3,616 research outputs found

    Inter-Joint Coordination Deficits Revealed in the Decomposition of Endpoint Jerk During Goal-Directed Arm Movement After Stroke

    Get PDF
    It is well documented that neurological deficits after stroke can disrupt motor control processes that affect the smoothness of reaching movements. The smoothness of hand trajectories during multi-joint reaching depends on shoulder and elbow joint angular velocities and their successive derivatives as well as on the instantaneous arm configuration and its rate of change. Right-handed survivors of unilateral hemiparetic stroke and neurologically-intact control participants held the handle of a two-joint robot and made horizontal planar reaching movements. We decomposed endpoint jerk into components related to shoulder and elbow joint angular velocity, acceleration, and jerk. We observed an abnormal decomposition pattern in the most severely impaired stroke survivors consistent with deficits of inter-joint coordination. We then used numerical simulations of reaching movements to test whether the specific pattern of inter-joint coordination deficits observed experimentally could be explained by either a general increase in motor noise related to weakness or by an impaired ability to compensate for multi-joint interaction torque. Simulation results suggest that observed deficits in movement smoothness after stroke more likely reflect an impaired ability to compensate for multi-joint interaction torques rather than the mere presence of elevated motor noise

    Control theoretic models of pointing

    Get PDF
    This article presents an empirical comparison of four models from manual control theory on their ability to model targeting behaviour by human users using a mouse: McRuer’s Crossover, Costello’s Surge, second-order lag (2OL), and the Bang-bang model. Such dynamic models are generative, estimating not only movement time, but also pointer position, velocity, and acceleration on a moment-to-moment basis. We describe an experimental framework for acquiring pointing actions and automatically fitting the parameters of mathematical models to the empirical data. We present the use of time-series, phase space, and Hooke plot visualisations of the experimental data, to gain insight into human pointing dynamics. We find that the identified control models can generate a range of dynamic behaviours that captures aspects of human pointing behaviour to varying degrees. Conditions with a low index of difficulty (ID) showed poorer fit because their unconstrained nature leads naturally to more behavioural variability. We report on characteristics of human surge behaviour (the initial, ballistic sub-movement) in pointing, as well as differences in a number of controller performance measures, including overshoot, settling time, peak time, and rise time. We describe trade-offs among the models. We conclude that control theory offers a promising complement to Fitts’ law based approaches in HCI, with models providing representations and predictions of human pointing dynamics, which can improve our understanding of pointing and inform design

    Optimal Compensation for Temporal Uncertainty in Movement Planning

    Get PDF
    Motor control requires the generation of a precise temporal sequence of control signals sent to the skeletal musculature. We describe an experiment that, for good performance, requires human subjects to plan movements taking into account uncertainty in their movement duration and the increase in that uncertainty with increasing movement duration. We do this by rewarding movements performed within a specified time window, and penalizing slower movements in some conditions and faster movements in others. Our results indicate that subjects compensated for their natural duration-dependent temporal uncertainty as well as an overall increase in temporal uncertainty that was imposed experimentally. Their compensation for temporal uncertainty, both the natural duration-dependent and imposed overall components, was nearly optimal in the sense of maximizing expected gain in the task. The motor system is able to model its temporal uncertainty and compensate for that uncertainty so as to optimize the consequences of movement

    Modeling Inter-trial Variability of Saccade Trajectories: Effects of Lesions of the Oculomotor Part of the Fastigial Nucleus

    Get PDF
    This study investigates the inter-trial variability of saccade trajectories observed in five rhesus macaques (Macaca mulatta). For each time point during a saccade, the inter-trial variance of eye position and its covariance with eye end position were evaluated. Data were modeled by a superposition of three noise components due to 1) planning noise, 2) signal-dependent motor noise, and 3) signal-dependent premotor noise entering within an internal feedback loop. Both planning noise and signal-dependent motor noise (together called accumulating noise) predict a simple S-shaped variance increase during saccades, which was not sufficient to explain the data. Adding noise within an internal feedback loop enabled the model to mimic variance/covariance structure in each monkey, and to estimate the noise amplitudes and the feedback gain. Feedback noise had little effect on end point noise, which was dominated by accumulating noise. This analysis was further extended to saccades executed during inactivation of the caudal fastigial nucleus (cFN) on one side of the cerebellum. Saccades ipsiversive to an inactivated cFN showed more end point variance than did normal saccades. During cFN inactivation, eye position during saccades was statistically more strongly coupled to eye position at saccade end. The proposed model could fit the variance/covariance structure of ipsiversive and contraversive saccades. Inactivation effects on saccade noise are explained by a decrease of the feedback gain and an increase of planning and/or signal-dependent motor noise. The decrease of the fitted feedback gain is consistent with previous studies suggesting a role for the cerebellum in an internal feedback mechanism. Increased end point variance did not result from impaired feedback but from the increase of accumulating noise. The effects of cFN inactivation on saccade noise indicate that the effects of cFN inactivation cannot be explained entirely with the cFN's direct connections to the saccade-related premotor centers in the brainstem

