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Abstract Human motion studies have focused primarily on
modeling straight point-to-point reaching movements. How-
ever, many goal-directed reaching movements, such as move-
ments directed towards oneself, are not straight but rather
follow highly curved trajectories. These movements are par-
ticularly interesting to study since they are essential in our
everyday life, appear early in development and are routinely
used to assess movement deficits following brain lesions. We
argue that curved and straight-line reaching movements are
generated by a unique neural controller and that the observed
curvature of the movement is the result of an active control
strategy that follows the geometry of one’s body, for instance
to avoid trajectories that would hit the body or yield postures
close to the joint limits. We present a mathematical model that
accounts for such an active control strategy and show that the
model reproduces with high accuracy the kinematic features
of human data during unconstrained reaching movements
directed toward the head. The model consists of a nonlinear
dynamical system with a single stable attractor at the target.
Embodiment-related task constraints are expressed as a force
field that acts on the dynamical system. Finally, we discuss
the biological plausibility and neural correlates of the model’s
parameters and suggest that embodiment should be consid-
ered as a main cause for movement trajectory curvature.
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1 Introduction

The vast majority of motor control studies have focused on
highly constrained reaching movements, limiting the move-
ments to a two-dimensional plane, and in particular to the
frontal plane. These constraints are meant to ensure the repro-
ducibility and controllability of the task. They have led to
the observation of so-called “quasi-straight” reaching move-
ments with a stereotyped single-peaked, bell-shaped velocity
profile (Morasso 1981; Flash and Hogan 1985). The gentle
curvature responsible for the term “quasi” has proved hard
to explain. Some have suggested that it is due to distortions
in the visual perception of the target (Wolpert et al. 1994,
1995), which could however not explain the fact that these
are also observed in congenitally blind subjects (de Graaf
et al. 1994). Others have attributed the curvature of the move-
ment to the dynamics of the arm’s biomechanics, i.e., inertial
and viscoelastic resistive forces (Flash 1987; Bullock and
Grossberg 1988). This again could not explain the fact that the
curvature persists in isometric tasks, which indicates rather
that the curvature is encoded directly in the activation pat-
terns of the muscles (Pellegrini and Flanders 1996). Another
possible explanation for the curvature of arm movements is
Listing’s law, as the arm rotation movements were shown
to roughly lie in a 2D curved surface (Liebermann et al.
2006). Importantly, when participants are instructed to gener-
ate straight paths, they produce movements much straighter
than those generated spontaneously (de Graaf et al. 1994;
Desmurget et al. 1997; Osu et al. 1997), which argues against
the hypothesis of imperfect control (Flash and Hogan 1985).
In addition, the curvature depends on the location of the tar-
get (Soechting and Lacquaniti 1981) and is systematic within
trials and across subjects (Soechting and Lacquaniti 1981;
Pellegrini and Flanders 1996). Curved trajectories are also
more frequently observed during unconstrained movements
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Fig. 1 An example of the curvature of an unconstrained self-oriented
movement (the subject was asked to touch his nose). a Projections of the
movement in the xy-, xz-, and yz-planes. b The velocity profile is bell-
shaped and single-peaked, similarly to the velocity profiles of straight
point-to-point movements. c The movement is curved in the extrinsic
hand Cartesian space (left), which is best visible when projected on the

first two principal components following a principal component analy-
sis (PCA) (right). d The movement is curved also in the intrinsic joint
angles space (left) and its two principal components (right). The joint
angles represented here correspond to the three degrees of freedom of
the shoulder: shoulder flexion–extension (SFE), shoulder abduction–
adduction (SAA) and shoulder humeral rotation (SHR)

(Soechting and Lacquaniti 1981; Lacquaniti et al. 1986; Miall
and Haggard 1995; Desmurget et al. 1997; Osu et al. 1997).
Overall, the above evidence indicates that the curvature
underlying human motion might be a “natural” feature of
the movement, and the observed straightness an artifact of
the restricted workspace.

We show in this paper that these non-linearities are par-
ticularly important when considering reaching movements
directed to ourselves (see Fig. 1). Self-oriented movements
are part of our daily repertoire (e.g., to eat). They are among
the first to emerge in life and are likely the result of evo-
lutionary old neural structures. Their study may thus reveal
basic neural processes of motor control. For instance, elec-
trical stimulation of the precentral and motor cortices evoked
natural multijoint movements that reached to different points
in space, such as for example characteristic hand-to-mouth
movements (Graziano et al. 2002, 2005). These movements
are also routinely used in neurological examinations to test
and diagnose various movement deficits following brain
lesion (De Renzi and Lucchelli 1988; Goldenberg and Hag-
mann 1997; Petreska et al. 2007), which directly inspired the
stimuli used in our study. All in all, the study of reaching
movements toward oneself is particularly interesting from
both a behavioral and a neurological perspective.

We will argue that movement curvature is planned by the
central nervous system (CNS) and takes into account the
geometry of the body. The idea that embodiment can be
encapsulated in the control system itself is in line with our
earlier observation that differences in the kinematic features
of reaching movements in macaques and humans could be
related to the biomechanical properties of the macaques’ and

humans’ shoulder joints (Christel and Billard 2002). Impor-
tantly, the model proposed here is not limited to self-oriented
movements and can be applied to any point-to-point reach-
ing movement such as for example reaching to targets in the
extrapersonal frontal workspace.

2 Computational approach

Modeling studies are particularly useful for distinguishing
among all of the plausible mechanisms to encode movements,
as long as their predictions are tested and validated against
empirical behavioral or neurophysiological data.

However, existing models are unsuccessful at reproducing
the curvature of natural human movements (Admiraal et al.
2004), up to several exceptions (Torres and Zipser 2002;
Biess et al. 2007; Guigon et al. 2007). For instance, while
the so-called 2/3 power law (Lacquaniti et al. 1983) could
account well for the curvature observed during handwrit-
ing and drawing motions, it was unsuccessful at explaining
the curvature of reaching movements in the 3-dimensional
space (Schaal and Sternad 2001), including the movements
we consider in this paper as shown on Fig. 2. Furthermore,
the minimum work model (Soechting et al. 1995) success-
fully reproduces the final joint postures of pointing move-
ments starting from different initial joint postures, but does
not explain the time dependency across joint trajectories. A
kinematic model that intrinsically constrains the arm joints
according to Listing’s law (i.e., such that the arm rotation
vectors lie in a 2-dimensional surface) was partially success-
ful at describing the experimental data (Liebermann et al.

