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Identically self-blocking clutters

Ahmad Abdi Gérard Cornuéjols Dabeen Lee

February 4, 2019

Abstract

A clutter is identically self-blocking if it is equal to its blocker. We prove that every identically self-

blocking clutter different from {{a}} is nonideal. Our proofs borrow tools from Gauge Duality and Quadratic

Programming. Along the way we provide a new lower bound for the packing number of an arbitrary clutter.

1 The main result

All sets considered in this paper are finite. Let V be a set of elements, and let C be a family of subsets of V

called members. If no member contains another, then C is said to be a clutter over ground set V [12]. All clutters

considered in this paper are different from {}, {∅}. Let C be a clutter over ground set V . A cover is a subset

of V that intersects every member. The covering number, denoted τ(C), is the minimum cardinality of a cover.

A packing is a collection of pairwise disjoint members. The packing number, denoted ν(C), is the maximum

cardinality of a packing. Observe that τ(C) ≥ ν(C). A cover is minimal if it does not contain another cover.

The family of minimal covers forms another clutter over ground set V ; this clutter is called the blocker of C and

is denoted b(C) [12]. It is well-known that b(b(C)) = C [17, 12]. We say that C is an identically self-blocking

clutter if C = b(C). (This terminology was coined in [4].) Observe that {a} is the only identically self-blocking

clutter with a member of cardinality one.

Theorem 1 ([6]). A clutter C is identically self-blocking if, and only if, ν(C) = ν(b(C)) = 1.

Consider for w ∈ Z
V
+ the dual pair of linear programs

(P )

min w⊤x

s.t.
∑

(xu : u ∈ C) ≥ 1 ∀C ∈ C
x ≥ 0

(D)

max 1
⊤y

s.t.
∑

(yC : u ∈ C ∈ C) ≤ wu ∀u ∈ V

y ≥ 0.

Denote by τ⋆(C, w), ν⋆(C, w) the optimal values of (P ), (D), respectively, and by τ(C, w), ν(C, w) the optimal

values of (P ), (D) subject to the additional integrality constraints x ∈ Z
V , y ∈ Z

C , respectively. Observe that

by Strong Linear Programming Duality, τ(C, w) ≥ τ⋆(C, w) = ν⋆(C, w) ≥ ν(C, w).
Notice the correspondence between the 0 − 1 feasible solutions of (P ) and the covers of C, as well as the

correspondence between the integer feasible solutions of (D) for w = 1 and the packings of C. In particular,
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τ(C,1) = τ(C) and ν(C,1) = ν(C). We will refer to the feasible solutions of (P) as fractional covers, and to the

feasible solutions of (D) for w = 1 as fractional packings.

C has the max-flow min-cut property if τ(C, w) = ν(C, w) for all w ∈ Z
V
+ [10]. C is ideal if τ(C, w) =

ν⋆(C, w) for all w ∈ Z
V
+ [11]. Clearly clutters with the max-flow min-cut property are ideal. The max-flow

min-cut property is not closed under taking blockers, but

Theorem 2 ([18]). A clutter is ideal if, and only if, its blocker is ideal.

If C is an identically self-blocking clutter different from {{a}}, then τ(C) ≥ 2 > 1 = ν(C) by Theorem 1,

so C does not have the max-flow min-cut property. In this paper, we prove the following stronger statement:

Theorem 3. An identically self-blocking clutter different from {{a}} is nonideal.

For an integer n ≥ 3, denote by ∆n the clutter over ground set {1, . . . , n} whose members are {1, 2},
{1, 3}, . . . , {1, n}, {2, 3, . . . , n}. Notice that the elements and members of ∆n correspond to the points and

lines of a degenerate projective plane. Denote by L7 the clutter over ground set {1, ..., 7} whose members are

{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 7}, {2, 5, 6}, {3, 4, 6}, {3, 5, 7}. Notice that the elements and members of L7

correspond to the points and lines of the Fano plane. It can be readily checked that {∆n : n ≥ 3} ∪ {L7}
are identically self-blocking clutters. There are many other examples of identically self-blocking clutters, and

in fact there is one for every pair of blocking clutters ([4], Remark 3.4 and Corollary 3.6). Another example,

for instance, is the clutter over ground set {1, . . . , 6} whose members are {6, 1, 2}, {6, 2, 3}, {6, 3, 4}, {6, 4, 5},
{6, 5, 1}, {1, 2, 4}, {2, 3, 5}, {3, 4, 1}, {4, 5, 2}, {5, 1, 3}.