    Information-based Analysis and Control of Recurrent Linear Networks and Recurrent Networks with Sigmoidal Nonlinearities

    Get PDF
    Linear dynamical models have served as an analytically tractable approximation for a variety of natural and engineered systems. Recently, such models have been used to describe high-level diffusive interactions in the activation of complex networks, including those in the brain. In this regard, classical tools from control theory, including controllability analysis, have been used to assay the extent to which such networks might respond to their afferent inputs. However, for natural systems such as brain networks, it is not clear whether advantageous control properties necessarily correspond to useful functionality. That is, are systems that are highly controllable (according to certain metrics) also ones that are suited to computational goals such as representing, preserving and categorizing stimuli? This dissertation will introduce analysis methods that link the systems-theoretic properties of linear systems with informational measures that describe these functional characterizations. First, we assess sensitivity of a linear system to input orientation and novelty by deriving a measure of how networks translate input orientation differences into readable state trajectories. Next, we explore the implications of this novelty-sensitivity for endpoint-based input discrimination, wherein stimuli are decoded in terms of their induced representation in the state space. We develop a theoretical framework for the exploration of how networks utilize excess input energy to enhance orientation sensitivity (and thus enhanced discrimination ability). Next, we conduct a theoretical study to reveal how the background or default state of a network with linear dynamics allows it to best promote discrimination over a continuum of stimuli. Specifically, we derive a measure, based on the classical notion of a Fisher discriminant, quantifying the extent to which the state of a network encodes information about its afferent inputs. This measure provides an information value quantifying the knowablility of an input based on its projection onto the background state. We subsequently optimize this background state, and characterize both the optimal background and the inputs giving it rise. Finally, we extend this information-based network analysis to include networks with nonlinear dynamics--specifically, ones involving sigmoidal saturating functions. We employ a quasilinear approximation technique, novel here in terms of its multidimensionality and specific application, to approximate the nonlinear dynamics by scaling a corresponding linear system and biasing by an offset term. A Fisher information-based metric is derived for the quasilinear system, with analytical and numerical results showing that Fisher information is better for the quasilinear (hence sigmoidal) system than for an unconstrained linear system. Interestingly, this relation reverses when the noise is placed outside the sigmoid in the model, supporting conclusions extant in the literature that the relative alignment of the state and noise covariance is predictive of Fisher information. We show that there exists a clear trade-off between informational advantage, as conferred by the presence of sigmoidal nonlinearities, and speed of dynamics

    Bio­-inspired approaches to the control and modelling of an anthropomimetic robot

    Get PDF
    Introducing robots into human environments requires them to handle settings designed specifically for human size and morphology, however, large, conventional humanoid robots with stiff, high powered joint actuators pose a significant danger to humans. By contrast, “anthropomimetic” robots mimic both human morphology and internal structure; skeleton, muscles, compliance and high redundancy. Although far safer, their resultant compliant structure presents a formidable challenge to conventional control. Here we review, and seek to address, characteristic control issues of this class of robot, whilst exploiting their biomimetic nature by drawing upon biological motor control research. We derive a novel learning controller for discovering effective reaching actions created through sustained activation of one or more muscle synergies, an approach which draws upon strong, recent evidence from animal and humans studies, but is almost unexplored to date in musculoskeletal robot literature. Since the best synergies for a given robot will be unknown, we derive a deliberately simple reinforcement learning approach intended to allow their emergence, in particular those patterns which aid linearization of control. We also draw upon optimal control theories to encourage the emergence of smoother movement by incorporating signal dependent noise and trial repetition. In addition, we argue the utility of developing a detailed dynamic model of a complete robot and present a stable, physics-­‐‑based model, of the anthropomimetic ECCERobot, running in real time with 55 muscles and 88 degrees of freedom. Using the model, we find that effective reaching actions can be learned which employ only two sequential motor co-­‐‑activation patterns, each controlled by just a single common driving signal. Factor analysis shows the emergent muscle co-­‐‑activations can be reconstructed to significant accuracy using weighted combinations of only 13 common fragments, labelled “candidate synergies”. Using these synergies as drivable units the same controller learns the same task both faster and better, however, other reaching tasks perform less well, proportional to dissimilarity; we therefore propose that modifications enabling emergence of a more generic set of synergies are required. Finally, we propose a continuous controller for the robot, based on model predictive control, incorporating our model as a predictive component for state estimation, delay-­‐‑ compensation and planning, including merging of the robot and sensed environment into a single model. We test the delay compensation mechanism by controlling a second copy of the model acting as a proxy for the real robot, finding that performance is significantly improved if a precise degree of compensation is applied and show how rapidly an un-­‐‑compensated controller fails as the model accuracy degrades

