THE KLEIN BOTTLE AND MULTICOMMODITY FLOWS

A. SCHRIJVER

Received July 23, 1988
Revised November 28; 1988

Let G be an eulerian graph embedded on the Klein bottle. Then the maximum number of pairwise edge-disjoint orientation-reversing circuits in \boldsymbol{G} is equal to the minimum number of edges intersecting all orientation-reversing circuits. This generalizes a theorem of Lins for the projective plane. As consequences we derive results on disjoint paths in planar graphs, including theorems of Okamura and of Okamura and Seymour.

1. Introduction

In [5] we proved:
Theorem 1. Let $G=(V, E)$ be a planar bipartite graph embedded in the plane. Let I_{1} and I_{2} be two of its faces. Then there exist pairwise edge-disjoint cuts $\delta\left(X_{1}\right), \ldots, \delta\left(X_{t}\right)$ so that for each two vertices v, w with $v, w \in b d\left(I_{1}\right)$ or $v, w \in b d\left(I_{2}\right)$, the distance in G from v to w is equal to the number of cuts $\delta\left(X_{j}\right)$ separating v and w.

For $X \subseteq V, \delta(X)$ denotes the set of edges with exactly one of its end points in X. Cut $\delta(X)$ is said to separate v and w if $v \neq w$ and $|\{v, w\} \cap X|=1$. We denote the boundary of I by $b d(I)$. Faces are considered as open regions.

In this paper we derive from Theorem 1 some new results on graphs embedded on the Klein bottle and on plane multicommodity flows, and some known results due to Okamura, Okamura and Seymour, and Lins.

2. Graphs on the Klein bottle

Let $G=(V, E)$ be a graph embedded on the Klein bottle. We can represent the Klein bottle as obtained from the 2 -sphere by adding two cross-caps. A circuit C in G is called orientation-preserving if after one turn of C the meaning of 'left' and 'right' is unchanged. It is called orientation-reversing if after one turn of C the meaning of 'left' and 'right' is exchanged.

Thus a circuit is orientation-preserving if and only if it passes the cross-caps an even number of times. It is orientation-reversing if and only if it passes the cross-caps an odd number of times. Hence the orientation-reversing circuits form a "binary clut-

AMS subject classification (1980): 05C10, 98CXX.
ter" in the sense of Seymour [6]: if C_{1}, C_{2}, C_{3} are (the edge sets of) orientation-reversing circuits, then the symmetric difference $C_{1} \triangle C_{2} \triangle C_{3}$ contains an orientationreversing circuit.

This implies that the inclusion-wise minimal edge sets intersecting all orien-tation-reversing circuits are exactly the inclusion-wise minimal sets in

$$
\begin{equation*}
\{D \cong E||D \triangle C| \text { is odd for each orientation-reversing circuit } C\} \text {. } \tag{1}
\end{equation*}
$$

In fact, it follows from our results that the hypergraph of orientation-reversing circuits, as well as its blocker (1), have the weak MFMC-property (Seymour [6]).

3. The minimum length of an orientation-reversing circuit

We first derive from Theorem 1:
Theorem 2. Let $G=(V, E)$ be a bipartite graph embedded on the Klein bottle. Then the minimum length of any orientation-reversing circuit in G is equal to the maximum number of pairwise disjoint edge sets each intersecting all orientation-reversing circuits.

Proof. Clearly, the maximum is not larger than the minimum. To show equality, we may assume that each face of G is orientable, i.e., contains no cross-cap. Indeed, if a face contains a cross-cap, we can add to G a path over this cross-cap, in such a way that the graph remains bipartite and such that the minimum-length of an orientationreversing circuit remains unchanged (by taking the path long enough).

Let C_{1} be a minimum-length orientation-reversing circuit in G, say with length t_{1}. We 'cut open' the Klein bottle S along C_{1}. In this way we obtain a bordered surface S^{\prime}, with a 1 -sphere C_{1}^{\prime} as border, so that S arises from S^{\prime} by identifying opposite points on C_{1}^{\prime}. So S^{\prime} is a Möbius strip. Let $i: S^{\prime} \rightarrow S$ be the identification map. The graph $G^{\prime}:=i^{-1}[G]$ is a graph on S^{\prime}, where $C_{1}^{\prime}=i^{-1}\left[C_{3}\right]$.