Conjecture 4. An identically self-blocking clutter different from {{a}} has one of {∆n : n ≥ 3},L7, {{1, 2},
{2, 3}, {3, 4}, {4, 5}, {5, 1}} as minor.

(Notice that the last clutter above is not identically self-blocking.) For disjoint X,Y ⊆ V , the minor of C
obtained after deleting X and contracting Y is the clutter over ground set V − (X ∪ Y ) whose members are

C \X/Y := the inclusionwise minimal sets of {C − Y : C ∈ C, C ∩X = ∅}.

It is well-known that b(C \ X/Y ) = b(C)/X \ Y [21], and that if a clutter is ideal, then so is every minor of

it [22]. It can be readily checked that the clutters in Conjecture 4 are nonideal. Thus Conjecture 4 – if true –

would be a strengthening of Theorem 3.

The rest of the paper is organized as follows: We will present two proofs of Theorem 3, one will be short and

indirect (§2) while the other will be a longer and direct proof that essentially unravels the first proof (§5). In §3,

by using our techniques, we will provide a new lower bound for the packing number of an arbitrary clutter, and in

§4, we will see a surprising emergence of cuboids, a special class of clutters. In §6 we will address the relevance

of studying identically self-blocking clutters, a relatively narrow problem, and why it may be of interest to the

community.
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2 Gauge duality

Here we present a short and indirect proof of Theorem 3. Take an integer n ≥ 1 and let M be a ma-

trix with n columns and nonnegative entries and without a row of all zeros. Consider the polyhedron P :=
{

x ∈ R
n
+ : Mx ≥ 1

}

. The blocker of P is the polyhedron Q := {z ∈ R
n
+ : z⊤x ≥ 1 ∀x ∈ P}. Fulkerson

showed that there exists a matrix N with n columns and nonnegative entries and without a row of all zeros such

that Q =
{

z ∈ R
n
+ : Nz ≥ 1

}

, and that the blocker of Q is P [15, 14]. In 1987 Chaiken proved the following

fascinating result:

Theorem 5 ([8]). Take an integer n ≥ 1, let P,Q be a blocking pair of polyhedra in R
n, and let R be a positive

definite n by n matrix. Then min{x⊤Rx : x ∈ P} and min{z⊤R−1z : z ∈ Q} have reciprocal optimal values.

Theorem 5 exhibits an instance of gauge duality, a general framework introduced by Freund later the same

year [13]. Theorem 5 in the special case of diagonal R’s was also proved by Lovász in 2001 [19]. Both Freund

and Lovász seem to have been unaware of Chaiken’s result.

Let C be a clutter over ground set V . Define the incidence matrix of C as the matrix M whose columns

are indexed by the elements and whose rows are the incidence vectors of the members, and define Q(C) :=
{

x ∈ R
V
+ : Mx ≥ 1

}

. Fulkerson showed that if C,B are blocking ideal clutters then Q(C), Q(B) give an in-

stance of blocking polyhedra [15, 14]. Therefore Theorem 5 has the following consequence:

Theorem 6. Let C,B be blocking ideal clutters. Then min{x⊤x : x ∈ Q(C)} and min{z⊤z : z ∈ Q(B)} have

reciprocal optimal values.

We will need the following lemma whose proof makes use of concepts such as the Lagrangian and the

Karush-Kuhn-Tucker conditions (see [7], Chapter 5):

Lemma 7 ([8]). Let C be a clutter over ground set V , and let M be its incidence matrix. Then min{x⊤x :

Mx ≥ 1, x ≥ 0} has a unique optimal solution x⋆ ∈ R
V
+ . Moreover, there exists y ∈ R

C
+ such that M⊤y = x⋆,

1
⊤y = x⋆⊤x⋆ and y⊤(Mx⋆ − 1) = 0.

Proof. Notice that min{x⊤x : Mx ≥ 1, x ≥ 0} satisfies Slater’s condition, that there is a feasible solution

satisfying all the inequalities strictly. As x⊤x is a strictly convex function, our quadratic program has a unique

optimal solution x⋆ ∈ R
V
+ . Denote by L(x;µ, σ) := x⊤x−µ⊤(Mx−1)−σ⊤x the Lagrangian of the program.