    The confining trailing string

    Get PDF
    We extend the holographic trailing string picture of a heavy quark to the case of a bulk geometry dual to a confining gauge theory. We compute the classical trailing confining string solution for a static as well as a uniformly moving quark. The trailing string is infinitely extended and approaches a confining horizon, situated at a critical value of the radial coordinate, along one of the space-time directions, breaking boundary rotational invariance. We compute the equations for the fluctuations around the classical solutions, which are used to obtain boundary force correlators controlling the Langevin dynamics of the quark. The imaginary part of the correlators has a non-trivial low-frequency limit, which gives rise to a viscous friction coefficient induced by the confining vacuum. The vacuum correlators are used to define finite-temperature dressed Langevin correlators with an appropriate high-frequency behavior.Comment: 63 pages plus appendices, 19 figures; version accepted for publication in JHE

    Movement curvature planning through force field internal models

    Get PDF
    Human motion studies have focused primarily on modeling straight point-to-point reaching movements. However, many goal-directed reaching movements, such as movements directed towards oneself, are not straight but rather follow highly curved trajectories. These movements are particularly interesting to study since they are essential in our everyday life, appear early in development and are routinely used to assess movement deficits following brain lesions. We argue that curved and straight-line reaching movements are generated by a unique neural controller and that the observed curvature of the movement is the result of an active control strategy that follows the geometry of one's body, for instance to avoid trajectories that would hit the body or yield postures close to the joint limits. We present a mathematical model that accounts for such an active control strategy and show that the model reproduces with high accuracy the kinematic features of human data during unconstrained reaching movements directed toward the head. The model consists of a nonlinear dynamical system with a single stable attractor at the target. Embodiment-related task constraints are expressed as a force field that acts on the dynamical system. Finally, we discuss the biological plausibility and neural correlates of the model's parameters and suggest that embodiment should be considered as a main cause for movement trajectory curvatur

    Novel Signal Reconstruction Techniques in Cyclotron Radiation Emission Spectroscopy for Neutrino Mass Measurement

    Get PDF
    The Project 8 experiment is developing Cyclotron Radiation Emission Spectroscopy (CRES) on the beta-decay spectrum of tritium for the measurement of the absolute neutrino mass scale. CRES is a frequency-based technique which aims to probe the endpoint of the tritium energy spectrum with a final target sensitivity of 0.04 eV, pushing the limits beyond the inverted mass hierarchy. A phased-approach experiment, both Phase I and Phase II efforts use a combination of 83mKr and molecular tritium T_2 as source gases. The technique relies on an accurate, precise, and well-understood reconstructed beta-spectrum whose endpoint and spectral shape near the endpoint may be constrained by a kinematical model which uses the neutrino mass m_beta as a free parameter. Since the decays in the last eV of the tritium spectrum encompass O(10^(-13)) of all decays and the precise variation of the spectrum, distorted by the presence of a massive neutrino, is fundamental to the measurement, reconstruction techniques which yield accurate measurements of the frequency (and therefore energy) of the signal and correctly classify signal from background are necessary. In this work, we discuss the open-problem of the absolute neutrino mass scale, the fundamentals of measurements tailored to resolve this, the underpinning and details of the CRES technology, and the measurement of the first-ever CRES tritium β\beta-spectrum. Finally, we focus on novel reconstruction techniques at both the signal and event levels using machine learning algorithms that allow us to adapt our technique to the complex dynamics of the electron inside our detector. We will show that such methods can separate true events from backgrounds at \u3e 94% accuracy and are able to improve the efficiency of reconstruction when compared to traditional reconstruction methods by \u3e 23%
    corecore