As each face of G is orientable, also each face of G^{\prime} (in S^{\prime}) is orientable. Therefore, G^{\prime} contains an orientation-reversing circuit (in S^{\prime}). Let C_{2} be a minimum-length orientation-reversing circuit in G^{\prime}, say with length t_{2}. We may assume that C_{2} is edge-disjoint from C_{J} (by adding parallel edges). Next we 'cut open' the Möbius strip S^{\prime} along C_{2}. We now obtain a cylinder $S^{\prime \prime}$, with boundary two 1 -spheres B_{1} and B_{2}. (It is a deformed cylinder if B_{1} and B_{2} have points in common.) The Klein bottle S arises from $S^{\prime \prime}$ by identifying opposite points on B_{1} and by identifying opposite points on B_{2}. Let $i^{\prime}: S^{\prime \prime} \rightarrow S$ be the identification map, and let $G^{\prime \prime}:=\left(i^{\prime}\right)^{-1}[G]$. So $G^{\prime \prime}$ is a planar graph, embeddable in the plane \mathbf{R}^{2}, so that two of its faces $I_{1}(=$ unbounded face) and I_{2} have the following properties:
(2) (i) the boundary of I_{1} is a circuit D_{1} of length $2 t_{1}$, and the boundary of I_{2} is a circuit D_{2} of length $2 t_{2}$;
(ii) S arises from $\mathbf{R}^{2} \backslash\left(I_{1} \cup I_{2}\right)$ by identifying pairs of opposite points on D_{1} and by identifying pairs of opposite points on D_{2}.
We may assume that $S^{\prime \prime}=\mathbf{R}^{2} \backslash\left(I_{1} \cup I_{2}\right)$.
Since t_{1} is the minimum length of an orientation-reversing circuit in G, each pair of opposite vertices on D_{1} has distance exactly t_{1}. Since t_{2} is the minimum length of an orientation-reversing circuit in G, each pair of opposite vertices on D_{2} has distance exactly t_{2}.

By Theorem 1, there exist pairwise disjoint cuts $\delta\left(X_{1}\right), \ldots, \delta\left(X_{t}\right)$ so that for each two vertices v and w of $G^{\prime \prime}$ with $v, w \in b d\left(I_{1}\right)$ or $v, w \in b d\left(I_{2}\right)$, the distance in $G^{\prime \prime}$ from v to w is equal to the number of cuts $\delta\left(X_{j}\right)$ separating v and w. We may assume that each $\delta\left(X_{j}\right)$ separates at least one such pair v, w (all other cuts can be deleted), and that each $\delta\left(X_{j}\right)$ is a minimal nonempty cut (inclusion-wise).

Each cut $\delta\left(X_{j}\right)$ intersects any subpath P of D_{1} of length t_{1} at most once (as P is intersected by t_{1} of the $\delta\left(X_{j}\right)$, as P is a shortest path between its two end points). So if $\delta\left(X_{j}\right)$ intersects D_{1}, it intersects D_{1} exactly twice, in two opposite edges. Simitarly, if $\delta\left(X_{j}\right)$ intersects D_{2}, it intersects D_{2} exactly twice, in two opposite edges.

We can classify the $\delta\left(X_{j}\right)$ into three classes:
(3) (i) those intersecting both D_{1} and D_{2}, say $\delta\left(X_{1}\right), \ldots, \delta\left(X_{s}\right)$;
(ii) those intersecting D_{1} but not D_{2}, say $\delta\left(X_{s+1}\right), \ldots, \delta\left(X_{t_{1}}\right)$;
(iii) those intersecting D_{2} but not D_{1}, say $\delta\left(X_{t_{1}+1}\right), \ldots, \delta\left(X_{t}\right)$.