Since Slater’s condition is satisfied, there exist µ⋆ ∈ R
C
+ and σ⋆ ∈ R

V
+ satisfying the Karush-Kuhn-Tucker

conditions:

0 = ∇xL(x
⋆;µ⋆, σ⋆) = 2x⋆ −M⊤µ⋆ − σ⋆

0 = µ⋆⊤(Mx⋆ − 1)

0 = σ⋆⊤x⋆.

Let y := 1
2µ

⋆. Since σ⋆ and M have nonnegative entries, and the third equation holds, the first equation implies

that M⊤y = x⋆. Multiplying the first equation by x⋆⊤ from the left, and taking the next two equations into

account, we get that 1⊤y = x⋆⊤x⋆. As y⊤(Mx⋆ − 1) = 0 clearly holds, y is the desired assignment.
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We are now ready for the first, short and indirect proof of Theorem 3, stating that an identically self-blocking

clutter different from {{a}} is nonideal:

Proof of Theorem 3. Let C be an identically self-blocking clutter over ground set V that is different from {{a}},

and let M be its incidence matrix. Suppose for a contradiction that C is ideal. Then Theorem 6 applies and tells

us that min{x⊤x : Mx ≥ 1, x ≥ 0} = 1. Let x⋆, y be as in Lemma 7; so x⋆ = M⊤y and 1 = x⋆⊤x⋆ = 1
⊤y.

As C is an identically self-blocking clutter different from {{a}}, every member has cardinality at least two, and

by Theorem 1 every two members intersect, implying in turn that MM⊤ ≥ J + I .1 As a result,

1 = x⋆⊤x⋆ = y⊤MM⊤y ≥ y⊤(J + I)y = y⊤11⊤y + y⊤y = 1 + y⊤y,

implying in turn that y = 0, a contradiction.

3 Lower bounding the packing number

Here we present a lower bound on the packing number of an arbitrary clutter. We need the following lemma

from 1965 proved by Motzkin and Straus:

Lemma 8 ([20]). Let G = (V,E) be a simple graph, and let L be its V by V adjacency matrix:

Luv =

{

1 if {u, v} ∈ E

0 otherwise
∀u, v ∈ V.

Then

max
{

y⊤Ly : 1⊤y = 1, y ≥ 0
}

= 1− 1

ω(G)

where ω(G) is the maximum cardinality of a clique of G.

Let C be a clutter over ground set V . Finding ν(C) can be cast as finding the maximum cardinality of a clique

of a graph. This observation, combined with Lemma 8, has the following consequence:

Lemma 9. Let C be a clutter over ground set V , and let M be its incidence matrix. Then

min

{

y⊤MM⊤y −
∑

C∈C

(|C| − 1)y2C : 1⊤y = 1, y ≥ 0

}

=
1

ν(C) .

Proof. (≤) Let y ∈ R
C
+ be the incidence vector of a maximum packing of C. Then 1

ν(C) · y is a feasible solution

whose objective value is 1
ν(C) , implying in turn that ≤ holds. (≥) Let G be the graph whose vertices correspond

to the members of C, where two vertices are adjacent if the corresponding members are disjoint. Let L be the

adjacency matrix of G. Then MM⊤ ≥ Diag(|C|− 1 : C ∈ C)+J −L. Notice that there is a bijection between

the packings in C and the cliques in G, and in particular that ν(C) = ω(G). Thus by Lemma 8, for any y ∈ R
C
+

such that 1⊤y = 1,

1− 1

ν(C) ≥ y⊤Ly ≥
∑

C∈C

(|C| − 1)y2C + y⊤Jy − y⊤MM⊤y =
∑

C∈C

(|C| − 1)y2C + 1− y⊤MM⊤y,

1Throughout the paper, J is a square all ones matrix of appropriate dimension, and I is the identity matrix of appropriate dimension.
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implying in turn that ≥ holds.

As a consequence, after employing Carathéodory’s theorem (see [9], §3.14) and the Cauchy-Schwarz inequality

(see [23]), we get the following lower bound on the packing number of a clutter:

Theorem 10 ([5]). Let C be a clutter over ground set V , and let M be its incidence matrix. Then

ν(C) ≥
(

y⊤MM⊤y

y⊤Jy
− min{|C| − 1 : C ∈ C}

min{|V |, |C|}

)−1

∀y ∈ R
C
+, y 6= 0.