123



Biol Cybern (2009) 100:331–350 333

Fig. 2 Two examples of unconstrained self-oriented movements where
the 2/3 power law was degraded. The tangential velocity versus radius
of curvature to the power 1/3 is shown. The subject was asked to touch
his nose (circles) or to touch his left ear (squares)

2006). The minimum hand jerk1 model (Flash and Hogan
1985) maximizes the smoothness of the hand trajectory in
the extrinsic space. The result is a straight-line trajectory,
whereas curved trajectories are obtained by specifying via-
points (e.g. for avoiding obstacles). However, it predicts a
bimodal velocity profile which is at odds with the exper-
imental data (Atkeson and Hollerbach 1985). Later it was
suggested that the hand trajectory is the result of a com-
promise between planning a straight line in the task space
and planning a straight line in the joint space (Cruse and
Brüwer 1987; Okadome and Honda 1999; Hersch and Billard
2007). Such hybrid computations offer numerous advantages
for controlling 3-dimensional reaching movements, such as
avoiding singularities and avoiding hitting the joint limits
(Hersch and Billard 2007). Unfortunately there is currently
no direct neurophysiological evidence in support of such a
control strategy. It has also been proposed that arm move-
ments are controlled by minimizing the derivative of joint
torques (Uno et al. 1989; Nakano et al. 1999; Wada et al.
2001). However, this model overestimates the magnitude of
curvature of pointing movements (Biess et al. 2007). In Torres
and Zipser (2002), the hand path is computed in the intrin-
sic joint angles space by minimizing an energy-like quan-
tity, giving realistic predictions for curved paths. However,
this model assumes a separate processing for the spatial and
temporal dynamics of motion and displays some impreci-
sions for movements similar to those addressed here. The
model by Biess et al. (2007) computes a geometrical joint
angles geodesic path with respect to a kinetic energy met-
ric in the Riemannian configuration space and subsequently

1 The jerk corresponds to the derivative of the acceleration and is a
measure of the smoothness of the trajectory.

minimizes the squared jerk along this path. This model also
treats the spatial and temporal dimensions separately and pre-
dicts identical path trajectories for different speeds. We find
it difficult to evaluate how well this model would predict
highly curved reaching movements as the pointing move-
ments addressed in the study were quasi-straight, but we
could observe that the model has difficulties with reproduc-
ing mixed curvatures (i.e., movements that deviate first to
one side and then to the other side of the idealized straight
trajectory). Another class of reaching models are stochastic
models that take into account the noise inherent to the motor
system. It has been consistently observed that the standard
deviation of neuromotor commands increases with its mean
(Sutton and Sykes 1967; Schmidt et al. 1979; Clamman 1969;
Matthews 1996; St-Amant et al. 1998; Clancy and Hogan
1999; Osu et al. 2004). In line with this evidence, it was
suggested that the brain minimizes the variance of the final
arm position in the presence of such signal-dependent motor
noise (Harris and Wolpert 1998; Hamilton et al. 2002). Even
though this model succeeds at reproducing the curvature of
2-dimensional reaching movements, it does not specify
which control laws generate these movements. In Todorov
and Jordan (2002), an optimal feedback theory of motor con-
trol is proposed, in which the variability of the movement
is distributed optimally among different degrees of freedom
that do not interfere with the task goal. This qualitative model
is appropriate for explaining the variability observed in reach-
ing movements, it is however imprecise in its prediction of
the curvature of movements. This is partly due to the deter-
mination of the appropriate cost function to optimize. This
performance criterion is chosen arbitrarily and varies with the
task. Another model based on the optimal feedback control
theory was successful at reproducing the joint and hand tra-
jectories of 3-dimensional movements (Guigon et al. 2007),
but the authors admit that the movements reproduced are
rather stereotyped. For example the model does not account
for nonsymmetric velocity profiles or avoidance of extreme
joint limits.

While it has been suggested that two different control
strategies underlie straight and curved reaching movements
(Desmurget et al. 1997; Moran and Schwartz 1999), we argue
that these two types of movements are generated by a unique
adaptive control mechanism. While none of the existing mod-
els offers a satisfactory solution for modeling the highly var-
iable curvature of human movements, here we propose a
dynamical model that accounts for both gently and highly
curved hand trajectories, consistent with recent neurophysi-
ological findings. First, unlike many of the models above,
our model is closed-loop. Closed-loop control takes into
account the uncertainty of the “real-world” and allows intel-
ligent online corrections as well as robust responses to per-
turbations, rather than “playing a prerecorded tape” (Todorov
2004). Such an approach is in agreement with the observa-
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tion that the CNS is able to estimate and anticipate the state
of the limb. This is achieved by integrating delayed sensory
input and motor output through afferent and efferent inter-
nal feedback loops (Desmurget and Grafton 2000). The state
information is used to continuously update the motor com-
mands, which is likely to occur in the posterior parietal cortex
and cerebellum.

Our model also takes advantage of the signal-dependant
neuromotor noise mentioned earlier, which may be responsi-
ble for the speed-accuracy trade-off known as Fitts’ law (Fit-
ts 1954) and trail-to-trial variability (Todorov 2004). Finally,
our model hypothesizes that the curvature of the hand tra-
jectories is not an undesirable noise on otherwise perfect
straight-line reaching movements. Rather, it is necessary and
planned as such by the CNS in order to, for example, avoid
impossible trajectories that go through the body and uncom-
fortable joint limit postures.

3 Model description

Our work was driven by the assumption that (a) a unique
controller underlies both straight and curved reaching move-
ments, and (b) that this controller is such that all the variables
can be accounted for by known neurophysiological processes.
Thus, to start with, we considered the vector integration
to endpoint (VITE) model for point-to-point reaching
(Bullock and Grossberg 1988) that accounts for typical kine-
matic features of human reaching movements such as bell-
shaped velocity profiles and speed-accuracy trade-off. The
model has been used to explain control in both hand extrin-
sic and joints intrinsic spaces (Ajemian et al. 2001; Hersch
and Billard 2007). Most importantly, the dynamics of the
VITE model’s response displays a profile of activity simi-
lar to that of populations of neurons in the primate’s brain.
In particular, the model could account for these neurons’
sensitivity to change in the velocity of the movement and
for the latency of activity at the movement onset (Bullock
et al. 1998). The VITE model, however, suffers from a major
restriction: it can generate only straight movements.2 Next,
we describe the VITE model and give a formal definition
of our extension that accounts for curved reaching move-
ments.

2 An extension of the VITE model has been proposed to account for
highly curved handwriting movements (Bullock et al. 1993; Paine et al.
2004), where three coupled VITE models control the displacement of
the hand in a 2-dimensional plane and the rotation of the wrist. The cur-
vature results from the coupling between the three models and the fact
that each model is initiated with a slight delay at onset. This approach is
not optimal for modeling simple point-to-point reaching movements as
it necessitates the characterization of a sequence of multiple arbitrary
targets, one for each change in the curvature.

3.1 The original VITE model

The original VITE model is a dynamic controller that at each
point in time reduces the distance between the estimated
and desired states of the controlled variable. First, it com-
putes the desired movement acceleration based on the dif-
ference between the present and endpoint vectors. Second,
this acceleration is integrated and primed with a faster-than-
linear time-dependent “go signal” to specify the desired
speed, which is the control signal sent to the muscle moto-
neurons. This priming signal is essential for the obtention of
a bell-shaped velocity profile.

In its complete form the VITE model succeeds for exam-
ple at: maintaining accurate proprioception while control-
ling voluntary reaches to spatial targets, maintaining postures
despite perturbations, complying with an imposed move-
ment, exerting force against obstacles, compensating for sta-
tic and inertial loads and reproducing muscle vibration effects
(Cisek et al. 1998). For simplicity, we only use the con-
cise form of the model presented in Bullock and Grossberg
(1988). For a description of the original VITE model please
see the Appendix.