Note that $t_{2}=s+\left(t-t_{1}\right)$, and hence $s=t_{1}+t_{2}-t$.
First consider $\delta\left(X_{1}\right), \ldots, \delta\left(X_{s}\right)$. Each such $\delta\left(X_{j}\right)$ is (since it is a minimal cut) the set of edges of $G^{\prime \prime}$ intersected by two curves Γ_{1} and Γ_{2}, where Γ_{1} connects points p^{\prime} on D_{1} and $p^{\prime \prime}$ on D_{2}, while Γ_{2} connects points q^{\prime} on D_{1} and $q^{\prime \prime}$ on D_{2}, in such a way that p^{\prime} and q^{\prime} are opposite on D_{1}, and $p^{\prime \prime}$ and $q^{\prime \prime}$ are opposite on D_{2} :

Fig. 1

The space $i^{\prime}\left[S^{\prime \prime} \backslash\left(\Gamma_{1} \cup \Gamma_{2}\right)\right]$ is orientable, since it arises from Fig. 1 by identifying the two curves α (in the orientation given), and similarly the two curves β, which yields a cylinder. Hence $i^{\prime}\left[\Gamma_{1} \cup \Gamma_{2}\right]$ intersects all orientation-reversing closed curves on S, and hence $i^{\prime}\left[\delta\left(X_{j}\right)\right]$ is a set of edges in G intersecting all orientation-reversing circuits.

Similarly, each set

$$
\begin{equation*}
i^{\prime}\left[\delta\left(X_{s+j}\right) \cup \delta\left(X_{t_{1}+j}\right)\right] \tag{4}
\end{equation*}
$$

for $j=1, \ldots, t_{1}-s$, intersects all orientation-reversing circuits in G (note $t_{1}+\left(t_{1}-s\right) \leqq$ $\leqq t_{2}+t_{1}-s=t$ as $\left.t_{1} \leqq t_{2}\right)$. Now $\delta\left(X_{s+j}\right)$ is the set of edges intersected by a curve Γ_{1} connecting two opposite points p^{\prime} and q^{\prime} on D_{1}, while $\delta\left(X_{t_{1}+j}\right)$ is the set of edges intersected by a curve Γ_{2} connecting two opposite points $p^{\prime \prime}$ and $q^{\prime \prime}$ on D_{2} :

Fig. 2
Again the space $i^{\prime}\left[S^{\prime \prime} \backslash\left(\Gamma_{1} \cup \Gamma_{2}\right)\right]$ is orientable, since it arises from Fig. 2 by identifying the two curves α and the two curves β, yielding again a cylinder. So $i^{\prime}\left[\Gamma_{1} \cup \Gamma_{2}\right]$ intersects all orientation-reversing closed curves in S, and hence (4) intersects all orientation-reversing closed curves in S, and hence (4) intersects all orientation-reversing circuits in G.

Combining,

$$
\begin{equation*}
i^{\prime}\left[\delta\left(X_{1}\right)\right], \ldots, i^{\prime}\left[\delta\left(X_{s}\right)\right], i^{\prime}\left[\delta\left(X_{s+1}\right) \cup \delta\left(X_{t_{1}+1}\right)\right], \ldots, i^{\prime}\left[\delta\left(X_{t_{1}}\right) \cup \delta\left(X_{2 t_{1}-s}\right)\right] \tag{5}
\end{equation*}
$$

are t_{1} pairwise edge-disjoint sets of edges of G, each intersecting all orientation-reversing circuits.

Note. In fact, the proof shows that it suffices to require that each nullhomotopic circuit in G is even (instead of G being bipartite). Indeed, this implies that the graph $G^{\prime \prime}$ described in the proof above is bipartite.

4. The max-flow min-cut property

Theorem 2 implies the following. Let $G=(V, E)$ be a graph embedded on the Klein bottle. Let
(6) $\mathscr{C}:=$ collection of orientation-reversing circuits in G;
$b(\mathscr{C}):=$ collection of edge-sets intersecting each orientation-reversing circuit in G.
Then the hypergraph $(E, b(\mathscr{C}))$ has the weak MFMC-property, in the sense of Seymour [6]. That is, the vertices of the polytope in \mathbf{R}^{E} determined by:
(i) $0 \leqq x(e) \leqq 1 \quad(e \in E)$,
(ii) $\sum_{e \in D} x(e) \geqq 1 \quad(D \in b(\mathscr{C}))$,
are $\{0,1\}$-vectors. These vectors are exactly the characteristic vectors of subsets of E containing an orientation-reversing circuit.