Proof. Pick a nonzero y ∈ R
C
+. By Carathéodory’s theorem there is a y′ ∈ R

C
+ such that M⊤y′ ≤ M⊤y,

1
⊤y′ = 1

⊤y and |supp(y′)| ≤ |V |. Lemma 9 applied to 1
1⊤y′ · y′ implies that

ν(C) ≥
(

y′
⊤
MM⊤y′ −∑C∈C(|C| − 1)y′C

2

y′⊤Jy′

)−1

≥
(

y⊤MM⊤y

y⊤Jy
−
∑

C∈C(|C| − 1)y′C
2

y′⊤Jy′

)−1

.

By the Cauchy-Schwarz inequality applied to the nonzero entries of y′,

∑

C∈C(|C| − 1)y′C
2

y′⊤Jy′
≥

(

∑

C∈C

√

|C| − 1 · y′C
)2

|supp(y′)| · y′⊤Jy′
≥ min{|C| − 1 : C ∈ C}

min{|V |, |C|} .

Combining the last two inequalities proves the theorem.

This theorem was proved implicitly by Aharoni, Erdős and Linial in 1988. Given that M is the incidence matrix

of C, the authors explicitly proved Theorem 10 for y a maximum fractional packing of C:

ν(C) ≥
(

1
⊤
1

ν⋆2(C) −
min{|C| − 1 : C ∈ C}

min{|V |, |C|}

)−1

≥ ν⋆2(C)
|V | .

But one can do better:

Theorem 11. Let C be a clutter over ground set V , and let α := min
{

x⊤x : x ∈ Q(C)
}

. Then

ν(C) ≥
(

1

α
− min{|C| − 1 : C ∈ C}

min{|V |, |C|}

)−1

.

Proof. Let M be the incidence matrix of C, and let x ∈ R
V
+ be the point in Q(C) such that x⊤x = α. By

Lemma 7, there exists y ∈ R
C
+ such that x = M⊤y and 1

⊤y = α. By Theorem 10,

ν(C) ≥
(

x⊤x

y⊤11⊤y
− min{|C| − 1 : C ∈ C}

min{|V |, |C|}

)−1

=

(

α

α2
− min{|C| − 1 : C ∈ C}

min{|V |, |C|}

)−1

,

as required.

Let

β := min

{

y⊤MM⊤y

y⊤Jy
: y ≥ 0, y 6= 0

}

and α := min{x⊤x : Mx ≥ 1, x ≥ 0}.

By Strong Conic Programming Duality (see [7], Chapter 5),

1√
β

= max
{

1
⊤y : ‖M⊤y‖ ≤ 1, y ≥ 0

}

= min{‖x‖ : Mx ≥ 1, x ≥ 0} =
√
α,
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so β = 1
α

. As a result, the inequality given by Theorem 11 is the best lower bound derived from Theorem 10.

As an immediate consequence of Theorem 11, we get another new lower bound on the packing number of a

clutter:

Theorem 12. Let C be a clutter. Then ν(C) ≥ min
{

x⊤x : x ∈ Q(C)
}

.

See ([1], Chapter 3, Theorem 3.2) for an alternative proof of this theorem.

4 Cuboids

Take an even integer n ≥ 2. A cuboid is a clutter over ground set {1, . . . , n} where every member C satisfies

|C ∩ {1, 2}| = |C ∩ {3, 4}| = · · · = |C ∩ {n− 1, n}| = 1. Introduced in [2], cuboids form a very special class

of clutters, to the point that some of the main conjectures in the field can be phrased equivalently in terms of

cuboids [3]. Cuboids play a special role here also:

Theorem 13. Let C be an ideal clutter over n elements whose members do not have a common element, and let

α := min{x⊤x : x ∈ Q(C)}. Then α ≥ 4
n

. Moreover, the following statements are equivalent:

(i) α = 4
n

,

(ii) n is even, after a possible relabeling of the ground set the sets {1, 2}, {3, 4}, . . . , {n − 1, n} are minimal

covers, and the members of minimum cardinality form an ideal cuboid over ground set {1, . . . , n} whose

members do not have a common element.