3.2 Modification of the original VITE model

Our modified VITE system is governed by a non-linear and
noisy spring-damper system given by:

ẍ(t) =
damping factor

︷ ︸︸ ︷

−αẋ(t) +
noisy endpoint attractor

︷ ︸︸ ︷

βg(x∗(t) − x(t) + η) u(t) (1)

The first term is a damping factor proportional to the speed
ẋ(t) of the end-effector that prevents the system from oscillat-
ing too importantly. The second term corresponds to an elas-
tic force that drives the end-effector from its actual position
x(t) toward the desired target position x∗(t). Note that the
desired position is written as a function of time in order to
emphasize the ability of the system to track the target in real
time without any additional computation (as a result the sys-
tem is robust to perturbations of the target position). α is a
time constant set to 50. β ∈ R

+ determines the amplitude of
the speed at which the system moves globally (increasing β

would result in a higher velocity peak and shorter movement
duration, see Fig. 3a). g is a nonlinear function that modu-
lates the dynamics of the system so that it presents a typical
bell-shaped velocity profile (refer to the Appendix for the
exact form of g). Finally η is a multiplicative gaussian noise
with zero mean and standard deviation proportional (by a fac-
tor of 0.005) to the distance between the actual and desired
end-effector positions, namely |x∗(t)−x(t)|. This noise fac-
tor is necessary to initiate the movement and to account for
the trial-to-trial variability at the onset of movement (see the
Appendix).
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Fig. 3 a Effect of gradually increasing the parameter β of the modified
VITE model (see Eq. 1) on the velocity profile of the movement. Higher
β values increase the velocity peak and shorten the movement duration.
b Behavior of the extended F2REACH model (see Eq. 2) under differ-
ent repulsive forces v and w, for illustrative purpose the forces shown
are applied only on the horizontal dimension. The forces are modu-
lated such that v affects mostly the beginning of the movement and
w mostly the end of the movement. Note that the direction of the

deviation from the straight trajectory is determined by the sign of the
force. c By combining two forces v and w of different signs one can
obtain very interesting deviations that change their direction during the
execution of the movement. Reference values: α = 50, β = 500, noise
was set to 0.005. Only the speed parameter β is varied throughout the
simulations, the two other parameters (time constant and noise) are fixed
to the given values

Fig. 4 Description of the task space. The hand position x(t) is repre-
sented in a 3-dimensional space centered on the chest, at the level of the
shoulders. The input to the model consists of the initial hand position
x(0) and final target position x∗(t)

The above formulation makes two strong assumptions
from a motor control point of view: (a) it takes as control
signal the acceleration of the end-effector ẍ, expressed in
an extrinsic 3-dimensional Euclidean space centered on the
chest (see Fig. 4), and (b) it accounts only for a “high-level”
control mechanism, in that it generates the desired end-effec-
tor kinematics, and does not account for the subsequent trans-
formation required to control muscle activations.

Expressing the system in terms of desired acceleration
is not constraining, since it is conceivable to assume that a
neural population coding for the acceleration can be neu-
rally integrated out to obtain a velocity control signal, which

can in turn be integrated out to have a position control sig-
nal, see Sauser and Billard (2006). Moreover, evidence that
muscle activity may be governed by a kinematic signal, such
as the acceleration, velocity or position, or any combination
of these, has been found in the motor cortex (Wang et al.
2007). Note that we do not address the problem of redun-
dancy mapping between desired hand kinematics and actual
muscle activations in this paper. These assumptions will be
further developed in Sect. 6.1.

The above system differs from the original VITE model
in two ways (see the Appendix for the original VITE formu-
lation). First, the dynamics of the system is now governed
by a single second order differential equation and is thus
expressed in terms of the end-effector acceleration.3 Sec-
ond, we replaced the explicit time dependency of the original
VITE system by introducing a bounded nonlinearity in the
function g. In the original VITE system, this explicit depen-
dency in time through the priming signal let the velocity of
the system grow exponentially in time, which created insta-
bilities in the case of a long lasting perturbation, and was thus
biologically implausible (your arm does not start accelerating
if someone holds it).

3.3 Extension of the original model: F2REACH model

To account for the movement curvature, we next introduce
a new functional F(x(t)) that corresponds to a virtual force

3 The original VITE system was driven by two coupled first-order dif-
ferential equations. We reformulated this by writing the whole system
as a second order differential equation. This allows us to relate explic-
itly the acceleration of the system to the force-field which we introduce
in the following section.
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field, which encapsulates a geometrical representation of the
task constraints. This force field is modulated by the dynam-
ics of the control signal in order to preserve the bell-shaped
velocity profile:

ẍ(t) = −αẋ(t) + βg(x∗(t) − x(t) + η)

+
modulation factor

︷ ︸︸ ︷

β|g(x∗(t) − x(t) + η)|
force field
︷ ︸︸ ︷

F(x(t)) (2)

The force field F(x(t)) assigns a vector gradient to each
position in space that expresses constraints related to: (a)
objects in the environment that one needs to avoid (includ-
ing the subject’s body), (b) dynamic properties of the human
body such as inertial properties of the limb, (c) extreme joint
angles limits. The contribution of each of these constraints is
simply summed to result in the virtual force field. The gradi-
ent of the force field at each point in space pushes the hand
away from the undesired locations.

This force field framework reconciles the dynamic and
kinematic aspects as well as intrinsic and extrinsic approaches
to motor planning in a very convenient way. Instead of find-
ing a compromise across systems that would operate simul-
taneously in conflicting coordinates (e.g., hand position and
joint angles, see Sect. 2), our system provides both dynamic
(acceleration) and kinematic (speed or position) control sig-
nals, taking into account (a) a target for the motion expressed
in extrinsic kinematic coordinates and (b) intrinsic dynamic
motion constraints. This reconciles the observation that
objects in the environment such as a table may influence the
kinematic planning of the movement4 (Brenner and Smeets
1995) and that knowledge of the arm dynamics is necessary
for the kinematic planning of complex movements (Uno et al.
1989; Nakano et al. 1999; Sabes and Jordan 1997).

As the particular form taken by the force field is task and
context dependent, we chose a very generic expression given
by:

F(x(t)) = h(x(t))v + (1 − h(x(t)))w (3)

where v and w are constant force vectors that push the tra-
jectory away from the straight-line generated by the rest of
the system. v affects primarily the beginning of the move-
ment, whereas w affects the end of movement (as illustrated
in Fig. 3b, c). The modulation function h that associates these
two forces to different parts of the movement is given in the
Appendix.

In our framework, a 3-dimensional reaching movement
needs the specification of seven parameters in total: β that
controls the amplitude of the velocity’s peak and two
3-dimensional repulsive forces v and w, where the time con-

4 This type of computation is natural (and especially useful) if the move-
ment is considered in a constantly varying environment full of external
objects, instead of isolated in an artificial experimental setup.

stant α and noise can be fixed to 50 and 0.005 respectively.
We will show next that the latter two forces give a crude rep-
resentation of the volume and geometry of the body around
which the hand must navigate.

To conclude the description, control policies of the form
of autonomous differential equations such as the one pro-
posed here are particularly interesting, as they allow online
modifications of the input variables. Thus a very nice prop-
erty of our model is its robustness to external perturbations,
where the model shows smooth adaptation to changes such
as blocking or displacing the arm and displacing the target
(simulation results not shown here).

4 Experiments

4.1 Subjects

Ten healthy subjects, five female and five male of mean age
33 ± 11 years volunteered for the study. All the participants
except for two were right-handed according to the Edinburgh
handedness test (Oldfield 1971). All the subjects were naive
as to the purpose of the study and had no history of neuro-
logical or musculoskeletal deficits.