This follows from the fact that, for any $l: E \rightarrow \mathbf{Z}_{+} \backslash\{0\}$, the minimum value of

$$
\begin{equation*}
\sum_{e \in E} l(e) x(e) \tag{8}
\end{equation*}
$$

over (7) is achieved by an integer vector x. To see this, we may assume that $l(e)$ is even for each $e \in E$. Now replace each edge e of G by a path of length $l(e)$. We obtain a bipartite graph G^{\prime}. Let C^{\prime} be a minimum-length orientation-reversing circuit in G^{\prime}. By Theorem 2 there exist pairwise disjoint edge sets $D_{1}^{\prime}, \ldots, D_{t}^{\prime}$ in G^{\prime} each intersecting all orientation-reversing circuits in G^{\prime}, so that t is equal to the number of edges in C^{\prime}. Let C, D_{1}, \ldots, D_{t} be the 'projections' of $C^{\prime}, D_{1}^{\prime}, \ldots, D_{t}^{\prime}$ to G. Then

$$
\begin{equation*}
t=\sum_{e \in E} l(e) \chi^{c}(e) \tag{9}
\end{equation*}
$$

where χ^{c} denotes the characteristic vector of C. Since D_{1}, \ldots, D_{t} give a dual solution to (7) of value t, it follows that χ^{c} is an optimum solution.

By Lehman's theorem [1] the weak MFMC-property is maintained under taking blocking hypergraphs. So also \mathscr{C} has the weak MFMC-property. That is, the vertices of the polytope in \mathbf{R}^{E} determined by:

$$
\begin{equation*}
\text { (i) } 0 \leqq x(e) \leqq 1 \quad(e \in E) \text {, } \tag{10}
\end{equation*}
$$

(ii) $\sum_{e \in C} x(e) \geqq 1 \quad(C \in \mathscr{C})$,
are $\{0,1\}$-vectors. These vectors are exactly the characteristic vectors of sets in $b(\mathscr{C})$. In the following section we show that a stronger property holds.

5. Packing orientation-reversing circuits

We derive from the previous results:
Theorem 3. Let $G=(V, E)$ be an eulerian graph embedded on the Klein bottle. Then the maximum number of pairwise edge-disjoint orientation-reversing circuits is equal to the minimum number or edges intersecting all orientation-reversing circuits.

Proof. Clearly, the maximum is not more than the minimum. Suppose equality does not hold, and let G form a counterexample with

$$
\begin{equation*}
\sum_{v \in V} 2^{\operatorname{deg}(v)} \tag{11}
\end{equation*}
$$

as small as possible (where $\operatorname{deg}(v)$ denotes the degree of v). Let D be a set of edges intersecting all orientation-reversing circuits in G, of minimum size $t=|D|$. Since t is equal to the minimum value of

$$
\begin{equation*}
\sum_{e \in E} x(e) \tag{12}
\end{equation*}
$$

over (10) (as (10) is the convex hull of the characteristic vectors of edge-sets intersecting all orientation-reversing circuits), there exist, by linear programming duality, orientation-reversing circuits C_{1}, \ldots, C_{k} (pairwise different) and reals $\lambda_{1}, \ldots, \lambda_{k}>0$, so that:
(i) $\sum_{i=1}^{k} \lambda_{i}=t$,
(ii) $\sum_{i=1}^{k} \lambda_{i} \chi^{c_{i}}(e) \leqq 1 \quad(e \in E)$.

In fact, what we must show is that each λ_{i} can be taken to be 1 .
Consider a vertex v of G, and the edges $e_{1}, \ldots, e_{2 d}$ incident to v, in cyclic order:

Fig. 3
Thus e_{1} and e_{d+1} are 'opposite', and similarly e_{2} and e_{d+2}, e_{3} and e_{d+3}, \ldots, e_{d} and $e_{2 d}$. We show that for each circuit C_{i} and each $j=1, \ldots, d$:

$$
\begin{equation*}
C_{i} \text { passes } e_{j} \Leftrightarrow C_{i} \text { passes } e_{d+j} . \tag{14}
\end{equation*}
$$

Having shown this for each vertex v, each j and each C_{i}, it follows that the C_{1}, \ldots, C_{k} are pairwise edge-disjoint. Since $k \geqq \mathrm{t}$ (as $\lambda_{i} \leqq 1$ for all i), this proves the theorem.