To prove this theorem we need a few preliminary results. Given a simple graph G = (V,E), a fractional

perfect matching is a y ∈ R
E
+ such that 1⊤y = |V |

2 and for each vertex u ∈ V ,
∑

(ye : u ∈ e) = 1. We need the

following classic result:

Lemma 14 (folklore). If a bipartite graph has a fractional perfect matching, then it has a perfect matching.

Lemma 15. Take an integer n ≥ 2, and let C be a clutter over ground set {1, . . . , n}. Then the following

statements are equivalent:

(i) C has a fractional packing of value 2 and b(C) has a fractional packing of value n
2 ,

(ii) n is even, and in C, after a possible relabeling of the ground set the sets {1, 2}, {3, 4}, . . . , {n− 1, n} are

minimal covers, and the members of minimum cardinality form a cuboid over ground set {1, . . . , n} with a

fractional packing of value 2.

Proof. (ii) ⇒ (i) is immediate. (i) ⇒ (ii): Let M,N be the incidence matrices of C, b(C), respectively. Let

y ∈ R
C
+ be a fractional packing of C of value 2; so M⊤y ≤ 1 and 1

⊤y = 2. Let t ∈ R
b(C)
+ be a fractional packing

of b(C) of value n
2 ; so N⊤t ≤ 1 and 1

⊤t = n
2 . Then n = 1

⊤
1 ≥ t⊤NM⊤y ≥ t⊤Jy = t⊤11⊤y = n

2 · 2 = n.

Thus equality holds throughout, implying in turn that

6



(1) M⊤y = 1 and 1
⊤y = 2,

(2) N⊤t = 1 and 1
⊤t = n

2 ,

(3) if yC > 0 and tB > 0 for some C ∈ C and B ∈ b(C), then |C ∩B| = 1.

Notice that τ(C) ≥ 2 and τ(b(C)) ≥ n
2 , so every member of C has cardinality at least n

2 while every member of

b(C) has cardinality at least 2. Together with (1) and (2), these observations imply that n is even, and

(4) if yC > 0 for some C ∈ C, then |C| = n
2 ,

(5) if tB > 0 for some B ∈ b(C), then |B| = 2.

Let G be the graph over vertices {1, . . . , n} whose edges correspond to {B ∈ b(C) : tB > 0}. Pick C ∈ C such

that yC > 0. Then by (3) the vertex subset C intersects every edge of G exactly once, implying in turn that G is

a bipartite graph. By (2) G has a fractional perfect matching, and as the graph is bipartite, there must be a perfect

matching by Lemma 14, labeled as {1, 2}, {3, 4}, . . . , {n − 1, n} after a possible relabeling of the ground set.

As a consequence, the members of C of minimum cardinality form a cuboid over ground set {1, . . . , n} which

by (1) and (4) has a fractional packing of value 2. Thus (ii) holds.

Remark 16. Let C be a clutter over n elements, and let α, x⋆ be the optimal value and solution of min{x⊤x :

x ∈ Q(C)}, respectively. Then the following statements hold:

(i) α ≥ ν⋆2(C)
n

. Moreover, equality holds if and only if x⋆ = ν⋆(C)
n

· 1.

(ii) Assume that every member has cardinality at least two. Then α ≤ n
4 . Moreover, equality holds if and only

if x⋆ = 1
2 · 1.

Proof. (i) The Cauchy-Schwarz inequality implies that α = x⋆⊤x⋆ ≥ (1⊤x⋆)
2

n
≥ τ⋆2(C)

n
= ν⋆2(C)

n
. Moreover,

equality holds throughout if and only if the entries of x⋆ are equal and 1
⊤x⋆ = ν⋆(C), i.e. x⋆ = ν⋆(C)

n
· 1. (ii) is

immediate.

We also need the following result proved implicitly in [2] (its proof can be found in the proof of Theorem 1.6,

Claim 3 on page 543):

Lemma 17 ([2]). Take an even integer n ≥ 2, and let C be an ideal clutter over ground set {1, . . . , n} where

{1, 2}, {3, 4}, . . . , {n− 1, n} are minimal covers. Then
{

C ∈ C : |C| = n
2

}

is an ideal cuboid.