4.2 Procedure

The subjects were asked to perform natural reaching move-
ments toward targets situated on their head. In order to obtain
entirely natural and fully unconstrained movements, the tar-
get positions were specified verbally (for example we gave
instructions such as “on the go signal touch your nose”).
The subjects were left free to determine the location of the
reaching target (e.g., at the tip of the nose or just above
it), but they were instructed to reach to exactly the same
location across one block of repetitions of the same move-
ment. There were six target positions, shown in Fig. 5a,
indexed as follows: (1) nose, (2) right ear, (3) left ear, (4)
top of the head, (5) under the chin and (6) back of the head.
Given that the subjects had different arm lengths and given
that the targets were defined with respect to the subject’s
head, the length of the hand path varied importantly across
subjects and movements. This was done on purpose to test
the ability of the model to reproduce the generic charac-
teristics of the movements and to account for such body
variabilities, which we consider task-independent. The sub-
jects were standing in order to limit undesirable movements
of the upper body. There were no external constraints that
would confine the movement range. The movements were
performed with the right hand independently of the handed-
ness of the subject, since handedness was shown not to affect
spontaneous self-oriented movements (Dalby et al. 1980;
Lavergne and Kimura 1987). In order to verify the gener-
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Fig. 5 a Target positions on the head used in our experiment. b Two
initial conditions that yield both highly and gently curved movements.
The three motion sensors are indicated with arrows

alization of our model over movements with different cur-
vature levels, movements were initiated from two different
locations, shown in Fig. 5b: (1) upright position with the arm
extended along the body that yielded highly curved move-
ments and (2) upright position with the arm extended in front
of the body that yielded gently curved movements. Prior to
each experiment, the subjects were asked to assume the same
starting position, which was verified by the experimenter.
The subjects had at least one trial of practice per movement
to ensure that they had understood the instructions. Each
movement was repeated five times in order to have a mea-
sure of its inherent variability and consequently a measure
of the precision of the model’s reproduction.

4.3 Data acquisition

Data was recorded using 3D inertial measurement units/
motion sensors (Xsens Technologies B.V., The Netherlands).
The sensors were attached on three arm segments (the upper
arm, the forearm and the hand) and were calibrated in the
upright position with the arm vertical (see Fig. 5b, left). The
orientation of the three arm segments during the execution
of the movements was recorded at a frequency of 50 Hz.

4.4 Data analysis

All analyses were performed with custom software written
in Matlab (Mathworks, Natick, MA, USA). The trajectories

of each arm segment were reconstructed using the orienta-
tion matrices recorded by the inertial measurement motion
sensors. We used only unfiltered raw values. The movements
of interest were extracted using criteria such as percentage
of velocity change. The samples were aligned in time so that
the inter-trial Euclidean distance per movement and subject
(five samples) is minimal. The movement mean and standard
deviation (SD) of each trajectory for each movement type and
for each subject was computed with respect to the aligned
signals. We then solved numerically the original VITE and
extended F2REACH models for each of the mean move-
ments, with a time step of 20 ms. The models’ parameters
were fixed using 33 and 37 factorial experimental designs
respectively, coupled with a local search procedure (Neter
et al. 1996; Hoos and Stützle 2004).

To evaluate the predictions of the two models we measured
the following Euclidean distances and deviation indices:5

(1) mean deviation (MD) of the predicted hand trajectory
compared to the measured hand trajectory at each point in
time, (2) mean squared error (MSE), (3) hand trajectory
deviation index (HTDI) defined as the ratio between the max-
imal distance across the modeled xm(t) and real xr (t) mean
trajectories over the total length of the real path,

HTDI = maxi=1,...,N |xm(i)−xr (i)|
∑N−1

i=1 |xr (i + 1)−xr (i)|
where N is the number of points sampled (see Fig. 6a),
(4) speed deviation index (SDI) and finally (5) total accel-
eration deviation index (ADI), both defined in Fig. 6b. We
also considered the standard deviation trajectory (SD) as a
possible limit prediction (see Fig. 6c for a definition). We fur-
ther assessed the curvature index of recorded and modeled
movements, defined as the ratio between the total arc length
of the hand path and the Euclidean distance that separates the
initial and final positions. For example a curvature index of 1
indicates a perfectly straight path and a curvature of π/2 cor-
responds to a semicircular path. Finally, the speed asymmetry
index was defined as the ratio (Sa − Sd)/(Sa + Sd) where Sa

is the distance traveled up to the time at which the velocity
is maximal (referred to as the acceleration phase) and Sd the
distance traveled from the time at which the velocity is max-
imal until the end of the movement (deceleration phase). An
additional measure of the precision of the original VITE and
extended F2REACH models is the percentage of trajectory
points predicted by the models that are comprised within the
volumes defined by 1 and 2 SD away from the recorded mean
trajectory (per subject and movement type, established over
five repetitions of the movement, see Fig. 6c). This measure
accounts for the variability inherent to goal-directed reaching

5 The deviation indices are adapted from Nakano et al. (1999) and Biess
et al. (2007).
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Fig. 6 Definitions of error measures. a The hand trajectory deviation
index (HDTI) of measured and predicted hand trajectories is the ratio
of the maximum distance, R = maxi=1,...,N Ri , between the two tra-
jectories matched in time over the total length of the measured path.
b The speed deviation index (SDI) and total acceleration deviation index
(ADI) are defined as the ratio of the noncommon area enclosed by
the measured and predicted speed/acceleration profiles and the total
enclosed area. c Standard deviation volumes (SD), comprised within a
multiple of the standard deviation distance (computed from the mean
trajectory of five movement trials per subject and movement type) at
every point of the movement trajectory. A SD trajectory would follow
the corresponding corners of these volumes. We consider that a point
was well predicted if it is contained inside the SD volume of its mea-
sured counterpart, thus enforcing a higher precision at points with very
low variability

movements (Harris and Wolpert 1998; Todorov and Jordan
2002) and penalizes imprecision in parts where the variance
of the movement is minimal. For example, the subjects were
more consistent in the vicinity of the initial and target
positions.

5 Results

In this section we report on a systematic assessment of how
well the original VITE and our extended F2REACH models
account for the kinematics of the recorded human move-
ments. We also discuss the biological plausibility of our
model’s parameters. Finally, we conduct a stability analysis
of the F2REACH model and define conditions under which
the target is a stable attractor of the model and therefore
guaranteed to be reached.

5.1 Observed data statistics

We first assessed the general characteristics of the recorded
movements (summarized in Table 1). The movements addres-
sed had large spatial extent (mean path length of 1.23 m)
with significantly longer path lengths in the first experimental
condition (see Fig. 5b) when compared to the second exper-
imental condition (mean path lengths of 1.7 and 0.95 m
respectively). Movements in the first condition lasted longer
with mean durations of 1.3 and 1 s, respectively. Most impor-
tantly, the movements in the first condition were significantly
more curved with a mean curvature index of 1.59 compared
to 1.21 in the second condition. In addition, the curvature
indices of the recorded movements were distributed homoge-
neously between quasi-straight (<1.1) and highly curved (>2).

We expected to see substantial trial-to-trial fluctuations
due to noise of the motor system (Todorov and Jordan 2002),
which motivated us to model the mean trajectory of the move-
ment rather than the separate trials. We believe that the mean
movement captures the intrinsic nature of the movement,
which is task-relevant and free of noise. An example of the
inherent variability across trials per subject and movement
type is shown in Fig. 7a. Figure 7b shows that the inter-
subject variability (attributed to the difference in embodi-
ment of the subjects) is much more important.

