item sizes

• Container size of 500X500 and 40 different item sizes

12 different layouts/assortments for the first data set and 20 different assortments

for the second data set have to be presented. A diversity measure has to be estab-

lished to measure the differences in layouts.

4.4 Mathematical Model
The assortment problem can be defined as individual items i of given dimensions

in width wi and hi, where these individual items are packed into containers with

sizes defined as Xmax and Y max for the container width and height. The detailed

Mixed Integer Linear Programming (MILP) mathematical formulation of the model

is presented below.

The formulation is based on the following notations:

Indices
i, j Items

k,kk Loops

p Number of desired solutions
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Parameters
Xmax,Y max X ,Y Container Dimensions

wi Width of i

hi Height of item i

vi Volume of item i

M Upper-bound value

ε Near-optimality parameter

zmax Max number of solutions obtained over all iterations

U ppik Integer cuts parameter

Lowik Integer cuts parameter

FinalZp All solutions satisfying the ε condition

The following variables are associated with the model:

Positive variables
Xi X geometrical coordinate of item i

Yi Y geometrical coordinate of item i

T IU Total number of items used in the container

CU Container utilisation percentage

Binary variables
qi Selection of items, 1 if item i is used, 0 otherwise

E1i j, E2i j Non overlapping binary variables

4.4.1 Objective Function

The objective is to maximise the volume of the items i packed in the container as

stated in equation 4.1.

Max∑
i

vi ·qi (4.1)
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4.4.2 Model Constraints

Lower-bound:

Lower bound constraints on the coordinates of the geometrical center of each item i

and j have been considered to avoid intersection of items with the origin of axis as

in the equations 4.2 and 5.2.

Xi ≥
wi

2
∀i (4.2)

Yi ≥
hi

2
∀i (4.3)

Upper-bound:

In a similar way, upper bound constraint force the items to be allocated within the

container dimensions, and the rectangular space is defined by the corners (0,0) of

the container dimensions Xmax, Y max as the following:

Xi +
wi

2
≤ Xmax ∀i (4.4)

Yi +
hi

2
≤ Y max ∀i (4.5)

Non-overlapping Constraints:

To avoid items i and j overlapping or occupying the same location in the x and y

axis we have introduced E1i, j and E2i, j binary variables as in Papageorgiou and

Rotstein (1998). Where M represents an upper bound value equal to the maximum

pallet volume of Xmax ·Y max.

Non overlapping in the X direction

Xi−X j +M(2−qi−q j +E1i, j +E2i, j)≥
wi +w j

2
∀ j ≥ i (4.6)

X j−Xi +M(3−qi−q j−E1i, j +E2i, j)≥
wi +w j

2
∀ j ≥ i (4.7)

Non-overlapping in the Y direction
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Yi−Yj +M(3−qi−q j +E1i, j−E2i, j)≥
hi +h j

2
∀ j ≥ i (4.8)

Yj−Yi +M(4−qi−q j−E1i, j−E2i, j)≥
hi +h j

2
∀ j ≥ i (4.9)

4.4.3 Additional Diversity Design Constraints

Total items used (TIU)

In addition to the container utilisation percentage, we have considered the total

number of items selected in an assortment as a diversity measure as in equation

4.10.

T IU = ∑
i

qi (4.10)

Integer cuts

Integer cuts have been applied to the MILP model to exclude duplicated solutions

over the number of iterations required to find optimal solutions. Two additional sets

have been created to include the items selected over each loop k as; ui,k and li,k. The

integer cut equation is demonstrated in equation 4.11.

∑
i∈ui,k

qi− ∑
i∈li,k

qi ≤ |u|−1 ∀ k (4.11)

Thus, the model consists of Objective function equation 4.1 subject to constraints

4.2-4.11.

Near optimality tuning parameter

As stated in the problem description above; for a set of assortments to be considered

good, they have to be within a percentage difference. So a near optimality tuning

parameter known as ε has been added and allows the user to choose the maximum
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desired percentage of the difference between solutions. To allow this, two loops

have been created; an outer loop and an inner loop known as k and kk where the

outer loop k represents the total number of iterations taking into consideration that

the number of iterations (30 in this model) must exceed the number of desired solu-

tions set by the user (12 and 20 in this model). We consider the above to ensure the

model can always satisfy the ε condition, and the number of different assortments

is always found. Moreover, the number of iterations was controlled by a break

statement.

The model can be defined in more detail as the following; Stage 1 represents

the outer loop; in this stage, we solve the model with all the constraints applied.

Stage 2 represents the conditional statement within the outer loop; the main purpose

of this stage is to identify the maximum objective value for all solutions and save

it into a new parameter known as zmax. Stage 3 represents the inner loop known

as kk, in this loop, we apply the ε condition statement across all solutions obtained

so far; if the solution satisfies the ε condition, it is then saved into a new parameter

known as FinalZp. Stage 4 is a break statement for the outer loop k that only

applies when the number of solutions satisfying the ε condition has been met. In

other words, the number of iterations in the outer loop depends on the number of

solutions that satisfy the ε condition in the inner loop. To obtain this solution, the

following conditions have been added:

STAGE 1 : s o l v i n g model wi th a l l c o n s t r a i n t s :

f o r ( k ) {

do ” OuterLoop ”

s o l v e model

STAGE 2 : F i n d i n g zmax ( maximum o b j e c t i v e v a l u e ove r a l l

i t e r a t i o n s k ) :

{ i f ( c o u n t e r = 0) { t h e n
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zmax := z . l

} ;

e l s e i f ( c o u n t e r >0 ) and ( z . L > zmax ) { t h e n

zmax := z . l

} ;

e n d i f

} ;

STAGE 3 : f o r e v e r y i t e r a t i o n kk we a p p l y t h e e p s i l o n

c o n d i t i o n u s i n g t h e new zmax f o r a l l s o l u t i o n s i n zn ( kk ) ,

i f t h e c o n d i t i o n i s s a t i s f i e d f o r any zn ( kk ) i t i s t h e n

saved i n t o p a r a m e t e r F i n a l Z ( p+ c o u n t e r 3 ) . For i l l u s t r a t i o n ,

t h e i n d i c e s ( k− c o u n t e r 1 + c o u n t e r 2 ) and ( p+ c o u n t e r 3 ) a r e an

i n c r e m e n t a l p r o c e s s t o c o v e r a l l p r e v i o u s s o l u t i o n s and t o

f i l l t h e r e s u l t s t h a t s a t i s f y t h e e p s i l o n c o n d i t i o n r e s p e c

− t i v e l y :

c o u n t e r 1 : = 0 ;

c o u n t e r 2 : = 0 ;

c o u n t e r 3 : = 0 ;

f o r ( kk ) {do

zn ( kk ) := o b j e c t i v e v a l u e ( k− c o u n t e r 1 + c o u n t e r 2 ) ;

i f ( zn ( kk ) >= ((1 − e p s i l o n )* zmax ) ) { t h e n

( F i n a l Z ( p+ c o u n t e r 3 ) := zn ( kk ) )

} ;

c o u n t e r 3 := c o u n t e r 1 +1;

e n d i f

} ;

c o u n t e r 2 := c o u n t e r 2 +1;

e n d f o r

} ;
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STAGE 4 : Break o u t e r l oop when t h e number o f a s s o r t m e n t s

t h a t meet t h e e p s i l o n c o n d i t i o n a r e s a t i s f i e d :

b r e a k {” OuterLoop ”

when ( c o u n t e r 1 = c a r d ( p ) + 1 )

} ;

c o u n t e r 1 := c o u n t e r 1 +1;

Endfor

} ;

4.5 Results
To test the validity of the proposed model ,it has been tested against 2 data sets as in

table 4.1; the data sets were solved using AIMMS software and Cplex solver on a

PC with a 1620 CPU and 16GB RAM and a time limit of 200 sec/iteration detailed

results are presented below:

Table 4.1: Data-Sets Information

Data set
Container

size Epsilon Iterations
Width Height

1 300 400 0.025 12
2 500 500 0.025 20

For the first data set of 200 different items, the results are in table 4.2 displaying the

Objective function solution of the Total Volume TV including the diversity mea-

sures of the Container utilisation CU , and the Total Items Used in the assortments

T IU .

