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Using a result of Seymour we give a characterization of a class of knapsack problems for which the clutter of minimal covers has 
the max-flow-min-cut property with respect to all right-hand sides. This implies that adding the minimal cover cuts to the problem 
is sufficient to guarantee an integer optimum for the linear programming relaxation. We also give a characterization of all the 
minimal cover cuts for this class of knapsacks. 

integer programming 

I. Introduction 

In this paper we consider the knapsack  poly- 
tope Pa.b = conv{x ~ {0, 1}n: ax < b} where 
a 1 . . . .  , an, b are non-negative integers. The study 
of the facial structure of this polytope has re- 
ceived considerable attention in the literature 
(see e.g. [1,2,6,9,10]). As a result, several classes 
of facet-defining inequalities for P~,b are known 
to date. These inequalities are very useful, since 
for any 0-1 linear programming problem, each 
individual constraint can be regarded as a knap- 
sack, and so, as indicated in the seminal work of 
Crowder, Johnson and Padberg [5], facets and 
valid inequalities for the knapsack polytope can 
be used as strong cutting planes in the solution of 
large-scale 0-1  linear programming problems. 

The basic class of facet-defining inequalities 
for P~,b is that associated with the minimal  covers 

of the inequality ax < b. As shown by Balas and 
Jeroslow [2], the minimal cover inequalities pro- 
vide an alternative integer programming formula- 
tion of the knapsack problem. A natural question 
is to characterize the parameters a, b for which 
the class of minimal cover facets is sufficient for 

describing the knapsack polytope Pa.b" In this 
paper we prove that Pa,b is fully described by 
minimal cover facets for every choice of b if and 
only if the sequence a . . . . . .  a I is weakly superin- 

creasing, i.e. satisfies: a n + . . .  + a q < a q _ l ,  q =  
n , . . . , 2 .  For proving this fact, we use a result of 
Seymour on Mengerian clutters. We first recall 
the necessary preliminaries and notation. 

A clutter .2 ~ is a family of subsets of a set 
E ( . ~ )  with the property that A 1 ~ A  2 for distinct 
members A1, A 2 of .Z~. The blocker b (S¢)  of 
is the family of minimal sets (here minimal is 
meant with respect to inclusion) intersecting all 
sets if _~. Clearly, the family b ( .~ )  is also a 
clutter. 

For every clutter .~  and for every subset Z of 
E ( 2 ) ,  the deletion . 2 ~ \ Z  and the contraction 
. ~ / Z  are defined as follows: 

{A n Z  = 

.c.~/Z = minimal members of {A - Z :  A e . ~ } .  

Both . ~ \ Z  and 2 / Z  are clutters and it is very 
easy to show that 

b ( L \ Z )  = b ( L ) / Z ,  b ( L / Z )  = b ( L ) \ Z ,  
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and that if Z I ~ Z 2 = O ,  then ( L \ Z 1 ) / Z 2  = 
( L / Z z ) \ Z x .  

A minor of 2 is a clutter which may be 
obtained from .g~ by a sequence of deletions and 
contractions. 

Let 2 be a clutter and let M.~ be the 0-1 
matrix whose rows are the incidence vectors of 
the subsets A ~S#. Consider the following dual 
pair of linear programs associated with M_~: 
(Pl) max lny 

s.t. yM_7 < w, 
y>_O, 

(P2) rain wx 
s.t. M ~ x  >_ ln, 

x > 0 .  
A clutter _ow :~ {O } has the weak max-flow-min-cut 
property (weak MFMC) [12] if the program (P2) 
has an integer optimizing vector for all integral w 
with w >- 0. The clutter _~ is called Mengerian 
[12] if both programs (P1) and (P2) have an inte- 
ger optimizing vector for all integral w with w > 0. 
The weak MFMC property is implied by, but is 
strictly weaker than, the property of being Men- 
gerian. 

Seymour [12] also proved that both the weak 
MFMC property and the property of being Men- 
gerian are hereditary with respect to taking mi- 
nors, thus suggesting the possibility of character- 
izing both classes in terms of forbidden minors• 
Unfortunately, Seymour provided convincing evi- 
dences that the problem of describing all minimal 
(with respect to taking minors) non-Mengerian 
clutters is very hard. Nevertheless, he was able to 
solve this problem for the interesting class of 
clutters having no minor isomorphic to P4 = 
{{1, 2}, {2, 3}, {3 4}}. 