5.2 Comparison between the observed and modeled data

Here we assess how well the original and extended models
reproduce the human data. The mean movement trajectories
were simulated with both the original VITE and our extended
F2REACH models. Typical examples of measured and pre-
dicted hand path trajectories are given in Fig. 8. The first
row in each example shows the five hand trajectories of the
movement projected in the xy-, xz- and yz-planes relative to
a schematized humanoid. The second row shows the projec-
tions of the mean recorded trajectory and generated model
trajectories. The subject’s trials are represented with light
grey lines and show the inherent variability of the move-
ment. The third row shows the x-, y- and z-components of
the hand trajectories with respect to time in order to show
the quality of the model predictions at the temporal level.
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Table 1 Path length, duration and curvature index of the movements in the two experimental conditions (see Fig. 5b)

Condition 1 Condition 2 2 Conditions 10 Subjects

P value P value

Path length (m) 1.70 ± 0.32 0.95 ± 0.18 <0.001 NS

Duration (s) 1.28 ± 0.26 0.97 ± 0.20 <0.001 <0.001

Curvature index 1.59 ± 0.22 1.21 ± 0.11 <0.001 NS

We also give one-way ANOVA results for the initial condition and subject effects on these variables. The movements in condition 1 were signifi-
cantly longer in time and space and significantly more curved when compared to the movements in condition 2. The recorded movements differed
significantly across subjects only in their duration

Table 2 Mean deviation (MD), mean squared error (MSE) and mean deviation indices (see Fig. 6) for the trajectory (HTDI), speed (SDI) and
acceleration (ADI) (± standard deviation) of the hand as predicted by the extended F2REACH and original VITE models

F2REACH model SD VITE model

MD (mm) 18.85 ± 8.10 35.67 ± 11.63 132 ± 71

MSE (cm2) 5.62 ± 5.34 15.93 ± 10.61 431 ± 413

HTDI 0.031 ± 0.010 0.04 ± 0.02 0.25 ± 0.06

SDI 0.11 ± 0.03 0.50 ± 0.11 0.29 ± 0.12

ADI 0.38 ± 0.07 0.60 ± 0.08 0.51 ± 0.13

We also consider the trajectory comprised within one standard deviation (SD) from the mean trajectory (per subject and movement type, computed
as described in Fig. 6c) as an indication for the limit prediction that would be acceptable for a model. This SD trajectory represents the inherent
variability of the movement. One-way ANOVAs performed on the error measures of the extended F2REACH model show that the effect of the
subject performing the movement was not significant and that the movements in the second initial condition, i.e., movements with lower curvature,
tended to be slightly better predicted (MD and MSE only)

Fig. 7 Trajectories of the hand for ten subjects performing five rep-
etitions of the same movement, reaching to the left ear (movement 3)
with the right arm in condition 1 (see Fig. 5). The hand trajectories
are shown relative to a schematized humanoid and the color refers to
the same subject. a All the movement trajectories are shown in order
to emphasize the movement’s inherent variability. Note that this intra-

subject variability is lower than the inter-subject variability, i.e., the
hand trajectories of one subject are consistent when compared to those
of the other subjects. b Only the mean movements are shown. The
inter-subject variability can be partially attributed to differences in the
subjects’ arm lengths and shoulder positions (see color-coded arms)
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Fig. 8 Two examples of typical movements. The recorded human data
is shown with points that respect the sampling rate, the original VITE
model is shown with a dashed line and our extended F2REACH model
with a plain line. I, The subject reaches for the back of the head (move-
ment 6) with as initial condition the right arm extended along the body
(condition 1). II The subject reaches for the back of the head (move-
ment 6) with as initial condition the right arm extended in front of the
body (condition 2). a The five recorded hand trajectories of the move-

ment projected in the xy-, xz- and yz-planes and shown relative to a
schematized humanoid. b The measured and predicted mean move-
ment trajectories projected in the xy-, xz- and yz-planes. The light grey
trajectories are the five trials and reflect the intra-subject variability
per movement type. c The x-, y- and z-components of the measured
and predicted mean movement trajectories shown with respect to time.
d The measured and predicted speed profiles of the movement. e The
measured and predicted total acceleration profiles of the movement
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Table 3 Measured (M) velocity peak amplitude and peak time, asymmetry and curvature indices (± standard deviation) compared to those predicted
by the extended (F2REACH) and original (VITE) models

Measured (M) F2REACH M versus F2REACH VITE M versus VITE
model P value model P value

Velocity peak amplitude (m/s) 2.26 ± 0.68 2.37 ± 0.69 <0.05 8.22 ± 59.31 NS

Velocity peak time (s) 0.50 ± 0.14 0.53 ± 0.13 NS 0.59 ± 0.19 <0.001

Asymmetry index −0.08 ± 0.15 −0.10 ± 0.11 NS 0.03 ± 0.06 <0.001

Curvature index 1.40 ± 0.26 1.36 ± 0.23 NS 1.03 ± 0.22 <0.001

There were no significant differences between the measured and extended model variables (with the exception of a small difference in the velocity
peak amplitude), whereas significant differences were found between the measured and original model for three of the four variables addressed (all
except for the velocity peak amplitude)

Finally, on the right we show the measured and predicted
speed and acceleration profiles. One can see that, unlike the
original VITE model, the F2REACH model is generally in
very good agreement with the human data.

We systematically evaluated the predictions of the original
VITE and extended F2REACH with several Euclidian dis-
tances and deviation indices defined in Sect. 4.4. The results
are summarized in Table 2 and show that our model is highly
precise at reproducing the kinematics of the recorded move-
ments. The deviation indices are much smaller, generally on
a different order of magnitude than those from the SD trajec-
tory and always smaller than the original VITE model. The
mean deviation was less than 2 cm for movements of average
path length superior to 1 m.

We performed one-way ANOVAs for the extended model
using, as dependent data, the different error measures defined
in the preceding paragraph. The results show that, regard-
less of the error measures used, we did not find an effect
of the subject executing the movements (P > 0.05, with the
exception of two subjects for the HTDI and ADI deviation
indices). This indicates that our model performed equally
well across the ten subjects. A significant effect (P < 0.001)
was observed for the two experimental conditions (see Fig. 5)
for the mean deviation (MD), mean square error (MSE) and
speed deviation index (SDI) suggesting that the model is bet-
ter at predicting low rather than high curvatures. This result
is not very surprising since the force field in our model is
parameterized with two constant forces, thus approximating
the real force field underlying the movement. The more a
movement is curved, the more imprecisions related to this
parametrization affect the model’s performance. Finally, the
original and extended models differed significantly in their
predictions for all the error measures (P < 0.001).

We have further investigated whether our model captures
the major temporal characteristics of the movement. We com-
pared the VITE and F2REACH models’ predictions to the
real data for the peak amplitude, time at peak amplitude and
speed asymmetry index, see Table 3. One way ANOVAs con-
firmed a very good match between our model’s prediction and

the data for all the above quantities (except for the velocity
peak which was slightly lower, P < 0.05), whereas the pre-
dictions of the original VITE model differed significantly
from the data (P < 0.001) except for the velocity peak ampli-
tude. To illustrate the quality of the extended and original
VITE models’ predictions for the time-dependency of the
signals, in Fig. 9 we compare instances of measured and pre-
dicted speed profiles (normalized in time). Finally we looked
at the percentages of trajectory points comprised within the
volumes defined by one and two standard deviations (SD) in
order to evaluate the performance of the models at portions
where the movement is very precise and systematic over tri-
als (see Sect. 4.4 for details). The results show that 81% of the
hand trajectory points predicted by our model were within
two SDs of the mean trajectory against 40% of the points
predicted by the original VITE model (Table 4 shows also
the result for 1D).

One should emphasize that the F2REACH model gener-
ates these 3-dimensional movements using few parameters:
β that controls the amplitude of the velocity and the two
repulsive force vectors v and w (see Fig. 3b) that parame-
terize the force field surrounding the subject. The other two
parameters α (time constant) and noise were fixed to 50 and
0.005 in all the simulations. The high accuracy with which the
model manages to replicate the movements confirms that the
model encapsulates the important features underlying free
reaching movements. The force field is a key variable of the
model. Next we show that the force field can be interpreted
in relation to the bio-mechanical constraints of the subject’s
body.