As it can be seen from the table above, table 4.2 the highest container utilisation

percentage CU over the set of solutions is 97.147% with a container total volume
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Table 4.2: Results of Data set 1

Iteration TV CU TIU
1 115225 96.02083 4
2 115477 96.23083 4
3 115781 96.48417 5
4 115019 95.84917 4
5 115622 96.35167 4
6 115271 96.05917 4
7 114363 95.3025 4
8 116577 97.1475 5
9 115335 96.1125 4

10 114831 95.6925 4
11 114343 95.28583 4
12 116215 96.84583 5

TV of 116577 and the lowest is 95.285% with a total volume of 114343 not exceed-

ing the near-optimality parameter (ε) of 0.025 between the highest and the lowest

solution in the set. The number of items chosen in the assortment T IU has a range

between 4 and 5 items. The visualisation of the results is displayed in Figure 4.3

using an integrated tool for visualisation in AIMMS.

For the second data set of 40 different items, the results are in table 4.3, again

showing the total volume TV , container utilisation CU and the total number of

items used in the assortment T IU . From table 4.3 we can see that the max utilisa-

tion percentage is 97.9064 % with a Container total volume TV of 244766, and the

lowest is 95.5008 with a total volume TV of 238752 % not exceeding the 0.025 ε

parameter limit between the highest and lowest solution in the set. The number of

items selected in the assortment ranges between 9 and 15 items. The visualisation

of the results can be seen in figure 4.4 for all the 20 different solutions generated.

To analyse the results further, we have performed several runs over a range of time

periods (50,100,200,500 and 1000 seconds). We have noticed that the container

utilisation percentage as the time increases was within a maximum of 1.96% differ-

ence between the highest(1000 seconds) and lowest(50 seconds) time limit for data

set 1 and within a maximum of 0.963% difference for data set 2.
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Figure 4.3: Results of Data set 1 for 12 iterations

We have then tested the difference in container utilisation percentage between the

highest time limit of 1000 seconds and all the other time limits. In more depth;

when looking into the difference for the time limit of 200 seconds, the maximum

difference is 0.596% for data set 1 and 0.52% for data set 2, so on that basis, we

have decided to set our time limit to 200 seconds as the results are still very ac-
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Figure 4.4: Results of Data set 2 for 20 solutions
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Table 4.3: Results of Data set 2

Iteration TV CU TIU
1 241914 96.7656 12
2 240033 96.0132 14
3 241890 96.756 11
4 241007 96.4028 1
5 241385 96.554 11
6 239252 95.7008 10
7 241698 96.6792 15
8 240307 96.1228 13
9 238752 95.5008 12

10 240135 96.054 12
11 240157 96.0628 11
12 242551 97.0204 11
13 242807 97.1228 9
14 242590 97.036 11
15 244766 97.9064 11
16 239835 95.934 12
17 241793 96.7172 10
18 238892 95.5568 14
19 242783 97.1132 11
20 241022 96.4088 9

ceptable comparing to the reduction of 80% in terms of CPU time. We have also

calculated the standard deviation for both data sets, knowing the range of maximum

and minimum utilisation percentages we would be able to reach using our model if

several other iterations are performed. Figure 4.5 illustrates both data sets utilisa-

tion percentage over the different time periods and the standard deviation for each

run.

4.6 Graphical User Interface (GUI)

A GUI interface has been created in AIMMS to aid the user in selecting the ε

tuning parameter desired, and a button for the problem description and for running

the model is presented. The output results of the Container utilisation CU , the

Total Volume of the items in the container TV , the Total number of items used in

the assortment T IU are easily displayed on the screen for all the iterations, finally
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Figure 4.5: Comparison of CU over a variety of time periods

a button leading to a new page representing the visualisation of the results. The

detailed visualisation interface created can be found in Appendix B

4.7 Conclusions
In this chapter, a MILP model is presented offering a solution for the Automated

Design of Assortment Problem, presented in the 11th AIMMS-MOPTA optimi-

sation Modelling Competition. The suggested linear model uses an integer cut

strategy across several iterations to generate various item assortments. The model

capabilities and performance were demonstrated through some data sets supplied

by the competition committee. Where a variety of item assortments revealing each

item’s specific geometrical placement has been presented. A Graphical User Inter-

face (GUI) has been built as an extra component to allow user interaction with a

graphical presentation of the assortment solutions.

The suggested model was able to determine the total volume and number of
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items loaded and the container utilisation percentage. The objective was to increase

the volume of loaded items while providing alternative solutions that do not exceed

the ε near optimality tuning parameter. This parameter is user-defined, and it speci-

fies a percentage of change between all derived solutions, i.e. the highest and lowest

container utilisation percentage. For the data sets given, the ε was set to 0.025 %,

with a maximum computational time of 200 seconds per iteration. The results

obtained have demonstrated a diverse set of assortments, where for data set 1, 12

layouts have been obtained with a container utilisation percentage between 97.147

% and 95.285 %, not exceeding the ε parameter percentage of 0.025 %. And for

data set 2, 20 different assortments have been obtained with a container utilisation

percentage between 97.90 % and 95.5 %, again not exceeding the ε near-optimality

parameter.

As an additional step, several computational time limits have been set to see

what effect they could have on the quality of the solutions obtained. Numerous

runs with various computational times (50, 100, 200, 500, and 1000 seconds) have

been specified for each iteration. When the time limit was changed to 1000 seconds

instead of 50 seconds, the maximum container utilisation percentage increased by

1.96 % for data set 1. For data set 2, the percentage of container utilisation im-

provement has increased by only 0.963 %. All of the other time limits have been

examined in a similar manner, and when looking at the percentage of improvement,

it was decided that a 200-second run is a reasonable time limit when compared

to a 1000 second run, where data set 1 has a difference of just 0.596 % and data

set 2 has a difference of 0.52 percent %. In comparison to an 80% reduction in

computational effort, the percentage difference is considered relatively low.



Chapter 5

Shelf Space Allocation

In this Chapter, a dynamic framework using Time series linear methods; Lin-

ear Regression (LR), Support Vector Regression (SVR), Auto-regressive Inte-

grated Moving Average (ARIMA), and Deep learning Long Short Term Mem-

ory (LSTM) networks with single and recursive multi-step ahead models are

proposed to forecast the space elasticity utilising historical data for ten cat-

egories over a duration of 5 years. The comparison between approaches

is presented, showing the most effective methods for single and multi-step

ahead models. Finally, the forecasted space elasticities using the single-step

ahead model were used as an input parameter for the Shelf Space Allocation

Problems (SSAP) model to compute the number of facing allocated for each

category.

5.1 Introduction
The Shelf Space Allocation Problems (SSAP) is defined by the number of products

that are displayed on shelves so as to; maximise the sales or gross margins subject

to several constraints, such as limited purchasing budget, limited product display

shelving space, or seasonality of sales. Clearly, the SSAP management has tremen-

dous effects on the sales, and consequently, retailers, consultants, academia, and

software developers have given significant emphasis to such problems.
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All the activities associated with the SSAP can be classified under Master

category planning, which includes the retailers short to mid-term planning activities

from Category sales planning, Assortment Planning, Shelf Space Planning to In-

store logistics planning. This study concentrates on Category Assortment and Shelf

Space Planning, where the Category Assortment Planning defines what products to

include in the store based on consumers’ behaviours and substitution effects. Shelf

Space Planning defines how and where products should be placed on the shelves

taking into account space elasticity and the limited space availability. Figure 5.1

provides a complete overlook on the Master Category Planning.

