56 research outputs found

    The max-flow min-cut property of two-dimensional affine convex geometries

    Get PDF
    AbstractIn a matroid, (X,e) is a rooted circuit if X is a set not containing element e and X∪{e} is a circuit. We call X a broken circuit of e. A broken circuit clutter is the collection of broken circuits of a fixed element. Seymour [The matroids with the max-flow min-cut property, J. Combinatorial Theory B 23 (1977) 189–222] proved that a broken circuit clutter of a binary matroid has the max-flow min-cut property if and only if it does not contain a minor isomorphic to Q6. We shall present an analogue of this result in affine convex geometries. Precisely, we shall show that a broken circuit clutter of an element e in a convex geometry arising from two-dimensional point configuration has the max-flow min-cut property if and only if the configuration has no subset forming a ‘Pentagon’ configuration with center e.Firstly we introduce the notion of closed set systems. This leads to a common generalization of rooted circuits both of matroids and convex geometries (antimatroids). We further study some properties of affine convex geometries and their broken circuit clutters

    Even-cycle decompositions of graphs with no odd-K4K_4-minor

    Full text link
    An even-cycle decomposition of a graph G is a partition of E(G) into cycles of even length. Evidently, every Eulerian bipartite graph has an even-cycle decomposition. Seymour (1981) proved that every 2-connected loopless Eulerian planar graph with an even number of edges also admits an even-cycle decomposition. Later, Zhang (1994) generalized this to graphs with no K5K_5-minor. Our main theorem gives sufficient conditions for the existence of even-cycle decompositions of graphs in the absence of odd minors. Namely, we prove that every 2-connected loopless Eulerian odd-K4K_4-minor-free graph with an even number of edges has an even-cycle decomposition. This is best possible in the sense that `odd-K4K_4-minor-free' cannot be replaced with `odd-K5K_5-minor-free.' The main technical ingredient is a structural characterization of the class of odd-K4K_4-minor-free graphs, which is due to Lov\'asz, Seymour, Schrijver, and Truemper.Comment: 17 pages, 6 figures; minor revisio

    A characterization of box 1/d1/d-integral binary clutters

    Get PDF
    Let Q6 denote the port of the dual Fano matroid F*7 and let Q7 denote the clutter consisting of the circuits of the Fano matroid F7 that contain a given element. Let be a binary clutter on E and let d = 2 be an integer. We prove that all the vertices of the polytope {x E+ | x(C) = 1 for C } n {x | a = x = b} are -integral, for any -integral a, b, if and only if does not have Q6 or Q7 as a minor. This includes the class of ports of regular matroids. Applications to graphs are presented, extending a result from Laurent and Pojiak [7]

    The Klein bottle and multicommodity flows

    Get PDF

    Identically self-blocking clutters

    Get PDF
    A clutter is identically self-blocking if it is equal to its blocker. We prove that every identically self-blocking clutter different from is nonideal. Our proofs borrow tools from Gauge Duality and Quadratic Programming. Along the way we provide a new lower bound for the packing number of an arbitrary clutter

    Clutters with Ï„2=2Ï„

    Get PDF
    Motivated by Lehman\u27s characterization of the minor-minimal clutters without the MFMC property, we propose a conjecture about the minor-minimal clutters with Ï„

    Intersecting restrictions in clutters

    Get PDF
    A clutter is intersecting if the members do not have a common element yet every two members intersect. It has been conjectured that for clutters without an intersecting minor, total primal integrality and total dual integrality of the corresponding set covering linear system must be equivalent. In this paper, we provide a polynomial characterization of clutters without an intersecting minor. One important class of intersecting clutters comes from projective planes, namely the deltas, while another comes from graphs, namely the blockers of extended odd holes. Using similar techniques, we provide a poly- nomial algorithm for finding a delta or the blocker of an extended odd hole minor in a given clutter. This result is quite surprising as the same problem is NP-hard if the input were the blocker instead of the clutter

    Ranking tournaments with no errors I: Structural description

    Get PDF
    In this series of two papers we examine the classical problem of ranking a set of players on the basis of a set of pairwise comparisons arising from a sports tournament, with the objective of minimizing the total number of upsets, where an upset occurs if a higher ranked player was actually defeated by a lower ranked player. This problem can be rephrased as the so-called minimum feedback arc set problem on tournaments, which arises in a rich variety of applications and has been a subject of extensive research. In this series we study this NP-hard problem using structure-driven and linear programming approaches. Let T=(V,A) be a tournament with a nonnegative integral weight w(e) on each arc e. A subset F of arcs is called a feedback arc set if T\F contains no cycles (directed). A collection C of cycles (with repetition allowed) is called a cycle packing if each arc e is used at most w(e) times by members of C. We call T cycle Mengerian (CM) if, for every nonnegative integral function w defined on A, the minimum total weight of a feedback arc set is equal to the maximum size of a cycle packing. The purpose of these two papers is to show that a tournament is CM iff it contains none of four Möbius ladders as a subgraph; such a tournament is referred to as Möbius-free. In this first paper we present a structural description of all Möbius-free tournaments, which relies heavily on a chain theorem concerning internally 2-strong tournaments
    • …
    corecore