5.3 Understanding the force field

Figure 10 shows the components of the virtual repulsive
forces v and w parameterizing the force field of the
F2REACH model (Eq. 2). We observe that the values of
the components are clustered in two groups depending on the
starting location of the movement. They are, thus, consistent
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Fig. 9 Normalized time speed profiles of the measured human data and as predicted by the extended F2REACH and original VITE models, for
the six target positions and the two initial conditions (see Fig. 5)

within the same condition (see Fig. 10a). The fact that move-
ments to different targets are also clustered (forces underly-
ing similar movements have similar components) suggests
a certain regularity in the force field (see Fig. 10b). Finally,
the trials related to one movement are clustered according to
the subject executing the movement, which shows once more
that the parameter values found for the repulsive force fields
are not arbitrary (see Fig. 10c). Recall that the sign of the
force vector governs the direction of the deviation and that,
according to the expression of the modulating function h,
the resulting force F(x(t)) coincides with v at the beginning
of the movement and with w at the end of the movement,
F(t = 0) = v and F(x = x∗) = w.

Closer analysis of the clusters shows that the force v, dom-
inating the beginning of the movement, is highly dependent
on the starting location in the x and y coordinates (see Fig. 4),
whereas the force w, dominating the end of the movement,
varies according to the z direction. An intuitive explanation
for this result is shown in Fig. 11 where we show the direction
and amplitude of the repulsive forces v, w and their modu-

Table 4 Percentages of predicted trajectory points comprised within
one and two standard deviation volumes (1 SD and 2 SD), see Fig. 6c,
for the extended F2REACH and original VITE models

F2REACH VITE

1SD 54.64 ± 19.17 31.11 ± 8.44

2SD 80.89 ± 14.82 39.76 ± 9.18

This error measure is highly restrictive as it penalizes the model pre-
dictions at points where the five trials per subject and movement type
are very consistent

lated sum F(x(t)) (Eq. 3) for different types of movement.
We see that, in the second starting position (arm extended
in front of the body) the subject pushes his or her hand in
the direction of the target (see Fig. 11a), whereas, in the first
starting position (arm extended along the body) the subject
must first push the hand to the right in order to avoid the
body, and then bring the hand downwards in order to avoid
reaching the limit of the shoulder joints (see Fig. 11b).
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Fig. 10 Components of the
repulsive forces v and w. a We
show the components of the first
repulsive force v for the two
conditions: arm extended along
the body (red) and arm extended
in front of the body (blue). Two
practically non-overlapping
clusters can be observed
showing a consistency of the
parameter values within one
condition. b We show the
components of the second
repulsive force w in the first
condition for the six targets
(different scale). Again the
parameter values are clustered
such that movements oriented
toward one target are close
together, showing a regularity in
the repulsive force field. c We
show the components of the first
repulsive force v in the first
condition and target right ear for
the ten subjects. Clusters
corresponding to the subjects
can be identified for the five
trials representing the movement

To better understand the effect of the forces when start-
ing from the same initial condition, we compared the values
found for the force components when reaching to two differ-
ent targets (Fig. 11b, c). Unsurprisingly, the repulsive vec-
tor v is coherent across conditions irrespective of the target
position, whereas the repulsive vector w depends on the tar-
get position and moves along the normal to the head surface
at the target’s position.

We also considered whether the magnitude of the repulsive
force is related to the geometry of the subject’s body, such as
the length of the forearm for example. We observed a linear
correlation between these two quantities (shown in Fig. 12):
the shorter the arm, the more the hand must be pushed away to
circumvent the head. Finally, we observed that the vectors of
repulsive forces were coherent across subjects. These results
are in agreement with the driving hypothesis of our model,
namely that the curvature of reaching movements is the result
of an explicit encapsulation of the task constraints in a control
system which would, in the absence of constraints, produce
straight-line motions. However, the opposite is not true, as we
find non-null forces for quasi-straight movements, which are
parallel to the motion. In the movements we have considered
here, the task constraints comprise geometrical constraints
related to the body.

5.4 Stability analysis of the model

The dynamical system described in Eq. 1 is globally asymp-
totically stable around a unique equilibrium point, the target
position x∗. We have omitted the analytical proof but the
interested reader can convince themselves by computing the
determinant of the Jacobian of the dynamical system around
the fixed point and observe the latter to be always negative.
Next we define the conditions under which the F2REACH
model including the repulsive force field (see Eq. 2) is guar-
anteed to converge to the target. Let there be a perturbation
that drifts the hand far away from the initial and target posi-
tions, such that |x(t)−x(0)|−|x(t)−x∗(t)| < ε, with ε ∈ R

very small and h(x(t)) and 1−h(x(t)) approaching 1/2. The
system converges to a stable state iff |1/2(v + w)| < 1 such
that the amplitude of the repulsive force field is smaller than
the normalized attracting vector, i.e., the distance separating
the target from the present position only gets smaller through
time.6 Note that all the forces’ components found in our study
satisfied the above condition.

6 This result is, however, not valid in the vicinity of the initial position,
which acts a second unstable attractor. Since this affects only a tran-
sient part of the motion (onset of the movement), which is unlikely to
undergo perturbations, this could be ignored for the present study.
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Fig. 11 Physical interpretation of the directions and amplitudes found
for the repulsive forces v, w and their modulated sum F(x(t)) in our
extended F2REACH model (Eqs. 2 and 3) relative to a schematized
humanoid. Three movements of the same subject are shown. a The sub-
ject reaches for the top of the head (movement 4) with the arm extended
in front of the body (condition 2). b Same position target as in a with the
arm extended along the body (condition 1). c Same condition as in b, but
the subject reaches to the left ear (movement 3). Due to the nature of the
modulating function h(x(t)), i.e., h(x(0)) = 1 and limt→∞ h(x(t)) = 0
(see the Appendix), the resulting force F(x(t)) coincides with v at the
beginning of the movement and with w at the end of the movement,

i.e., F(t = 0) = v and F(x = x∗) = w (Eq. 3). From a and b one
can see that the initial condition affects the repulsive forces v and w.
For example, in the second condition (a), v is in the direction of the
target, whereas in the first condition (b and c) it is deviated to the right
in order to avoid the body and downwards such that the arm does not
reach the shoulder extension limit. In addition, v is coherent within the
same condition (see b and c). The target position particularly affects
the repulsive force w (predominant at the end of the movement) that
is similar to the normal of the head surface approached. F(x(t)) was
scaled for illustrative reasons

6 Discussion

We have hypothesized that the curvature of unconstrained
reaching movements is due to an explicit encapsulation of
the task constraints by the CNS in a virtual force field (F2).
Movements thus unfold in time according to a dynamical sys-
tem that attracts the hand to the target position while repel-
ling it from undesirable locations in space (such as objects
in the environment, the subject’s body and joint limits) and
while compensating for unexpected perturbations of the arm.
Furthermore, we have argued that the curvature observed in
natural movements is not a by-effect of the inherent dynamics
of the body but a necessary and voluntarily controlled feature.