Figure 5.1: Master Category Planning

Since shopping is a daily occurrence in our lives, people tend to spend a lot on

daily shopping activities. Retail businesses such as supermarkets usually use this

phenomenon in order to make the most of their profit. They often conduct research

to influence the customers’ purchasing decisions. These retailers’ need to maximise

the profits compels them to create a design for modelling customer’s behaviour

and set simulation optimised frameworks. Choosing which items to stock on the

shelf and how much space to assign for each product, for example, is a key and

critical decision that impacts consumer loyalty and the retailer’s profit. Also, when

studying consumer shopping behaviors, it has been discovered that certain in-store

variables affect buying decisions, especially when unplanned purchasing is made or
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some loyal items are out of stock. Such behaviours have raised retailers’ awareness

in smartly displaying the products to achieve better product visibility and ensure the

right products at the right time to enhance customer shopping experience (Chandon

et al., 2009).

Marketing experts and researchers have defined such management problems

as Shelf Space Allocation Problems (SSAP), where the first published research on

SSAP, for example, dates from the 1970s (Galai et al., 2016). However, since most

optimisation methods developed have practical drawbacks, the research findings

are unlikely to be used in practice. The limitations are believed to be caused due to

their simplicity as well as a lack of essential functionalities. Furthermore, they are

linked to several difficult-to-approximate parameters. Consequently, there has been

a misalignment between business practices, software applications, and research.

According to the US retailers survey (Keltz and Sterneckert, 2009), improving the

overall probability and sales, reducing the stock levels, improving product avail-

ability, and enhancing the customer shopping experience are the main drivers for

shelf space planning activities. However, the survey concluded that the benefits

achieved are not yet meeting the expectations due to many challenges in that area.

The retailers embrace the use of planograms to plan for product placement. A

planogram represents a particular illustration of a shop or store. It displays exactly

where every product ought to be physically positioned, and the number of facing

each product should have; an example of the planogram could be seen in figure

1.3. Today’s available commercial planogram tools are used mainly for visual and

handling purposes and have excessive human interference and manual adjustment

due to the limited existence of mathematical optimisation (Desmet and Renaudin,

1998; Dreze et al., 1994; Hansen et al., 2010; Hubner and Kuhn, 2012; Irion et al.,

2011). Also, such software’s fail to include demand effects while planning the shelf

allocation of the products.
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Space elasticity is one of the key features usually included in SSAP models

since it determines the relationship between the demand and the space allocated to

each product. Furthermore, the relationship has often been described as a concave

function because the retailer has to show various items, and displaying one item

over a large space does not necessarily increase the sales (only up to a certain limit).

Spatial space elasticity estimation techniques have gained research interest but are

not in a position to deal with real-life problems due to their difficulty and excessive

estimates of parameters. In this study, a dynamic framework is proposed using Time

series linear methods; Linear Regression (LR),Auto-regressive Integrated Moving

Average (ARIMA), Support Vector Regression (SVR), and Deep learning Long

Short Term Memory (LSTM) networks with single and recursive multi-step ahead

models to forecast the space elasticity utilising historical data for ten categories

over a period of 5 years.

The remainder of this chapter is structured as follows; a literature review on the

issue is given in Section 5.2. In Section 5.3, the problem statement is presented. A

display of the category SSAP mathematical model is presented in Section 5.4. Sec-

tion 5.5 presents the methodology and the types of time series used. A discussion

on the data used is explained in Section 5.6, The results and findings for the anal-

ysis are summarised in Section 5.7, and finally, Section 5.8 provides a concluding

for the chapter with a summary.

5.2 Literature Review

One of the first studies in the area of shelf space allocation problems goes back

to Corstjens and Doyle (1981), where the model they presented seeks to maximise

the retailer’s profit, including a capacity constraint on the shelf space available.

They define the demand for products as a function of own and cross-space elastici-

ties. Later, the authors extended the model to a dynamic one (Corstjens and Doyle,

1983), where product growth potential has been taken into account; also, product

prices were included in the demand function. Bultez and Naert (1988) extended
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Corstjens and Doyle (1981) model, where they incorporated several additional elas-

ticities for the products and classes. The solutions obtained by their model lacks

real-life implementation, as they allow non-integer solutions, meaning products can

be allocated a space in decimal points. Bookbinder and Zarour (2001), also ex-

tended Corstjens & Doyle model; where they incorporated profit contribution to

individual products. Zufryden (1986) implemented a model that guarantees integer-

valued solutions by dividing the shelf into slot sizes, and the product is a multiple

slot size; in their proposed model, they do not allow any orientation of the display.

Borin et al. (1994) also proposed a model for the shelf space allocation by char-

acterising the demand for products as unmodified, modified, acquired, and stock-

out demand. The unmodified demand represents the consumer’s favourability of

a particular product, and the modified demand is the unmodified demand plus the

demand lost by price, space, and other retail effects. Acquired demand defines the

outcome of the sales from products that have not been included in the assortment.

Finally, the stock-out demand captures the sales from other products in the same

category being out of stock or unavailable at a specific time. A study by Yang and

Chen (1999) simplified Corstjens and Doyle (1981) model by setting upper and

lower bounds on the product facing and assuming that the demand function is linear

in this case. Their model is the first model to incorporate location effects, although

no cross-effects are considered. Later, Lim et al. (2004) extended Yang and Chen

(1999) model in two approaches; one deals with a linear profit function while the

other considers a non-linear profit function.

Bai and Kendall (2008) proposed a non-linear model ignoring cross-product

demand and shelf location effects. Murray et al. (2010) developed a model that

jointly optimises a retailer’s decisions for product prices, display facing areas,

display orientations, and shelf-space locations in a product category. Irion et al.

(2012) proposed a piecewise linearisation technique to approximate the non-linear

shelf space allocation model; the approach proposed can solve single category-shelf

space allocation problems with multiple products and integrated with cost and profit

elements.
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Although the above existing models have contributed to the area of shelf space

allocation, they tend to have several limitations in defining the problem statement

and including all the necessary constraints and elasticities. In research focusing

on space elasticity, Curhan (1972) attempted to use multiple regression analysis to

estimate space elasticity from 11 product characteristics. However, the coefficient

of determination was .032, and there is little power for this regression analysis to

predict space elasticity. Furthermore, under actual operating conditions, Curhan

observed almost 500 grocery goods in 4 stores in a time frame of 5 to 12 weeks

before and after changes in the shelf space and the average space elasticity for all

items was .212, which indicates a positive relationship between shelf space and unit

sales. Heinsbroek (1977) obtained an average shelf space elasticity of 0.15 for 20

items, with a minimum of 0.05 and a maximum of 0.50. Later, Bultez and Naert

(1988) created a Sh.ARP (Shelf Allocation for Retailer Profit) optimisation method

and the average shelf space elasticity for a diary product was estimated at around

0.30. Finally, 31 traditional studies conducted from 1960 to summer 2012 were

surveyed by Eisend (2014) where 1,268 space elasticities were recorded; Eisend

concluded that the shelf space elasticity average was 0.17.

5.3 Problem Description

Concerning Space allocation, three decisions are usually considered; the number

of facings, which is the space that each item occupies (Space), the allocation of

which items to include on the shelves (Allocation), and finally, the geometrical

positioning of the items on the shelves (Location). Along with these decisions, the

space elasticity βi; which is defined as the relationship between the facing area of

each product and the demand, is often considered taking a value between 0 and 1

(Hoch et al., 1994), and it is usually estimated using regression analysis.

In this chapter, we propose dynamic forecasting for the space elasticity to

allow retail stores to increase the total profit taking into account seasonal demands

using Time series methods; Linear Regression (LR), Auto-regressive Integrated
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Moving Average (ARIMA), Support Vector Regression (SVR), and Deep learning

Long Short Term Memory (LSTM) networks with single and recursive multi-step

ahead models to forecast the space elasticity, where the space elasticity βi is con-

sidered as a function of time βi,t utilising historical data for ten categories over a

period of 5 years.