Theorem 1.1. [12]. I ra  clutter _~a has no P4 minor, 
then .Z~ is Mengerian if and only if 2 has no 
minor isomorphic to one of  the following clutters: 

Q6 = {{1, 3, 5}, {1, 4, 6}, {2, 3, 6}, {2, 4, 5}}, 

Jq = {{1 , . . . ,q} ,  {0, i} for i =  1, 2 , . . . , q } ,  

q > 2 .  

Observe that the clutter Jq is a minimal (with 
respect to taking minors) non-MFMC clutter. In- 
teresting progresses in the study of the properties 
of minimal non-MFMC clutters have been re- 

cently made by Cornu6jols and Novick [4], Pad- 
berg [11] and Seymour [13]. 

A clutter .~  is a shift clutter if there exists an 
ordering or of the elements of E(Se) such that 
for each member A of S ~ and each pair of 
elements ei, ej of E(_~ ca) such that e i ~ A ,  e~ C A  
and o-(ej) < o'(ei), there exists a member A' of -~ 
with the property that A'  ___A - {e i} U {e~}. If .~  
is a shift clutter then the matrix M_~ is a (proper) 
regular matrix [7] and the problem (P2) is also 
called regular set-covering problem. In [3] it was 
shown that shift clutters are hereditary with re- 
spect to taking minors and an O(mn)  algorithm 
to solve problem (P2) was given. Examples of 
clutters which are not shift clutters are P4 and 

06. 

Remark 1.2. A consequence of Theorem 1.1 is 
that shift clutters that are Mengerian or have the 
MFMC property can be characterized in terms of 
forbidden minors; namely, a shift clutter .~  is 
Mengerian if and only if it has the weak MFMC 
property if and only if it has no Jq minor, q > 2. 

A significant example of shift clutter is the 
clutter of minimal covers of a linear inequality 
Y'.7=laiXi<b. Let N = { 1  . . . . .  n}, a subset C of N 
is called a minimal cover if Ei~cai  > b and every 
proper subset S of C satisfies ~'~'i~ sai <-~ b. 

Let Ka, b denote the family of minimal covers 
associated with the inequality ax < b. Then Ka, b 
is a shift clutter. To see this, it suffices to order 
the elements of N in such a way that: a I >- a 2 > 

• . .  > a n .  

Let Ma. b denote the matrix whose rows are the 
incidence vectors of the members of K~, b. In [2] 
Balas and Jeroslow proved that the knapsack 
problem max{ws : ax < b, x ~ {0, 1} n} is equiva- 
lent to the set covering problem min{wx : M~,bX > 
1,, x ~ {0, 1}n}. 

We denote by Pa,b the polytope conv{x~ 
{0, 1}:ax _< b} (knapsackpolytope) and, finally, we 
say that the sequence a . . . . . .  a I is weakly superin- 
creasing if 

an+ "'" +aq<_aq_ 1 for all q = 2 , . . . , n  

and superincreasing if the inequality holds strictly 
for all q = 2 . . . . .  n. 

In this paper we show that the knapsack clut- 
ter Ka, b associated with the inequality ax < b, 
a ~ Z~, has the weak MFMC property for every 
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b ~ Z+ if and only if the c o m p o n e n t s  of  a def ine 
a weakly superincreasing sequence• Moreover ,  in 
this case we provide  a comple te  descr ipt ion of  the 
clut ter  K , ,  b and of  its blocker.  

(iii) for each positive integer b, the clutter K.. b 
has the weak MFMC property; 

(iv) for each positive integer b, the clutter Ka, b 
is Mengerian. 

2. Knapsack clutters with the weak MFMC prop- 
erty 

Let  a 1, a 2 . . . . .  a n, b be  non negat ive  integers  
and consider  the following l inear  inequali ty 

~ a i x i  <_ b. (2.1)  
i=1 

Fact  2.1. Let Ka, b be the clutter of  minimal covers 
associated with the inequality (2•1)• Then, for each 
pair C, D of disjoint subsets of  N = {1 . . . . .  n}, the 
minor Ko,b \ D / C is the clutter of  minimal covers 
associated with the inequality: 

E aixi < b -  E a i .  
i ~ N - ( C u D )  i~C 

Proof.  Let  k be an e l emen t  of  N, let a '  be the 
vector  (a  1 . . . . .  ak_ l ,  ak+ 1 . . . .  , a  n) and let b ' = b  
- a k. The  result  follows f rom the following asser- 
tions: 

K a , b \ { k }  = K a ' , b ,  K a , b / { k }  =Ka ' , b ' ,  

Both  are easy to verify. Namely ,  a subset  A of  N 
is a m e m b e r  of  Ka,b\{k} if and only if it is a 
minimal  cover  of  (2.1) which does not  contain  the 
e l emen t  k, and hence  if and only if it is a mini- 
mal  cover  of  Y',~ N_{klaixi < b. 