In order to probe our hypothesis, we have conducted
motion studies in which healthy adult subjects produced nat-
ural reaching motions directed to various locations on their
head. To highlight the effect that body constraints may have
on the curvature of the movement, we asked the subjects to
initiate the movement from two locations: one that required
the subject to move alongside the body, the other which
allowed the subject to move quasi freely. We showed that
our mathematical model, the F2REACH model, could predict
the major kinematic features of the movements, such as the
bell-shaped velocity profile. Most importantly, it could
account for both the weak and strong curvatures of the
movements.
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Fig. 12 The amplitude of the repulsive force w (Eqs. 2 and 3) is line-
arly correlated to the length of the subjects’ forearms for the movement
reaching to the left ear with the right arm (condition 1), showing that
the repulsive forces in our model are affected by geometrical features
of the body. Intuitively, with a shorter forearm, the hand needs to be
pushed stronger away to circumvent the head

This led us to argue that a single controller underlies both
straight and curved movements. The controller adapts the
trajectory according to multiple constraints the subject has
consciously or not decided to take into account. Although
we have only shown that it can precisely reproduce the kine-
matics of self-oriented movements, the model is general and
can generate natural movements to any target in both intra-
personal and extrapersonal spaces, e.g., in another study that
investigates imitation of unnatural postures we successfully
use this model to simulate reaching to objects on a table.

6.1 Assumptions of the model

The first assumption we have followed is that of a function-
ally hierarchical motor control system proposed by Bernstein
(1947) and translated partly in Bernstein (1996). The hier-
archy consists of four levels: complex actions with abstract
goals, dealing with 3-dimensional space, muscle synergies,
posture and muscle tone. In our study, we considered the
first and second levels, in that we addressed 3-dimensional
goal-directed reaching movements, characterized by a sin-
gle target position. By leaving out the question of how such
high-level control is then translated into muscle synergies
and the control of posture and muscle tone, we follow the
observation that: electrical stimulation of the brain motor area
elicits reaching movements in primates (Graziano et al. 2002,
2005) and leg movements in frogs (Bizzi et al. 1982). Interest-
ingly, all of these movements converge to the same position in
extrinsic space independently from the initial posture. Thus,
the control of these movements seems to use solely the def-
inition of the desired final position, and not a description of

low-level muscle activations (in a way functionally similar
to muscle synergies when compared to activating individual
muscles, see d’Avella et al. (2003)). In addition these studies
indicate that reaching movements are extensively represented
in the motor cortex.

Another argument in favor of a “high-level” extrinsic
3-dimensional representation of movements come from evi-
dence of the many to one mappings between: (1) muscles and
joint configurations, (2) muscles and end-effector positions
or (3) joint configurations and end-effector positions. Con-
trolling the hand in a 3-dimensional extrinsic space over an
intrinsic joint space is advantageous in that it allows to easily
encapsulate task constraints, such as avoiding surrounding
objects, and plan movements accordingly (these task con-
straints would have an infinite number of possible represen-
tations in the joint and muscle spaces). Also note that we
have assumed that movements were computed in a Cartesian
frame of reference located on the body. It would however be
conceivable to compute the same movement according to a
polar coordinate system without affecting the prediction of
the model.

The fact that we do not address the above two lower-
levels of motor control, is a limitation of the model. As stated
by Bernstein, the problem of translating a kinematic signal
encoded in a 3-dimensional extrinsic frame of reference into
muscle activations (so-called degrees of freedom problem) is
complex because of the redundancy of the muscular system.
An infinity of different muscle activations leads to the same
kinematic motion of the end-effector. Although this problem
is of the highest importance for a complete motor control
theory, we do not address this problem here [see d’Avella
et al. (2003), Todorov and Jordan (2002) and Guigon et al.
(2007) for possible solutions].

Another important assumption we make is that the CNS
can represent forces internally. Our model is based upon
a force field that encapsulates the constraints of the task,
which implies the knowledge of a mapping between differ-
ent locations in the subject’s peripersonal space and virtual
repulsive forces. It thus requires the existence of an internal
model of the environment in terms of attractive or repulsive
force fields in the brain. The above hypotheses are not at
odds with the literature. There is substantial evidence that
the brain is capable of learning an internal representation of
external forces in order to adapt its control of the motion of
the hand (Shadmehr and Mussa-Ivaldi 1994; Conditt et al.
1997; Shadmehr and Brashers-Krug 1997; Thoroughman and
Shadmehr 2000; Gandolfo et al. 1996), when subjected to
these for a long enough period of time. Another force that
is centrally represented and integrated in the internal
dynamic control models for reaching is the gravitational
force (Shadmehr and Mussa-Ivaldi 1994; Papaxanthis et al.
1998). In our model the geometry of the body and external
objects, among other factors, contribute to the force field.
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Accordingly, McIntyre et al. (1995) have shown that the brain
may integrate an external constraint such as a curved surface
through an a priori internal model of the surface geometry.

6.2 Properties of the model

Interesting properties of the F2REACH model for motor con-
trol are: (i) the system is asymptotically and globally sta-
ble; (ii) it exploits a biologically plausible signal-dependant
noise and (iii) planning of the movement is done through
closed-loop control. This enables on-the-go re-computation
of the motion in the face of perturbation or imprecision in
the sensory-motor loop. Closed-loop control through afferent
and efferent internal feedback loops (Desmurget and Grafton
2000) allows to take into account the uncertainty of the “real-
world” instead of just “playing a prerecorded tape” (Todorov
2004). We suggest that only an online mechanism that tightly
couples movement planning with movement execution could
explain the irregular curvatures observed in some of the tri-
als; the latter were likely due to an on-the-go correction of
the trajectory.

Most importantly, we have proposed a force field frame-
work as a powerful mechanism for integrating various con-
straints related to, e.g., the dynamics and geometry of the
arm, external objects and the person’s own embodiment, into
a unique and generic controller. Whereas the goal of the con-
troller is encoded according to kinematic variables (a position
to reach), the constraints are encoded in dynamic variables,
the force field, and may as well be expressed in an intrinsic
(limit joint angles) or extrinsic (surrounding objects) frame
of reference. This framework could reconcile findings that
argue for both dynamic and kinematic planning (Vetter et al.
2002; Admiraal et al. 2004), in providing a computational
account for how the dynamics of the arm can be taken into
account in kinematic planning (Sabes and Jordan 1997). It
also explains how external objects might influence the tra-
jectory of the hand (Brenner and Smeets 1995).

Furthermore, the representation of this environmental for-
ce field generalizes to performing the motion faster or slower
(Harris and Wolpert 1998). This is equivalent to learning to
vary the value of the factor β in our model (see Eq. 1). Finally
the representation of the force field, although local, extends to
nearby locations (smoothly decaying away from the position
of the perturbation). Similarly, our expression of the force
field is spatially continuous.

The extent to which the model’s predictions can be gen-
eralized to any reaching movement remains to be shown,
since we only demonstrated a good agreement of the model
with data from reaching movements directed to the head.
The movements we have addressed are nevertheless quite
generic in that they were entirely unconstrained. For exam-
ple, we did not observe a reduction of the degrees of freedom
as in Klein Breteler et al. (1998) where the subjects had a ten-

dency to produce movements in 2D rather than in 3D (see
example in Fig. 1). In addition many of the velocity profiles
recorded, exhibited asymmetric velocity profiles similar to
those observed (Gielen et al. 1985; Brown and Cooke 1990).
These characteristics are present in all reaching movements
and we are thus confident that the model is generic in its
representation of the class of reaching movements.7

The force field in our model is parameterized by two con-
stant forces and is thus only an approximation of the real
underlying force field. This approximation may lead to im-
precisions in the model’s predictions, especially in places
where the field changes importantly locally.