In the single-step ahead, the sliding window is updated each time using the his-

torical data real value. However, in the Recursive Multiple-step ahead, the current

time step’s predicted space elasticity β̂i,t+1 value is used to update the sliding win-

dow. Figure 5.2 and 5.3 illustrate the single-step and the Recursive multi-step ahead

forecasting strategies, respectively. Two well-used performance measures from the

literature were used to compare the models’ performance: the Mean Square Error

(MSE) and the Mean Absolute Percentage Error (MAPE). Finally, the predicted β̂i,t

is then used in the optimisation model to optimise the shelf space used for each cat-

egory i, where a comparison between the shelf space currently used by the retailer

and the optimised shelf space is presented along with the current and future profit.

Figure 5.2: Single-step ahead Forecasting Strategy
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Figure 5.3: Recursive multi-step ahead Forecasting Strategy

5.4 Category SSAP Mathematical Model
As previously mentioned, the retailer’s main objective is to maximise the total profit

by displaying the right amount of items on the shelves subject to the forecasted de-

mand. The category SSAP problem transformed into a time series model taking

into account the space elasticity is formulated as the following, where figure 5.4

illustrates the main notations used:

Indices

i Categories

Parameters
ci Retailers unit cost for category i

pi Retailers unit price for category i

li Length of category item i

αi Scaling parameter for category i

β̂i,t Space elasticity for category i at time period t

S Length of shelf

LBit Lower-bound on the amount of facing assigned for

category i at time period t

UBit Upper-bound on the amount of facing assigned for

category i at time period t

The formulation is based on the following variables:
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Integer Variables

X̂it Number of facing units of category i placed on the shelf in time t

Figure 5.4: Illustration of the notations used for the SSAP model

5.4.1 Objective Function

In SSAP, the relationship between the demand and the space allocated for each

category can be described as a polynomial functional form as introduced by Baker

and Urban (1988). The relationship is presented in equation 5.1, where, Di is the

demand of category i, αi is the scaling parameter, Xi is the number of facing for

each category i and βi is the space elasticity of category i. The beneficial features of

this model include diminishing returns, shelf space elasticity, and intrinsic linearity.

The diminishing returns capture the decreased growth in the demand as the space

allocated to the shelf increases. The shelf space elasticity, and as explained before,

defines the relationship between the facing area of each product and the demand

rate. Finally, the model’s intrinsic linearity allows it to be conveniently converted

by logarithmic transformation to a linear demand model, after which the parameters

can be calculated using any regression technique.

Di = ∑
i

αi(Xi)
βi (5.1)

where; αi > 0, 0 < βi < 1

The objective of the model is to maximise the total retailer’s profit where the profit;

the (price - cost) is included, and the function is transformed as a time series model;

where X̂it is the number of facing for each category i for each time period t and β̂it is
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the space elasticity of category i for each time period t as the following in equation

5.2:

Max ∑
it
(pi− ci)αi(X̂it)

β̂it (5.2)

5.4.2 Constraints

To ensure that the number of categories i placed on the shelf do not exceed the

maximum shelf length given S at each time period t equation 5.3 is introduced.

∑
it

liX̂it ≤ S (5.3)

Equation 5.4 sets the lower and upper bound on the number of facing for each

category i if some facing must be limited depending on the retailer’s environment

decisions.

LBit ≤ X̂it ≤UBit ∀ i, t (5.4)

5.5 Methodology
Forecasting is the practice of predicting future events of a particular phenomenon

using its historical facts. In general, Time series forecasting can be divided into

two main categories; conventional statistical models and machine learning models

(Yoo and Oh, 2020). Moreover, some studies combined both categories into hybrid

models. The forecasted horizon varies in length depending on the data used and

the outcome desired; it could be short-term, ranging from one hour to one week,

medium-term, ranging from one month to one year, or long-term, more than one

year. In general, the short-term horizon is often used as in most studies it performs

better by achieving better precision than the other forms of time horizons (Yoo and

Oh, 2020).

Conventional statistical methods include Linear Regression (LR), Autore-

gressive Moving Average (ARMA), Auto-regressive Integrated Moving Average

(ARIMA), and other general exponential techniques. In the simplest case, the lin-

ear regression models allow for a linear relationship between the past and the future



CHAPTER 5. SHELF SPACE ALLOCATION 118

variables. The ARIMA models developed by Box and Jenkins are the most com-

monly used for linear models in univariate time series. Machine learning models

are now being used in various applications because of their exceptional capacity

to handle complex input and output connections. Machine learning models in-

clude the Support Vector Machine (SVM) model, Recurrent Neural Network (RNN)

model, and Long Short Term Memory (LSTM) method. The support vector ma-

chine (SVM) model has been presented in various applications due to its efficient

generalisation capability and margin maximisation mechanisms. In recent years,

RNN extends the basic concept of feed-forward neural networks to accommodate

sequential data by providing the model with internal memory. Because of its strong

representation learning capacity, RNN has emerged as a practical approach; how-

ever, such models suffer from exploding and vanishing gradients. Thus, the LSTM

network has been introduced, and they intend to learn temporal data, time-stamped

data series, and long-term dependencies more effectively than RNN.

In this study, the forecasting of the space elasticity was carried using differ-

ent methods of Time Series forecasting Models; a Linear Regression (LR) model,

an Auto-regressive Integrated Moving Average (ARIMA) model, a Support Vector

Regression (SVR) model, and a machine learning model using a Long Short Term

Memory (LSTM) network. Each method is a form of a regression problem in which

historical space elasticity is considered as an observation indexed by time, and the

historical space elasticity of each category is observed as a time series. The input

vector is a moving window βi,t = [βi,t−n+1 , βt−n+2,. . . βi,t−1] where n is number of

the recent weekly space elasticity for i category, and the size of n used in this study

is n = 10. This is followed by updating the input vector using the latest predicted

space elasticity B̂i,t+1. A comparison between the methods is presented to select the

most promising approach that generates space elasticities with a lower Mean Ab-

solute Percentage Error (MAPE). Later the forecasted space elasticity β̂i,t+1 is used

in the category SSAP mathematical model to provide optimised shelf space for the

retailer to increase their total profit. Figure 5.5 illustrates a schematic description of

the proposed forecasting technique.
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Figure 5.5: A schematic description of the proposed forecasting technique
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5.5.1 Linear Regression

Linear regression is considered a classical type of regression analysis. It is an

approach to model the relationship between two or more variables linearly to fit a

mathematical function describing how the variation in the predictors changes the

response’s value. Based on the number of input variables, the regression could be

either simple or multiple; for a single variable input, the method is known as simple

linear regression, and for multiple variable inputs, the method is known as multiple

linear regression. This study considers a single linear regression by examining a

set of training data and tuning its parameters to ensure that the model accurately

predicts new untrained data while minimising the absolute fitting error. The indices,

parameters, and variables associated are stated as the following:

Indices
i Categories

n Sliding window size

t Time periods

Parameters

βit Space elasticity of category i in time t

Variables
ain Linear regression coefficient

δ̂it Absolute error |β̂it−βit |

Positive Variables

β̂it Predicted Space elasticity of category i in time t

The objective is to minimise the summation of the absolute error presented here by

the δ̂it which is expressed as |β̂it−βit | as presented in equations 5.5-5.8
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Min∑
it

δ̂it (5.5)

δ̂it ≥ β̂it−βit ∀ i = 1, ....N, t ≥ n (5.6)

δ̂it ≥ βit− β̂it ∀ i = 1, ....N, t ≥ n (5.7)

β̂it = ainβi,t−n ∀ i = 1, ....N, t ≥ n (5.8)

5.5.2 Autoregressive Integrated Moving Average (ARIMA)

Box and Jenkins developed the ARIMA model in 1970, and it is also known as the

Box-Jenkins technique, which consists of a collection of practises for identifying,

estimating, and diagnosing ARIMA models with time-series data. In financial fore-

casting, the model is the most commonly used tool (Merh et al., 2010; Nochai and

Nochai, 2006; Pai and Lin, 2005). ARIMA models have outperformed complex

structural models in short-term prediction, demonstrating an effective capability to

produce short-term forecasts (Meyler et al., 1998). ARIMA stands for Autoregres-

sive models, while MA stands for Moving Average models. The I in ARIMA de-

notes the number of lags used in data differencing. The concept behind autoregres-

sive models is that the current value of a time series can be explained as a function

of p previous values. Appendix C.0.1 demonstrates an example of an autoregressive

model of order p.