Suppose (14) does not hold for some v, i, j. Without loss of generality, $i=1$, $j=1$, and C_{1} passes e_{1} and e_{m} for some m with $2 \leqq m \leqq d$. Now replace Fig. 3. by:

Fig. 4
where there are $d-2$ parallel edges connecting the new vertices v^{\prime} and $v^{\prime \prime}$. Let G^{\prime} be the new graph obtained. So G arises from G^{\prime} by contracting the parallel edges connecting v^{\prime} and $v^{\prime \prime}$. (If $d=2$, we identify v^{\prime} and $v^{\prime \prime}$.) Graph G^{\prime} is eulerian again, with sum (11) smaller than for G. So by the minimality hypothesis, the theorem to be proved holds for G^{\prime}.

Let D^{\prime} be a minimum-sized set of edges in G^{\prime} intersecting all orientation-reversing circuits in G^{\prime}. Let $t^{\prime}:=\left|D^{\prime}\right|$. If $t^{\prime} \geqq t, G^{\prime}$ would contain t pairwise edge-disjoint orientation-reversing circuits. After identifying v^{\prime} and $v^{\prime \prime}$, this gives t pairwise edgedisjoint orientation-reversing circuits in G, contradicting our assumption. So $t^{\prime}<t$.

We show $t^{\prime} \leqq t-2$. Let \bar{D} be the set of edges in G^{\prime} corresponding to D. By the minimality of D, D intersects each orientation-reversing circuit in G an odd number of times, and each orientation-preserving circuit in G an even number of times. Hence also \bar{D} intersects each orientation-reversing circuit in G^{\prime} an odd number of times, and each orientation-preserving circuit in G^{\prime} an even number of times. By the minimality of D^{\prime}, also D^{\prime} has odd intersection with each orientation-reversing circuit, and even intersection with each orientation-preserving circuit in G^{\prime}. This implies that the symmetric difference $\bar{D} \triangle D^{\prime}$ has even intersection with each circuit in G^{\prime}. So $\bar{D} \Delta D^{\prime}$ is a cut in G^{\prime}, and hence, as G^{\prime} is eulerian, $\left|\bar{D} \Delta D^{\prime}\right|$ is even. That is, $|\bar{D}| \equiv\left|D^{\prime}\right|(\bmod 2)$. Therefore, as $t^{\prime}<t$, we know $t^{\prime} \leqq t-2$.

Let π denote the set of parallel edges in G^{\prime} connecting v^{\prime} and $v^{\prime \prime}$. We show that $\pi \cong D^{\prime}$. If not, $\pi \neq \emptyset$, and hence $d \geqq 3$. Let $e \in \pi \backslash D^{\prime}$. Then $D^{\prime} \backslash \pi$ intersects all orientation-reversing circuits in G^{\prime}, and hence (after contracting the edges in π) also all orientation-reversing circuits in G. However, $\left|D^{\prime} \backslash \pi\right| \leqq\left|D^{\prime}\right|<|D|$, contradicting the minimality of D.

Let

$$
\begin{equation*}
D^{\prime \prime}:=\left(D^{\prime} \backslash \pi\right) \cup\left\{e_{1}, \ldots, e_{d}\right\} \tag{15}
\end{equation*}
$$

Since $|\pi|=d-2$, we know $\left|D^{\prime \prime}\right| \leqq t^{\prime}+2 \leqq t$. Let $\overline{D^{\prime \prime}}$ be the set of edges in G corresponding to $D^{\prime \prime}$. Then $\overline{D^{\prime \prime}}$ intersects all orientation-reversing circuits in G (since each
orientation-reversing circuit in G intersects $\left\{e_{1}, \ldots, e_{d}\right\}$ or comes from an orientationreversing circuit in G^{\prime} not intersecting π). So $\left|\overline{D^{\prime \prime}}\right|=t$. Hence $\chi^{\overline{D^{\prime \prime}}}$ attains the minimum of (12) over (10). So by complementary slackness, $\left|\overline{D^{\prime \prime}} \cap C_{1}\right|=1$. This contradicts the fact that $e_{1}, e_{m} \in \overline{D^{\prime \prime}} \cap C_{1}$.