While our model proposes a way in which the brain may
encapsulate all types of motion-related constraints (e.g., body
and joint-limits avoidance, inertia of the arm) within a general
controller of reaching movements, we do not provide a gen-
eral method for expressing these constraints in the form of a
force field. Our future efforts will concentrate on segmenting
the contributions of different constraints and on a mechanism
that would allow to learn these through experience.

6.3 Predictions of the model

Our model is consistent with several experimental observa-
tions and provides a theoretical basis for their interpretation.

For example, in different pointing and reaching studies,
systematic misdirections of the fingertip trajectory were obse-
rved (de Graaf et al. 1991, 1994; Brenner and Smeets 1995).
The misdirections were clockwise and anticlockwise when
pointing to targets on the right and on the left frontal space,
respectively. To explain their results the authors hypothe-
sized a distorted and contracted internal representation of
space (de Graaf et al. 1991, 1994) or speculated that the sub-
jects anticipate the purpose of the target (Brenner and Smeets
1995). Within the repulsive force field framework we propose
in this paper, these misdirections are created by the geomet-
rical relationship between the target and the subject’s body.8

Our model predicts that if one was to repeat the experiment in
a different part of the workspace where the misdirections are
mainly due to body avoidance, the misdirections would be
anticlockwise and clockwise when the target is respectively

7 Current work of ours has applied the model to account for reaching
movements oriented to targets on a table in natural and unnatural pos-
tures where an artificial constraint is introduced. Preliminary results
show that the model again encapsulates with high accuracy all the fea-
tures of the movements (unpublished data).
8 These two similar studies, de Graaf et al. (1991) and Brenner and
Smeets (1995), puzzlingly reported different results. We suggest that
the differences observed can be attributed to the distance chosen from
the subject to the initial position of the hand [25 cm in Brenner and
Smeets (1995) and 40 cm in de Graaf et al. (1991)], as the repulsive
forces responsible for avoiding the body would fade away as this dis-
tance increases.
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Fig. 13 Prediction of the F2REACH model: the curvature increases
with higher speed, here equivalent to higher β values. The effect is not
visible in quasi-straight movements

right and left from the closest virtual line connecting the sub-
ject’s trunk with the hand’s initial position.

Furthermore, our model predicts that faster movements
may be more curved, as shown on Fig. 13. Even though
this prediction has been empirically observed (Klein Breteler
et al. 1998), it contradicts several experimental and theoreti-
cal studies that have shown curvature-speed invariance (Nis-
hikawa et al. 1999; Sha et al. 2006; Liebermann et al. 2008)
and suggest that speed and path are planned independently
(Todorov and Jordan 2002; Torres and Zipser 2002; Biess
et al. 2007). In our model speed modulates the curvature of the
path by construction. However, the deviation is also propor-
tional to the magnitude of the repulsive force field such that
this effect is particularly important for highly curved move-
ments (see Fig. 13). This might explain why curvature-speed
invariance is more consistently observed, as highly curved
movements are rarely studied. Otherwise, an additional com-
pensatory mechanism should be added to the model that mod-
ulates the force field as a function of desired speed.

Finally, the model suggests that the asymmetry of the
velocity profile is due to the difference in directions between
the repulsive force field and attracting vector. Finally, even
though the curvature of a movement is highly systematic
and reproducible (Soechting and Lacquaniti 1981; Pellegrini
and Flanders 1996; Admiraal et al. 2004), our model would
predict that if you alter the geometry of the subject’s body,
such as adding a false belly for example, then reaching move-
ments will be displaced away from the artificial object even if
this object does not interfere with the original trajectory. Our
model also predicts that the shape of the object would matter.

6.4 Neural correlates of the model

Most importantly, the F2REACH model we propose is com-
patible with neurophysiological studies. Primate brain areas

have been identified as the loci of the computations involved
in the original VITE model (Bullock et al. 1998). Specifi-
cally, it was shown that the model’s variables display the same
dynamics of activation (e.g., response profiles and latency of
activity onset) as that of populations of neurons: the hand
velocity might be represented in area 4, whereas the hand
acceleration and position in area 5. Note that the extended
F2REACH model solicits only quantities that would be eas-
ily accessible to the CNS such as distances from the target
and initial positions.

A novel feature of the model is the repulsive force field
that shapes the landscape of the workspace, meaning that not
each position is equally likely to be visited. In other words,
the model assumes the existence of neural populations coding
for forces related to the body and surrounding objects. Area 5
is a putative region for the computation of the force field, as it
receives abundant somatosensory and visual inputs that are
necessary for the encapsulation of the geometrical proper-
ties of the body and surrounding objects in an internal model
(Scott et al. 1997; Graziano et al. 2000). We thus predict the
existence of a population of neurons in area 5, whose activ-
ity would be close to baseline during straight movements and
would rotate in curved movements. In addition, the activation
of these neurons would be modulated by the introduction of
new objects in the workspace.

6.5 Conclusion

We showed that not only the spatial, but also the tempo-
ral features of unconstrained and naturally curved reaching
movements could be modeled through a dynamical system
modulated by a virtual force-field. We found that the model
was in very good agreement with kinematic data from human
motions, during unconstrained reaching movements directed
to the head. We showed that the natural curvature of these
movements could be attributed to the interplay between a tar-
get attractor and virtual repulsive forces that encapsulate a
representation of the geometry of the subject’s body. Such a
representation is a simple and powerful way to generate kine-
matically-driven trajectories that comply with the underlying
dynamic constraints.

7 Appendix

7.1 Original VITE system

The original VITE model’s dynamics as given by Bullock
and Grossberg (1988):

ẏ(t) = α(−y(t) + x∗(t) − x(t))

ẋ(t) = βtνy(t)
(4)
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where x(t) corresponds to the current position of the hand in
a three-dimensional extrinsic frame of reference and x∗(t) is
the location of the target (see Fig. 4). y is a secondary variable
related to the hand velocity. α and β are real positive time
constants and ν is a real positive exponent parameter. The
model recomputes at each time step the hand position x(t),
so as to generate an overall straight trajectory to the target
that follows a bell-shaped velocity profile. The first term of
the equation ensures that the unprimed acceleration vector
ẏ(t) is always directed toward the target, i.e., x∗(t) − x(t),
so that the target’s position x∗ forms a unique attractor of the
system. The amplitude of the acceleration ẏ(t) is proportional
to the distance separating the hand and the target. y(t) grows
quickly at the beginning of the movement and slows down
exponentially towards the end of the movement. To compen-
sate for this asymmetric velocity profile, y(t) is scaled down
in the second equation by a time-dependent variable βtν . ẋ(t)
is the hand’s velocity and can be viewed as the output activ-
ity of a corresponding neural population that would control
agonist muscle motoneurons (Bullock and Grossberg 1988).

7.2 Nonlinear functions used in the F2REACH model

The form of the nonlinear function g in Eq. 1 is the following:

g(u) = |d − u|u (5)

where the control vector u(t) = x∗(t) − x(t) + η is the vec-
tor separating the actual hand position x(t) from the desired
hand position x∗(t) (does not need to be stationary) with sig-
nal dependant noise η. The operator | | stands for the norm
of the vector and d is defined as:

d(t) = x∗(t) − x(0) (6)

the vector between the target x∗(t) and initial position x(0),
such that the term |d − u| is equivalent to the distance sepa-
rating the actual position of the end-effector from its initial
position. t is set to 0 each time a new movement is initiated.
In the absence of noise in the control signal u, the multipli-
cative factor |d − u| would be 0 at t = 0 and no movement
would be initiated.

The function h that modulates the force field in Eq. 3 is
defined by:

h(u) = |u|
|u| + |d − u| (7)

and normalizes the amplitude of the control signal u.
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