On the o the r  hand,  a subset  A of  N is a 
m e m b e r  of  K~,b/{k} if and only if e i ther  A or 
A u {k} is a minimal  cover  of  (2.1). It  follows that  
A ~ K a , b / { k }  if and only if ~ . , i ~ A a i X i > b - - a  k 
and, for each j ~ A ,  ~ i e A _ { j } a i x i < _ b - a k ,  o r  

equivalently,  if and only if A is a minimal  cover  
o f  Ka, b,. [] 

We are now ready  to prove  the main  theorem• 

Theorem 2.2. Let a 1 > a 2 > • • • > a n be positive 
integers. Then the following assertions are equiva- 
lent: 

(i) for each positive integer b, the clutter K~, b 
has no minor isomorphic to Jq for any q > 2; 

(ii) the sequence: a n, a n _ 1 . . . . .  a2, a 1 is weakly 
superincreasing ; 

Proof.  The  equivalence of (i), (iii) and (iv) follows 
f rom R e m a r k  1.2• 
(i) ~ (ii). Assume  that  the sequence  a . . . . . .  al is 
not weakly super increasing.  Let  p be the first 
index for which this p roper ty  fails, i.e. 

an+a  n 1 + . . .  +ap+l>ap,  (2.2)  

a n --Fan_ 1 -b " "" -Fal+ 1 < a l ,  

l = n  - 1 . . . . .  p -  1. (2.3)  

Let  the set {k l , . . . , kq }  , with p +  1 < k  1 < " "  
< kq <_ n, be  a minimal  cover  for the inequality: 
y~n) =p + l a j x j  _< ap. Consider  the knapsack  inequal-  
ity: 

q 

< a o. (2•4) apXp + E akjXk~--  
j= l  

The  clut ter  of  minimal  covers of  (2•4) is precisely 
Jq and it is a minor  of  K ~ , ,  namely  it is the 

• , p 

minor  K~,ap\(N - {p, k 1 . . . . .  kq}). 
(ii) ~ (i). Assume  that  the sequence  a . . . . . .  a~ is 
weakly super increas ing  and that,  for some posi- 
tive in teger  b, the clut ter  K~, b has a minor  K '  
i somorphic  to Jq for some q > 2. Then,  there  
exist disjoint subsets  C and D of N such that  
K ' =  K~. b \ D / C .  Set  N '  = N -  C u D = 
{i 0, i l , . . . ,  iq} and suppose  that  K '  = {{i 1 . . . . .  iq}, 
{i0, i 1} . . . . .  {i0, iq}}. By Fact  2.1, we have that  K '  
is the clut ter  of  minimal  covers of  the knapsack:  

y" ajxi < _ b ' = b -  ~_~ ak. 
j ~ N '  k ~ C  

Hence ,  we have the following relations: 

all + • • • +aiq ~ b', aio < b ' .  

The  subsequence  a i , . . .  , ai? aio is also weakly 
super increas ing,  imptying that  a i + . . .  + a ,  _< 

. . . .  q , 1 

aio, In contradlct~on with the above relations.  [] 

Let  Ma, b be the matr ix  whose rows are the 
incidence vectors  of  the minimal  covers in Ka, b. 
The  above t h e o r e m  asserts  that,  if a ~ , . . . ,  a n is a 
weakly super increas ing  sequence,  then  the poly- 
hedron  P = {x ~ ~ _  : M~,bX > I n} has only inte- 
gral vertices• The  following propos i t ion  estab-  
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lishes a relationship between the polyhedron P 
and the knapsack polytope P~,b" 

Proposition 2.3. Given positive integers a l . . . . .  an, 
b, the following assertions are equivalent: 

(i) Ka, b has the weak MFMC property. 
(ii) The polyhedron P = {x ~ ~+ : Ma,bX >_ 1 n} 

has only integral vertices. 
(iii) The polytope Q = {x ~ ~+ : Ma,b x >_ In, X 

>_ I n} has only integral vertices. 
(iv) Pa,b has only trivial and minimal cover 

facets, i.e. 