We are now ready to prove Theorem 13:

Proof of Theorem 13. By Remark 16 (i), α ≥ ν⋆2(C)
n

= τ2(C)
n

≥ 4
n

, where the equality follows from the fact

that C is ideal, and the last inequality holds because the members have no common element. (i) ⇒ (ii): Assume

that α = 4
n

. Let x⋆ be the optimal solution of min{x⊤x : x ∈ Q(C)}. Then by Remark 16 (i), τ(C) = 2 and

x⋆ =
(

2
n
, 2
n
, . . . , 2

n

)

. Let M be the incidence matrix of C. By Lemma 7, there is a y ∈ R
C
+ such that M⊤y = x⋆

and 1
⊤y = 4

n
, that is,

7



n
2 · y is a fractional packing of C of value 2.

Let β, z⋆ be the optimal value and solution of min{z⊤z : z ∈ Q(b(C))}. As C is an ideal clutter, it follows from

Theorem 6 that β = 1
α

= n
4 . Thus by Remark 16 (ii), z⋆ =

(

1
2 ,

1
2 , . . . ,

1
2

)

. Let N be the incidence matrix of

b(C). By Lemma 7, there is a t ∈ R
b(C)
+ such that N⊤t = z⋆ and 1

⊤z⋆ = n
4 , that is,

2t is a fractional packing of b(C) of value n
2 .

It therefore follows from Lemma 15 that n is even, after a possible relabeling of the ground set the sets

{1, 2}, {3, 4}, . . . , {n − 1, n} are minimal covers of C, and the members of C of minimum cardinality form

a cuboid C0 over ground set {1, . . . , n} with a fractional packing of value 2. In particular, the members of

C0 do not have a common element. Moreover, since C is an ideal clutter, it follows from Lemma 17 that C0
is an ideal cuboid, thereby proving (ii). (ii) ⇒ (i): Observe that every member has cardinality at least n

2 , so
(

2
n
, 2
n
, . . . , 2

n

)

∈ Q(C), implying in turn that α ≤ 4
n

. Since α ≥ 4
n

also, (i) must hold.

We showed that among ideal clutters C whose members do not have a common element, it is essentially

cuboids that achieve the smallest possible value for min{x⊤x : x ∈ Q(C)}. Our proof relied on Lemma 15,

which in itself has another consequence. Viewing clutters as simple games, Hof et al. [16] showed that given a

clutter C over n elements, its critical threshold value is always at most n
4 , and this maximum is achieved if, and

only if, C has a fractional packing of value n
2 and b(C) has a fractional packing of value 2. Thus by Lemma 15,

it is essentially blockers of cuboids that achieve the largest possible critical threshold value.

5 Bypassing gauge duality

Here we present a longer and direct proof of the main result of the paper, Theorem 3. This proof will bypass the

use of Theorem 6. We will need the following two lemmas:

Lemma 18. Let C,B be clutters over ground set V such that |C ∩B| = 1 for all C ∈ C, B ∈ B, for which there

exist nonzero y ∈ R
C
+ and t ∈ R

B
+ such that

∑

C∈C yCχC =
∑

B∈B tBχB . Then

ν(C) ≥
(

1
⊤t

1⊤y
− min{|C| − 1 : C ∈ C}

min{|V |, |C|}

)−1

and ν(B) ≥
(

1
⊤y

1⊤t
− min{|B| − 1 : B ∈ B}

min{|V |, |B|}

)−1

.

Proof. Due to the symmetry between C and B, it suffices to prove the first inequality. After possibly scaling t,

we may assume that 1⊤t = 1. Our hypotheses imply that for each C ′ ∈ C,

∑

C∈C

yC |C ′ ∩ C| =
∑

C∈C

yCχ
⊤
C′χC =

∑

B∈B

tBχ
⊤
C′χB =

∑

B∈B

tB |C ′ ∩B| = 1.