To build an ARIMA forecast model, there are three main steps to take. The first

step is the model specification, which entails determining three numbers, p, d, and

q, that define the ARIMA model. The value of d is first calculated by determining

the data’s stationarity, d=0 when the data is stationary. If the data is trendy, we take

the first difference and double-check for stationarity. We keep taking differences

until we reach a point where the output is stationary. The number d represents the

requisite number of differences. Stationarity checks are used to assess whether or
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not a sequence is stationary. Statistical hypothesis tests, such as the unit root test, are

one way to decide more scientifically whether differencing is needed. The Dickey-

Fuller test and its augmented variant, the augmented Dickey-Fuller test (ADF), were

used in our analysis; for more information on ADF, see Appendix C.0.2.

There are several methods for deciding the best ARIMA order for a given time

series. Examining the autocorrelation function (ACF) and partial autocorrelation

(PACF), for example, will assist in deciding the number of AR and/or MA terms

required. This can be accomplished by looking into the lag after which the auto-

correlation or partial autocorrelation becomes zero or approaches zero, indicating

the values of q and p, respectively. Another approach requires manually defining a

grid of p and q ARIMA parameters to iterate for ARIMA model tuning for a one-

step rolling prediction. For each parameter, a model is developed, and its output is

measured using the MAPE function.

The autoARIMA function in EViews was used to derive an initial estimation

in this study; EViews is a computational package for Windows that is primarily

used for time-series-based econometric analysis. A small grid of p and q around

the original estimates was used in the grid search. A prediction is made, and its ac-

curacy is tested at each iteration. After determining the ARIMA model’s order, the

model parameters must be estimated. The maximum likelihood estimation (MLE)

technique is used to find the parameter values that increase the likelihood of obtain-

ing the observed data. It is essential to highlight that, in the grid search approach

mentioned above, the ARIMA parameters were estimated for each iteration, and its

performance is evaluated using the test data.

5.5.3 Support Vector Regression (SVR)

Support Vector Regression (SVR) is a regression-specific adaptation of SVM (Sup-

port Vector Machine). It is a common regression to solve problems in a non-

linear form (Vapnik, 2013). A kernel function maps the input data into a higher-

dimensional space without increasing the computational cost. Theoretically, a

linear function exists in the high-dimensional feature space to build a relationship
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between the input mapped features and the output data.

An optimisation problem is needed to solve the function by minimising the coeffi-

cients, finding the narrowest tube centered around the surface while minimising the

regression error ε , i.e., the difference between the predicted and ideal outputs and

maximising the margin of the hyperplane. Figure 5.6 shows an example plot of the

SVR.

Figure 5.6: An example plot of a support vector regression (Moustapha et al., 2018)

Selecting the SVR parameters C and ε is one of the most important factors in SVR

accuracy. For more details about the SVR please see Appendix C.0.3. In this study

MATLAB Bayesian optimisation (Snoek et al., 2012) is used to extract the optimal

SVR hyper-parameters.

5.5.4 Long Short-Term Memory (LSTM) Networks

Staudemeyer and Morris (2019) proposed the Long Short Term Memory (LSTM)

network, where it is a form of artificial Recurrent Neural Networks (RNN), see Ap-

pendix C.0.4 for more information about the RNN networks. In RNN, ”Recurrent”

refers to the fact that the network’s input and output are looped. At each time step,

the network’s output is copied and returned to the network as input in the next step.
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The LSTM network is designed to learn temporal data, time-stamped sequences

of data, and their long-term dependencies more accurately than recurrent neural

networks (RNN); this is helpful to avoid the problem of gradient disappearance and

explosion in RNN.

The LSTM network is widely used in many applications such as stock market

prediction, handwriting recognition, speech recognition, natural language process-

ing, and others and for more details about LSTM see (Hochreiter and Schmidhuber,

1997; Staudemeyer and Morris, 2019). According to the LSTM applications, the ar-

chitecture varies, from many-to-one model (sequence to one), many-to-many model

(sequence to sequence), and several other variations. Figure 5.7 shows the archi-

tecture for the basic LSTM Network model and LSTM neuron structure, where the

LSTM contains a memory cell structure and three types of gates input, forget, and

output gate. The working procedure of the LSTM cell is defined mathematically

and can be found in Appendix C.0.5.

Figure 5.7: The structure of LSTM

In this study: a forecasting model is built with two layers of stacked LSTM be-

fore being forwarded to a dropout layer; a layer to prevent over-fitting, with 128 and

64 neurons for the first and second LSTM layer, respectively and 100 epochs and

a dropout rate of 0.4. Then, a fully connected dense layer is then connected to the

regression layer to predict the output. The stacked LSTM is a more powerful way

to extract features and maximise model capacity than the conventional LSTM (Yu
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et al., 2019). Matlab software (MATLAB, 2018) with the optimisation algorithm

(adam) (Kingma and Ba, 2014) were used to train the model with an initial learning

rate of 0.005.

To train the LSTM model the historical space elasticity βi,t data is used. The

data was randomly partitioned into a 70% training set and a 30% testing set. His-

torical data is converted to a time series data set of observation and target to prepare

the input data. The observation set is a moving window of βi,t+n−d and the corre-

sponding target is βi,t+n, where n is the sliding window size, set to n = 10 and d is

the length of the historical data, d = 1...n.

5.6 Data

In this study, cross-sectional data were collected from a local store in Jeddah, Saudi

Arabia. The data covers a period of 260 weeks from 2014 to 2018. It contains

a weekly space allocation for ten different categories along the Cereal Aisle. In

addition, the sales and number of facing per category were included in the data,

which vary from one week to the other.

Table 5.1: Average and standard deviations of the Data

C
at

eg
or

y Facing Space Sales Price cost
(item) (cm) (item) ($) ($)

Mean STD Mean STD Mean STD Mean STD Mean STD
1 69 5 1073.61 83.46 147 37 19.27 0.52 13.40 0.03
2 79 1 672.32 12.57 108 5 24.23 1.09 20.60 0.92
3 74 4 764.30 46.21 369 78 34.75 2.23 26.53 1.90
4 27 6 647.63 136.62 27 4 36.37 2.17 19.02 1.78
5 78 1 570.50 6.75 233 10 18.30 0.67 16.34 0.59
6 22 3 314.46 47.27 54 5 10.39 0.36 8.87 0.31
7 15 6 160.05 65.81 27 6 39.43 1.92 35.24 1.72
8 75 3 716.74 26.74 318 46 16.02 0.15 13.88 0.15
9 76 3 756.46 32.96 205 27 18.54 1.93 15.49 1.63

10 24 6 323.42 75.03 31 3 29.13 1.89 24.36 1.52
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Table 5.1 represents the mean and standard deviation of data. The total shelf

space available for all categories was set to 60 meters based on managerial agree-

ments in the store. The average size for each category was calculated using the

space allocated divided by the number of facing. The complete data is presented in

the supplementary material attached to this thesis.

We have followed the ordinary least squares regression (OLS) method presented

in (Van Dijk et al., 2004) to estimate the scaling parameter αi afterward the space

elasticities for each time period βi,t were calculated using the following demand

function:

Dit = αi(Xit)
βit ∀ i, t (5.9)

Where:

Dit = demand for category i at time t

αi = scaling parameter for category i

Xit = number of facing for each category i at time t

βit = space elasticity for category i at time t

As stated above, one of the main features of the Demand function is its ability to be

transformed by logarithmic transformation to a linear function; ie. taking the log of

both sides. Therefore, the demand function of equation 5.9, is transformed as the

following:

ln Dit = ln αi + β̂i ln Xit ∀ i, t (5.10)

where, β̂i is the approximate average value of βit . We apply the OLS regression to

equation 5.10 to estimate αi and β̂i, where only the values of αi are kept and the

following equation is used to find the space elasticity βi,t over time t:

βit = ln[
Dit

αi
] · 1

lnXit
∀ i, t (5.11)
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5.7 Results and Discussions

Preparing the data was carried by randomly partitioned into a 70% training set and a

30% testing set to avoid the re-substitution error. All models were given the testing

and training data for a length of 4 years, i.e. (208 weeks) from 2014 to 2017. Then,

it was converted to a time-series data set of observation and target. The observation

set is a sliding window[βi,t , βi,t+1,. . . βi,t+n] where n is the most recent weekly

space elasticity for the i category, the size of the sliding window was set to n = 10.