Theorem 3 generalizes a theorem of Lins [2], which in fact is Theorem 3 with respect to the projective plane instead of the Klein bottle. If G is a graph embedded on the projective plane, we can insert a cross-cap in one of the faces of G. This transforms the projective plane to a Klein bottle. As the meaning of 'orientation-reversing' is not changed by this insertion (for the circuits in G), it reduces Lins' theorem to Theorem 3.

Theorem 3 cannot be extended to compact surfaces with more than two crosscaps, as we can embed K_{5} on such a surface in such a way that the orientation-reversing circuits are exactly the odd-sized circuits. Then the maximum number of pairwise edge-disjoint orientation-reversing circuits is equal to 2 , while not less than 4 edges are necessary to intersect all orientation-reversing circuits.

4. Plane multicommodity flows

From Theorem 3 we derive a new result on the existence of pairwise edgedisjoint paths in a planar graph. Let $G=(V, E)$ be a graph, and let r_{1}, \ldots, r_{k}, s_{1}, \ldots, s_{k} be vertices of G. We consider the following two conditions:
(parity condition): for each vertex v of G :
$\operatorname{deg}(v)+\left|\left\{i \in\{1, \ldots, k\} \mid r_{i}=v\right\}\right|+\left|\left\{i \in\{1, \ldots, k\} \mid s_{i}=v\right\}\right|$ is even;
(cut condition): for each $X \cong V$:
$|\delta(X)| \geqq$ number of pairs r_{i}, s_{i} separated by $\delta(X)$.
Theorem 4. Let $G=(V, E)$ be a planar graph embedded in the plane \mathbf{R}^{2}. Let r_{1}, \ldots $\ldots, r_{k}, s_{1}, \ldots, s_{k}$ be vertices of G satisfying the parity condition. Let r_{1}, \ldots, r_{k} be incident to the unbounded face I_{1} in clockwise order. Let s_{1}, \ldots, s_{k} be incident to some other face I_{2} in anti-clockwise order. Then there exist pairwise edge-disjoint paths P_{1}, \ldots, P_{k} where P_{i} connects r_{i} and $s_{i}(i=1, \ldots, k)$, if and only if the cut condition is satisfied.

Proof. Since the cut condition trivially is a necessary condition, we only show sufficiency. Let the cut condition be satisfied. We can extend $\mathbf{R}^{2} \backslash\left(I_{1} \cup I_{2}\right)$ to the Klein bottle, by adding a cylinder between the boundaries of I_{1} and I_{2}. We can extend G to a graph G^{\prime} on the Klein bottle adding edges e_{1}, \ldots, e_{k} over this cylinder, so that e_{i} connects r_{i} and $s_{i}(i=1, \ldots, k)$. Then a circuit in G^{\prime} is orientation-reversing if and only if it contains an odd number of edges from e_{1}, \ldots, e_{k}. So it suffices to show that G^{\prime} contains k pairwise edge-disjoint orientation-reversing circuits.

By the parity condition, G^{\prime} is eulerian. So we can apply Theorem 3. Hence it suffices to show that each set D of edges of G^{\prime} intersecting all orientation-reversing circuit has size at least k. We may assume that D is a minimal set of edges in G^{\prime} intersecting all orientation-reversing circuits in G^{\prime}. Hence $|D \cap C|$ is even for each circuit C in G. Therefore, $D \cap E$ is a cut $\delta(X)$ in G. Now we have for each $i=1, \ldots, k$:

$$
\begin{equation*}
\delta(X) \text { does not separate } r_{i} \text { and } s_{i} \Rightarrow e_{i} \in D \tag{17}
\end{equation*}
$$

Indeed, if $\delta(X)$ does not separate r_{i} and s_{i}, then there exists a path P in G connecting r_{i} and s_{i} and containing an even number of edges in D. Now as $P \cup\left\{e_{i}\right\}$ is an orien-tation-reversing circuit, it intersects D an odd number of times, and hence $e_{i} \in D$.

Assertion (17) implies that $\left|D \cap\left\{e_{1}, \ldots, e_{k}\right\}\right|$ is not less than the number of pairs r_{i}, s_{i} not separated by $\delta(X)$. Hence

$$
\begin{equation*}
|D|=|D \cap E|+\left|D \cap\left\{e_{1}, \ldots, e_{k}\right\}\right| \geqq|\delta(X)|+\text { number of pairs } r_{i}, s_{i} \text { not } \tag{18}
\end{equation*}
$$

separated by $\delta(X) \geqq k$,
by the cut condition.