Thus, given that M is the incidence matrix of C, the equalities above state that MM⊤y = 1. And Theorem 10

applied to y implies that

ν(C) ≥
(

y⊤1

y⊤Jy
− min{|C| − 1 : C ∈ C}

min{|V |, |C|}

)−1

,

therefore implying the first inequality.
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Given a clutter, a fractional cover is minimal if it is not greater than or equal to another fractional cover. Given

an ideal clutter, it is well-known that every minimal fractional cover can be written as a convex combination of

the incidence vectors of minimal covers (see for instance [11]). We will use this fact below:

Lemma 19. Let C,B be blocking ideal clutters. Then there exist nonempty C′ ⊆ C and B′ ⊆ B such that

|C∩B| = 1 for all C ∈ C′, B ∈ B′, for which there exist nonzero y ∈ R
C′

+ and t ∈ R
B′

+ such that
∑

C∈C′ yCχC =
∑

B∈B′ tBχB .

Proof. Let M,N be the incidence matrices of C,B, respectively. Let x⋆ be the optimal solution of min{x⊤x :

x ∈ Q(C)}. Then x⋆ is a minimal fractional cover of C. As C is an ideal clutter, x⋆ = N⊤t for some t ∈ R
B
+ such

that 1⊤t = 1. Moreover, by Lemma 7, there exists y ∈ R
C
+ such that M⊤y = x⋆ and y⊤(Mx⋆ − 1) = 0. Thus,

1
⊤y = x⋆⊤M⊤y = t⊤NM⊤y ≥ t⊤Jy = t⊤11⊤y = 1

⊤y, implying that t⊤NM⊤y = t⊤Jy. Therefore, if

C′ := {C ∈ C : yC > 0} and B′ := {B ∈ B : tB > 0}, we have that |C ∩ B| = 1 for all C ∈ C′, B ∈ B′.

Moreover, the equation M⊤y = x⋆ = N⊤t implies that
∑

C∈C′ yCχC =
∑

B∈B′ tBχB . As C′ and B′ are

clearly nonempty, they are the desired clutters.

We are now ready to prove the following statement:

Theorem 20. Let C,B be blocking ideal clutters. If τ(C) ≥ 2 and τ(B) ≥ 2, then ν(C) ≥ 2 or ν(B) ≥ 2.

Proof. Assume that τ(C) ≥ 2 and τ(B) ≥ 2. By Lemma 19, there exist nonempty C′ ⊆ C and B′ ⊆ B
such that |C ∩ B| = 1 for all C ∈ C′, B ∈ B′, for which there exist nonzero y ∈ R

C′

+ and t ∈ R
B′

+ such

that
∑

C∈C′ yCχC =
∑

B∈B′ tBχB . As the members of C′ and B′ have cardinality at least two, we get from

Lemma 18 that ν(C′) > 1
⊤y

1⊤t
and ν(B′) > 1

⊤t
1⊤y

. As ν(C) ≥ ν(C′) and ν(B) ≥ ν(B′), it follows that ν(C) ≥ 2

or ν(B) ≥ 2, as required.

We are now ready to prove Theorem 3, stating that an identically self-blocking clutter different from {{a}}
is nonideal:

Another proof of Theorem 3. Let C be an identically self-blocking clutter different from {{a}}. Then τ(C) ≥ 2,

and ν(C) = 1 by Theorem 1. Theorem 20 now applies and tells us that C cannot be ideal, as required.

6 Concluding remarks

Given a general blocking pair C,B of ideal clutters, what can be said about them? This is an important research

topic in Integer Programming and Combinatorial Optimization. We showed that if τ(C) ≥ 2 and τ(B) ≥ 2, then

ν(C) ≥ 2 or ν(B) ≥ 2 (Theorems 3 and 20). Equivalently, if the members of C,B have cardinality at least two,

then one of the two clutters has a bicoloring, i.e. the ground set can be bicolored so that every member receives

an element of each color. Next to Lehman’s width-length characterization [18], this is the only other fact known

about the structure of C and B. As such, we expect the results as well as the tools introduced here to help us

address the question in mind.
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Our main result led us to two computable lower bounds – one weaker than the other – on the packing number

of an arbitrary clutter (Theorems 11 and 12). We believe these lower bounds will have applications beyond the

scope of this paper. We also characterized the clutters on which one of the lower bounds is at its weakest; we

showed that these clutters are essentially cuboids (Theorem 13). Combined with evidence from [2, 3], this only

stresses further the central role of cuboids when studying ideal clutters.

Finally, we used techniques from Convex Optimization to prove the main result of the paper. A natural

question is whether there is an elementary and discrete approach for proving the result? Conjecture 4 provides a

potential approach and leads to an interesting research direction.
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