The forecasting of the space elasticity was carried using different Time Series

models, where the models were to forecast the year of 2018. The prediction was

then compared with the actual data. The performances were measured for both

single-step and Recursive Multiple-step ahead methods. In the single-step, the slid-

ing window was updated each time using the historical data real value. However, in

the Recursive Multiple-step, the current time step’s predicted space elasticity β̂i,t+1

value is used to update the sliding window. Two well-used performance measures

from the literature were used to compare the performance of both models: the

Mean Square Error (MSE) and the Mean Absolute Percentage Error (MAPE) as in

equations 5.12 and 5.13 respectively.

RMSEi =

√
1
n

n

∑
i=0

(βti− β̂ti)2 (5.12)

MAPE =
1
n

n

∑
t=1
|(βti− β̂ti)

βti
| (5.13)

It should be noted that all models have been performed on an Intel®Xeon®E5-1620

CPU with16GB RAM. The Linear Regression and SSAP model were solved using

GAMS modelling system with CPLEX Mixed Integer Linear Programming (MILP)

optimisation package. For the ARIMA model, the autoARIMA function in EViews,

a computational package for Windows primarily used for time-series-based econo-
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metric analysis, was used to derive an initial estimation, then MATLAB software

was used for training and forecasting. For the SVR model, MATLAB Bayesian

optimisation was used to extract the optimal hyper-parameters, train, and forecast.

Finally, for the LSTM model, MATLAB software was used with (adam) optimisa-

tion algorithm for training and forecasting.

5.7.1 Forecasting Results

Table 5.2 summarises the results for all forecasting models using a single-step-

ahead method. The results; indicate that the SVR outperforms the other methods

when using a single-step ahead method, with a MAPE of 1.08±0.78. The fore-

casting is considered very good, and the results comparing the actual data with the

forecasted data can be seen in figure 5.8 for the SVR. It could be seen from 5.8

that the forecasting values follow a very similar trend to the the historical data for

all 10 Categories. The ARIMA model also provides reasonable MAPE values of

1.27±1.5. Typically SVR and ARIMA models outperform other Time series models

when used on single-step ahead forecasting strategies due to their ability in predict-

ing near-future data. LR had the highest MAPE values of 2.73±2.07, followed by

the LSTM model with a MAPE of 1.72±1.73.

Whereas for the Recursive Multiple-step as in table 5.3, the results show that

the LSTM generates better results compared with all other methods, with a MAPE

of 2.03±1.02, proving that LSTM models have an advantage when forecasting us-

ing a multi-step ahead strategy. The results comparison of the actual data and the

forecasted data for the LSTM can be seen in figure 5.9. The results show that the

LSTM can follow the historical data values with an acceptable percentage of error

for most of the Categories. The ARIMA model has also provided good prediction

with a MAPE of 3.23±3.55, followed by LR and SVR with a MAPE of 5.49±4.49

and 6.05±5.80, respectively.
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Table 5.2: Comparison for single-step Forecasting Strategy

Category
LR ARIMA SVR LSTM

RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE
1 0.01 2.03 0.01 1.17 0.01 0.92 0.02 1.55
2 0.01 1.70 0.00 0.21 0.00 0.54 0.00 0.04
3 0.01 0.65 0.01 1.08 0.01 0.87 0.02 1.57
4 0.02 5.53 0.01 1.62 0.01 2.05 0.00 0.06
5 0.01 1.07 0.00 0.33 0.00 0.44 0.01 1.26
6 0.02 3.94 0.01 0.94 0.01 0.94 0.01 1.27
7 0.01 3.72 0.02 5.60 0.02 3.01 0.02 6.59
8 0.01 0.39 0.01 0.48 0.01 0.42 0.02 1.42
9 0.01 1.42 0.01 0.63 0.01 0.74 0.01 1.88

10 0.02 6.84 0.00 0.65 0.00 0.89 0.01 1.52
Mean 0.01 2.73 0.01 1.27 0.01 1.08 0.01 1.72
STD 0.00 2.07 0.01 1.50 0.00 0.78 0.01 1.73

Table 5.3: Comparison for multi-step Forecasting Strategy

Category
LR ARIMA SVR LSTM

RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE
1 0.10 17.77 0.02 2.52 0.06 9.10 0.03 3.24
2 0.01 2.25 0.01 0.99 0.01 1.43 0.00 0.09
3 0.06 7.24 0.02 1.95 0.05 5.48 0.02 2.36
4 0.02 5.68 0.01 2.83 0.03 10.69 0.00 1.33
5 0.02 1.81 0.01 0.98 0.01 1.27 0.01 0.91
6 0.02 4.46 0.02 3.63 0.02 3.46 0.01 2.52
7 0.01 3.14 0.04 13.60 0.06 20.89 0.02 3.07
8 0.02 2.41 0.02 1.80 0.02 2.56 0.02 2.05
9 0.02 3.18 0.02 2.61 0.02 3.16 0.03 3.01

10 0.02 6.95 0.01 1.43 0.01 2.43 0.01 1.77
Mean 0.03 5.49 0.02 3.23 0.03 6.05 0.02 2.03
STD 0.03 4.49 0.01 3.55 0.02 5.80 0.01 1.02
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Figure 5.8: Comparison between actual and forecasted results using SVR for the single-step forecasting strategy
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Figure 5.9: Comparison between actual and forecasted results using LSTM for the multi-step forecasting strategy
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5.7.2 SSAP Results

From the results above, the LSTM outperforms the other Time series models when

using the multi-step ahead forecasting strategy. So the forecasted 52 weeks space

elasticity β̂i,t using the LSTM multi-step ahead model was used as an input param-

eter to the SSAP traditional model to compute the number of facing allocated for

each category, taking into account the data given. The SSAP model presented in

Section 4 for equations 5.1-5.4 and the comparison between the historical data and

the proposed SSAP model based on the estimated β̂i,t are presented in figure 5.10:

Figure 5.10: Comparison between the Number of Facing from Historical Data and the Pro-
posed SSAP



CHAPTER 5. SHELF SPACE ALLOCATION 133

As it can be seen from the above figure, figure 5.10, the number of facing for the

categories have changed when using the new estimated β̂i,t and combining it with

the optimisation model the average number of items on the shelves has increased

by approximately 5.3% which has a prediction of around 12% increase in Sales

compared with historical data.

5.8 Conclusions
The SSAP is a representative of shelf-space management, and it has a direct posi-

tive effect on sales by managing the distribution of items across the shelves. There-

fore, consumers are more likely to purchase items if a commodity is given a wide

shelf space, but the amount of shelf space given affects the purchasing decisions

up to a certain level, i.e., the relationship is non-linear. Conventional research on

shelf-space allocation problems tries to formulate the problem using stationary de-

mand and fixed space elasticities based on previous observations. In the approach

proposed in this chapter, a dynamic framework using Time series linear methods;

Linear Regression (LR), Auto-regressive Integrated Moving Average (ARIMA),

Support Vector Regression (SVR), and Deep learning Long Short Term Memory

(LSTM) networks with single and recursive multi-step ahead models are proposed

to forecast the space elasticity utilising historical data for ten categories over a pe-

riod of 5 years. By comparing the approaches’ outcome, the SVR in the single-step

ahead model outperforms other methods with a MAPE error of 1.08±0.78 compared

to 1.27±1.50, 1.72±1.73, and 2.73±2.07 MAPE errors for the ARIMA, LSTM, and

Linear regression, respectively. While for the recursive multi-step ahead model, the

LSTM network outperforms all other methods. On average, the MAPE errors for the

LSTM model are 2.03±1.02 compared to 3.23±3.55, 5.49±4.49, and 6.05±5.80 for

the ARIMA model, linear regression, and SVR, respectively. To further verify the

model’s completeness, the estimated space elasticities were used in the traditional

SSAP model to compare the number of facing and sales against the historical data.