P ~ , b = ( X ~ :  ~ x i < I C I - 1 ,  C~K~,b}  
i ~ C  

N { x ~  ~":On < x  < ln}. 

subsets S ___ {1 . . . . .  n} such that  ~,i ~ saiXi <- b. The 
family ,~ra, b defines an independence system and 
its members  are said to be independent  (see [8]). 
The maximal feasible solutions of ax < b are the 
bases of ~ , b ;  the circuits of Ja,b are the minimal 
covers associated with ax < b (minimal non feasi- 
ble solutions). Observe that the circuits of Ja,b 
are the members  of K~. b and that the bases of 
J~,b are the complements of the members  of 
b(K,,b). It follows that a characterization of cir- 
cuits and bases of "Y~,b immediately implies a 
characterization of Ka, b and of its blocker. 

The following two theorems characterize both 
the bases and the circuits of J~,b" We denote by 
[a, b] the set of all integers between a and b 
(including the extrema). 

Proof. (i) ¢~ (ii). (ii) =~ (i) follows from the defini- 
tion. To prove that (i)=~ (ii) observe that all the 
vertices of the polyhedron P are integral if the 
problem min{wx : M~,bX >_ 1, x > 0} has an inte- 
gral optimizing vector for every integral vector w 
for which the minimum is finite. Observe also 
that the latter problem is unbounded if and only 
if the vector w has some negative component.  It 
follows that all the vertices of P are integral if 
the problem min{wx : Ma,bX > 1, x >_ 0} has an in- 
tegral optimizing vector for every integral and 
nonnegative vector w. But the latter condition is 
exactly the weak MFMC property. 

(iii) ,~, (iv). Obvious, using transformation y = 
1 n - x .  

(ii) = (iii). Set P~ = conv(x ~ Z~_ : Mo,bx > ln} 
and Ql = conv(x ~ {0, 1}n: Ma,b x > in). Condi- 
tion (ii) implies that PI = P; to prove (iii) we have 
to show that QI= Q = P A  {x ~ En :0 n < x  < ln}. 
This can be done by showing that every non 
trivial inequality which induces a facet of Qt also 
induces a facet of P r  

For this purpose, it is enough to check that any 
facet-inducing inequality dr  > 1 of Qt, with d > 0, 
is valid for P1. Take any vector x in Z~_ which 
satisfies Ma,bX > 1, set x '  ~ {0, 1} n with x~ = x  i if 
x i < l  and x ~ = l i f x  i > l . T h e n ,  x ' ~ P l ,  a n d s o  
d x > d r ' > l .  Therefore,  d r > l  has the form 
~.i~sXi~___ 1 for S ~ K a ,  b. 

(iii) ~ (ii). Follows from the fact that every 
vertex of P is a vertex of Q. [] 

Let ~a,b be the family of feasible solutions of 
the knapsack problem ax < b; i.e, the family of 

Theorem 2.4. Let a 1 . . . . .  a n be a weakly superin- 
creasing sequence and let a I < b < Y'.7=lai . There 
exist integers kl ,  k z , . . . , k  q with q > 2 and 1 = k  1 
< k  2< . ."  < k q < n  + l, such that the bases of  

Ja,b are the following q sets: 

B i = {k l ,  k 2 . . . . .  ki_l} U [ k i +  1,n] 

for l <i  < q - 1 ,  

and B o = {k 1, k 2 , . . . ,  kq_ 1} U [kq,  n]. Further- 
more, the integers k 1 . . . . .  kq are defined by the 
following relation: 

k i = m i n  h > k i _ L :  ~ a ~ j + a h  <b  
j= l  

for 1 <i  <q ,  (2.5) 

with the convention that k q = n + 1 when the mini- 
mum in (2.5) does not exist. 

Proof. We construct recursively the integers 
k 1 . . . . .  kp and the bases B1, . . . ,  BR of J~,b" The 
number  q will then denote the number  of steps 
after which the process stops. 