The results show an increase of about 5.3% in the number of products displayed on

the shelf which has a sales increase prediction of around 12%.



Chapter 6

CONCLUSIONS AND

RECOMMENDATIONS

In this chapter, a summary of the problems presented in this thesis is given,

noting each problem’s main contribution to the Supply Chain. Furthermore,

future research extensions and recommendations are noted.

6.1 Summary
In this research thesis, Supply Chain real-life application problems have been in-

vestigated; the Manufacturer’s Pallet Loading Problem (MPLP), the Design of

Assortments Problem, and Shelf Space Allocation Problems (SSAP), where these

problems heavily arise in daily activities of manufacturing, warehousing, logistics,

and retailing. Therefore optimisation based, decision-making frameworks are nec-

essary to capture such problems and offer practical solutions. All the problems

presented share a similar structure in having two types of elements; small known

as items and big known as pallets, bins, or shelves. Where the main objective is to

maximise the number of items loaded or stacked onto the pallets, bins, or shelves

to maximise the utilisation percentage or potential sales.

In the area related to the pallet loading problem, novel Mixed Integer Linear
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Programming mathematical models have been implemented to represent the prob-

lem; a single-objective model and a multi-objective model. Both models look into

the problem from a Manufacturers point of view, packing homogeneous products

into predefined pallet sizes. The model was implemented to occupy problems in the

2-Dimensional space, ie. allowing items to rotate and to be grouped into blocks of

a single orientation, generating optimal layouts of improved structures. A compre-

hensive comparison between the two models was provided, supported, and tested

by several data sets from the literature. Both models have provided promising

results surpassing layouts presented in the literature in terms of complexity. The

main differences arise in how the complexity index ζ is defined and calculated,

where in the single-objective model, it is a manual process used for comparison

only. Whereas in the multi-objective model, the complexity index is integrated

into the mathematical model, providing a more robust model. Another advan-

tage of the multi-objective model is the computational time required to solve the

data sets, where an improvement of over 100 % has been seen. Such improvement

is necessary for industrial applications, where fast and robust solutions are required.

In the area of Cutting and Packing (CP), a sub-problem known as Design of

Assortment has been investigated. The problem statement has been created for the

11th AIMMS-MOPTA Optimisation Modelling Competition. The main objective

was to provide optimal packing from a set of given items and decide which items

to pack. A Mixed Integer Linear Programming algorithm has been developed to

provide a diverse set of solutions. Furthermore, a basic software prototype based

on the AIMMS platform has been built with a user-friendly interface to ease user

engagement with a visual representation of the obtained solutions. The model effec-

tiveness has been tested using a set of data obtained by the competition committee,

and the results show that the proposed algorithm is efficient in handling the problem.

The final problem considered is the Shelf Space Allocation Problems (SSAP),

where it concerns retail businesses, from small shops, supermarkets to departmen-
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tal stores. A dynamic framework has been proposed to forecast space elasticities,

the relationship between the demand and the shelf space allocated to each item.

The forecasting was based on historical data using multiple standard time-series

methodologies. Linear Regression (LR), Support Vector Regression (SVR), Auto-

regressive Integrated Moving Average (ARIMA), and Deep learning Long Short

Term Memory (LSTM) networks with single and recursive multi-step ahead mod-

els have been developed. A comparison between all models has been presented,

indicating the most effective approach based on real store data. In addition, an

optimisation mathematical model has been implemented using the forecasted space

elasticities to provide the retailer with optimal shelf space, thus resulting in a closer

match between the supply and demand, leading to increased profitability.

6.2 Recommendations For Future Work

The work in this thesis has covered several problems in the area of space allocation,

and there are still several research directions for future work as the extension of the

current study.

One of the main drawbacks of supply chain research is the lack of commu-

nication between the research community and the industrial world. Where the

research focuses on the actual problems presented in the industry but without tack-

ling key practical features, from this proposition, this research took place, where

for the Manufacturer’s Pallet Loading Problem (MPLP), the mathematical models

developed have shown to produce optimal solutions but with layouts of reduced

complexity and solved within reasonable computational times. Pallet loading com-

plexity is a significant aspect when hundred or maybe thousands of pallets are

packed every day at manufacturers/ plants warehouses, but previous research has

not tackled this point. Such reduction in complexity is directly associated with

pallet loading times, whether manual or robotic loading occurs, as it will affect the

time required to construct each pallet. A case study of actual loading times could

be made, reporting the percentage of time and cost reduction when using simplified
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layouts compared to the layouts presented in the literature to further justify these

claims.

Another extension to the problem could be incorporating additional features/-

constraints to the problem, such as cargo weight, stability of loading, or weight

distribution. It may also be worth looking at different pallet loading problems such

as the Distributor’s Pallet Loading Problem (DPLP), where heterogeneous packing

is considered and apply the complexity concept. Also, exploring other effective

solution strategies such as combining heuristics and mathematical programming is

another way of tackling the problem, especially if computational time reduction is

desired.

For the problem of assortments, the proposed mathematical model effectively

provides a diverse set of solutions for the user based on a set of heterogeneous items

and homogeneous pallets. An extension to the problem could be using heteroge-

neous sets of items and pallets, where the model would find and allocate the best

combinations of items and pallets. Another challenging area would be to explore

irregular item assortment problems, where the set of items can be in different shapes

such as cones, cylinders, pentagons, or hexagons. Many other extensions could be

applicable depending on the research area and problem at hand, such as extend-

ing the problem to a 2-D model rather than the current 1-D model. Furthermore,

a multi-objective model could be considered, where the number of items loaded

and the utilisation percentage is maximised, and the spaces between the items are

minimised.

Finally, for the last problem explored and discussed in this thesis, a more de-

tailed approach of including categories and sub-categories could be considered by

looking into cross-space elasticises; the effect complementary or substitute products

may have on the shelf space allocation. Also, another interesting approach would

be using an artificial intelligence algorithm that can combine both the estimation of
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space elasticises and the prediction of shelf space allocation; however, building such

an algorithm may require larger historical data. As discussed earlier, an alignment

between the research and industry is essential, so another exciting approach would

be combining mathematical models into available planogram software’s. Further-

more, the replenishment and back storage cycles could be considered when design-

ing the shelf space allocation model.
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AIMMS Graphical User Interface

(GUI)

Figure B.1: GUI Interface



APPENDIX B. AIMMS GRAPHICAL USER INTERFACE (GUI) 152

Figure B.2: GUI Interface

Figure B.3: GUI Interface



Appendix C

Shelf Space Allocation

C.0.1 Autoregressive Integrated Moving Average (ARIMA)

A example of an autoregressive model of order p as defined in Shumway and Stoffer

(2006) can be explained as the following:

Yt = ζ +φ1Yt−1 +φ2Yt−2 + . . .+φpYt−p + et (C.1)

Where φ1, . . . ,φp is autoregressive parameter and ζ is constant. A back-shift

operator could be used to overcome the difficulties of the models random regressors

(Yt−1.... Yt−p) as the following for the AR(p):

(1−φ1B−φ2B2−·· ·−φpBp)Yt = et (C.2)

The autoregressive operator φp(B)Yt is a polynomial of degree p as the following:

φp(B)Yt = et (C.3)

The moving average model of order q, abbreviated as MA(q), assumes the

white noise et on the right-hand side of the equation are combined linearly to form

the observed data as an alternative to the autoregressive representation in which the

Yt is on the left-hand side of the equation. An order q moving average model is as

follows (Shumway and Stoffer, 2006):
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Yt = et +θ1et−1 +θ2et−2 . . .+θqet−q (C.4)

Where θ1, . . . ,θq is moving average parameter. An equivalent representation of

MA(q) process can be written as the following:

Yt = θ(B)et (C.5)

The moving average operator is:

θ(B) = 1+θ1B+θ2B2 + · · ·+θqBq. (C.6)

In general, time series data must be stationary in order for lagged products to

be averaged over time. So we can calculate the variations between successive mea-

surements to make a non-stationary time series stationary. The ARIMA model of

Box and Jenkins relies heavily on the differencing strategy. The right amount of

differencing is usually the lowest order of differencing that produces a time series

that fluctuates around a well-defined mean value and whose autocorrelation func-

tion (ACF) plot decays very quickly to zero from above or below. If the series still

has a long-term trend or does not appear to revert to its mean value or its autocor-

relations are positively affected by a high number of lags (i.e., 10 or longer), then a

greater order of separation is needed. An Autoregressive Integrated Moving Aver-

age (ARIMA) is a broader class of the ARMA models, including differencing. The

differenced data model ARMA(p,q) is similar to the ARIMA(p,d,q) model.

Yt = ζ +φ1Yt−1+φ2Yt−2+ . . .+φpYt−p+et−θ1et−1−θ2et−2 . . .−θqet−q (C.7)

In general, ARIMA model can be define as:

φ(B)(1−B)dYt = α +θ(B)et (C.8)
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C.0.2 Augmented Dickey Fuller Test (ADF)

The ADF test is one of the tests used to determine if the data used shows any sta-

tionary; it is also known as the ”Unit Root Test”. A time series’ unit root is a

function that renders it as non-stationary. In the equation below, a unit root exists

when al pha = 1 in a time series.

Yt = αYt−1 + et (C.9)

If α < 1 then the process is stationary or α = 1 we get non-stationary.

The above equation can be alternatively written as

Yt−Yt−1 = ∆Yt = δYt−1 + et (C.10)

where δ = α−1 . For non-stationarity, the condition now becomes δ = 0 the

alternative hypothesis being δ < 0. The null and alternate hypothesis are:

H0 : δ = 0

H1 : δ < 0

In case, the null hypothesis is that δ = 0 , i.e., there is a unit root—the time series

is non-stationary. As non-stationarity can exist in three ways, the dickey fuller test

is estimated in three different forms

1. Yt is a random walk: ∆Yt = δYt−1 + et

2. Yt is a random walk with drift: ∆Yt = β1 +δYt−1 + et

3. Yt is a random walk with drift around a deterministic trend : ∆Yt = β1+β2t +

δYt−1 + et

Dickey and Fuller have developed a test, known as the augmented

Dickey–Fuller (ADF) test. This test is conducted by “augmenting” the three equa-

tions by adding the lagged values of the dependent variable. The null hypothesis
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and alternative hypothesis are given by

H0 : γ = 0 (the time series is non− stationary)

H1 : γ < 0 (the time series is stationary)

where

∆Yt = α +β t + γYt−1 +δ1∆Yt−1 +δ2∆Yt−2 + . . .

C.0.3 Support Vector Regression (SVR)

The SVR linear function can be expressed as follows:

f (X) = 〈ϕ(X),w〉+b (C.11)

Where; f (X) are the forecasted values, ϕ(X) is the function of mapping the

input data into the higher-dimensional space, w is the weight factor/autoregressive

coefficient, b is the adjustable factor (error value)and 〈., .〉 is the dot product.

An optimisation problem is needed to solve the function f (X) by minimising

the coefficients; finding the narrowest tube centred around the surface while min-

imising the regression error ε ,i.e, the difference between the predicted and ideal

outputs and maximising the margin of the hyperplane. Thus the constrained opti-

misation problem can be written as the following:

min
1
2
‖w‖2 (C.12)

subject to:

yi− f (xi)≤ ε (C.13)

f (xi)− yi ≤ ε (C.14)

In order to take into consideration the probability of errors that are larger than
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ε , a slack variable ξ is assigned to each instance. The new optimisation problem

can be written as the following:

min
w,ξ ,b

{
1
2
‖w‖2 +C

n

∑
i=1

(ξi +ξ
∗
i )

}
(C.15)

subject to:

yi− f (xi)≤ (ε +ξi) (C.16)

f (xi)− yi ≤ (ε +ξ
∗
i ) (C.17)

ξi,ξ
∗
i ≥ 0 (C.18)

Where C is a penalty for observations that fall outside the epsilon margin ε

constant value. Figure C.1 shows an example plot of an SVR process. Equation

C.15 is solved using Lagrange multipliers, which transform the optimisation prob-

lem into its dual formulation:

Figure C.1: Support vector regression example (Moustapha et al., 2018)

maximise


−1
2

l

∑
i, j=1

(αi +α
∗
i )(α j +α

∗
j )k(xi,x j)

−ε

l

∑
i, j=1

(αi +α
∗
i )+

l

∑
i, j=1

yi(αi +α
∗
i )

(C.19)
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subject to:
l

∑
i=1

(αi +α
∗
i ) = 0. (C.20)

Where αi,α
∗
i ∈ [0,C] are Lagrange multipliers and k(xi,x j) is kernel function.

From Equation C.12:

w =
l

∑
i=1

(αi +α
∗
i )Φ(xi) = 0. (C.21)

By solving the optimisation model, the SVR model can is written as:

f (X) =
n

∑
i=1

(αi +α
∗
i ) k(xi,x)+b (C.22)

C.0.4 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks take the general principle of feed-forward neural net-

works and enable them to handle sequential data by giving the model an internal

memory. Figure C.2 shows the folded and unfolded versions of a single layer RNN,

with the unfolded structure of the RNN showing the calculation done at each time

step t. In the figure, Xt and Yt are the input and corresponding output vector respec-

tively, ht is the hidden layer, and W the weight matrix between the input layer and

the hidden layer, U is the weight matrix between the hidden layer and the hidden

layer at (t-1) and V is the weight matrix between the hidden layer and the output

layer. The parameters bh and bv are bias vectors. The hidden layer ht serves as

memory and is calculated using the previous hidden state ht−1 and the input Xt . The

mathematical model of RNN is expressed as follows:

ht = q(WXt +Uht−1 +bh)

Yt = r(Wht +bv)
(C.23)

q = tanh and r = sigmoid are the activation functions of the hidden layer and

the output layer, respectively. one of the main drawback of RNN is vanishing gra-

dient. This Recurrent means that long-term data must travel through all cells before

reaching the current unit. This means that it is easily weakened by being multiplied
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Figure C.2: Recurrent neural network (RNN) structure

several times by small numbers < 0.

C.0.5 Long Short Term Memory (LSTM)

1. Forget gate: receive the previous hidden state ht−1 and the current input xt

and decided which information to keep or forget. It uses a sigmoid function

convert the output value into the range 0 to 1 for forget and keep respectively.

ft = σ(Wx f xt +Wh f ht−1 +b f ) (C.24)

2. Input gate: receive the previous hidden state ht−1 and the current input xt and

decided which information to be used to update the cell state Ct by using a

sigmoid to update and tanh to create a candidate cell state c̃t , ranging from -1

to 1, to determine what information to add or subtract from these entries.

it = σ(Wxixt +Whiht−1 +bi)

c̃t = tanh(WxcXt +Whcht−1 +bc)
(C.25)

3. At this stage the values of the forget gate, the input gate and the candidate cell

state c̃t are used to compute the current cell state ct . ◦ is the scalar product of

the two vectors.

ct = ft ◦ ct−1 + it ◦ c̃t (C.26)

4. The output gate: compute the output information ot and the current hidden
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state ht which carried to the next time step and passes to next layer or predic-

tion layer.

ot = σ(Wxoxt +Whoht−1 +bo)

ht = tanh(ct)◦ot

(C.27)

where the W terms denote the different weight matrices, b term with a subscript

is the bias vector for each gate. The output sequence Yt can be obtained by

Yt =Whyht +by (C.28)
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