Step 1. The set B 1 = [2, n] is a base since a 2 
+ . . .  + a n < a l < b  and a~+ " .  + a n > b .  We 
now examine the bases of Ja,b containing the 
element 1. 

Step 2. Set k 2 = min{i > 1 : al + a i < b} if the 
minimum exists, else set k e = n + 1. If k 2 = n + 1 
then the set B 2={1] is a base, and Ja,b has 
exactly two bases: namely B 1 and Be, so the 
theorem holds with q = 2. 

If  k e < n then we deduce, from the definition 
of k2, that aa + ak2 < b; moreover,  if k 2 < n - 1, 
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the hypothesis that a n . . . . .  a I is weakly superin- 
creasing implies that a ~ + a k 2 + l +  " "  + a n < a  ~ 
+ ak2 < b. As a consequence, the set {1} u [k 2 + 
1, n] is independent.  We have two cases: 

Either a~ + a k z +  " "  +an<b ,  i.e. the set B e 
= { 1 } u [ k  2 ,n]  is a base, then a x < b  has two 
bases: namely B~ and B 2 and the theorem holds 
with q = 2. 

Or a~ + a k 2 +  " "  +a  n > b ,  i.e., the set B e = 
{1} U [k:  + 1, n] is a base and one must examine 
the maximal feasible solutions which contain both 
elements 1 and k: .  

We iterate the process and it eventually stops 
after q steps. Then we have constructed q bases 
B 1 . . . . .  Bq with B p = { l ,  k 2 , . . . , k p _ O U [ k p +  1, 
n] for 1 < p  _< q - 1 (else the process would stop 
earlier) and Bq = {1, k 2 . . . . .  kq_l}  k.) [kq, n] (else 
the process would have one more step) with the 
integers k l , . . . ,  kq being given by (2.5). [] 

Let k l , . . . ,  kq be the integers given by (2.5); 
define the sets A ,  = [k,, + 1, k ,+  1 - 1] for u • 
{1 . . . . .  q - l } .  

Corollary 2.6. Let a l , . . . ,  a n be a weakly superin- 
creasing sequence and let a 1 <_ b < Y~7=lai. The non 
trivial facets of  the knapsack polytope Pa,b are 
defined by the following inequafities : 

xk  + . . .  + k k  +x i<_u  

f o r i  • A , ,  l <u < q - 1 .  (2.6) 

As a consequence of Corollary 2.6 one can easily 
deduce, by using the characterization of the facets 
of Pa,b with coefficients 0 and 1 and right hand 
side k > 1 given in [1], that every inequality (2.6) 
induces a facet of the polytope P,,h. 

Remark 2.7. Proposition 2.6 implies that the opti- 
mal solution to the knapsack problem max(cx : ax 
< b, x • {0, 1} n} can be found in polynomial time 
by solving a linear programming problem with at 
most n constraints. In fact, once the integers 
k 1 . . . .  ,kq have been computed, the problem is 
solved by the trivial (linear) algorithm which con- 
sists of computing the total weight of each base 
and choosing the largest value. 

Theorem 2.5. The circuits of  the independence 
system J, ,b are the sets 

S , ,~={k  I . . . . .  k , , i }  f o r i c A , , l < u < q - 1 .  

Proof. Every set S = S,, i is indeed a circuit of 
Ja,b since, by definition of k ,+  ~, S is not inde- 
pendent,  the set S -  {i} is contained in the base 
Bq and the set S -  {k t} is contained in the base 
B t for l < t < u .  

Conversely, let S be a circuit of Ja,b; hence 
1 • S. Let p be the first index in {1 . . . . .  q} such 
that kp+lf~S,  i.e., for p = q , k  l . . . . .  k q • S .  
Then, S NA u =~i for u = 1, 2 . . . . .  p - 1 ;  else if 
i • S N A, ,  then S would properly contain the 
circuit S,,i. It follows that p < q - 1; else S would 
be contained in the base Bq. 

Furthermore,  we must have that S n a p  ~ ¢; 
else S would be contained in the independent set 
{k 1 . . . . .  kp} LJ[kp+l + 1, n ] . I f  I S AAp l  > 2, then 
S would properly contain a circuit Sp, i for i • S 
cqAp. Therefore,  S n a p  = {i} which implies that 
S D_Sp, s and thus S = Sp, r [] 

A corollary of Theorems 2.2 and 2.5 is the 
following: 
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