5. A theorem of Okamura

One can also derive a theorem of Okamura [3]:
Theorem 5. Let $G=(V, E)$ be a planar graph embedded in the plane \mathbf{R}^{2}. Let I_{1} and I_{2} be two of its faces, and let $r_{1}, \ldots, r_{k}, s_{1}, \ldots, s_{k}$ be vertices satisfying the parity condition, so that for each $i=1, \ldots, k: r_{i}, s_{i} \in b d\left(I_{1}\right)$ or $r_{i}, s_{i} \in b d\left(I_{2}\right)$. Then there exist pairwise edge-disjoint paths P_{1}, \ldots, P_{k} where P_{i} connects r_{i} and $s_{i}(i=1, \ldots, k)$, if and only if the cut condition is satisfied.

Proof. Again, it suffices to show sufficiency. Without loss of generality, I_{1} is the unbounded face, and $r_{1}, \ldots, r_{t}, s_{1}, \ldots, s_{t} \in b d\left(I_{1}\right)$ and $r_{t+1}, \ldots, r_{k}, s_{t+1}, \ldots, s_{k} \in b d\left(I_{2}\right)$. By an argument due to S . Lins, we may assume that $r_{1}, \ldots, r_{t}, s_{1}, \ldots, s_{t}$ occur in cyclic order around I_{1}. To see this, first note that we may assume that the vertices $r_{1}, \ldots, r_{k}, s_{1}, \ldots, s_{k}$ are distinct and have degree 1 (as we can add a new vertex of degree 1 to any r_{i} or s_{i} and replace this r_{i} or s_{i} by the new vertex). Call two pairs r_{i}, s_{i} and r_{i}, s_{j} on $b d\left(I_{1}\right)$ crossing if $i \neq j$ and $r_{i}, r_{j}, s_{i}, s_{j}$ occur in this cyclic order around the boundary of I_{1}, clockwise or anti-clockwise. Suppose not all pairs of pairs r_{i}, s_{i} are crossing. Then there exist i, j so that r_{i}, s_{i} and r_{j}, s_{j} are non-crossing and so that there is no pair r_{h}, s_{h} on that part of the boundary of I_{1} that connects r_{i} and r_{j} and that does not pass s_{i} and s_{j}. Now we can add in I_{1} three new vertices w, r_{i}^{\prime} and r_{j}^{\prime} and four new edges as follows:

Fig. 5

Replacing r_{i} and r_{j} by r_{i}^{\prime} and r_{j}^{\prime} does not violate the cut condition. Moreover, any pair of edge-disjoint paths $P_{i}^{\prime}, P_{j}^{\prime}$ in the extended graph, where P_{i}^{\prime} connects r_{i}^{\prime} and s_{i} and P_{j}^{\prime} connects r_{j}^{\prime} and s_{j}, contains edge-disjoint paths P_{i} and P_{j}, where P_{i} connects r_{i} and s_{i} and P_{j} connects r_{j} and s_{j}.

Repeating this construction, we end up with $r_{1}, \ldots, r_{t}, s_{1}, \ldots, s_{t}$ occurring cyclically around I_{1} (possibly after reordering indices and exchanging r_{i} and s_{i}). Similarly, we can assume that $r_{t+1}, \ldots, r_{k}, s_{t+1}, \ldots, s_{k}$ occur cyclically around I_{2}.

Now we can extend $\mathbf{R}^{2} \backslash\left(I_{1} \cup I_{2}\right)$ to the Klein bottle, by adding cross-caps along the boundaries of I_{1} and I_{2}. We can extend G to a graph G^{\prime} on the Klein bottle by adding edges e_{1}, \ldots, e_{k} over the cross-caps, so that e_{i} connects r_{i} and $s_{i}(i=1, \ldots$, \ldots, k). Then a circuit in G^{\prime} is orientation-reversing if and only if it contains an odd number of edges from e_{1}, \ldots, e_{k}. The remainder of the proof is exactly the same as that of Theorem 4.

Okamura's theorem has as special case the theorem of Okamura and Seymour [4], where $r_{1}, \ldots, r_{k}, s_{1}, \ldots, s_{k}$ are all on the boundary of one face.

Acknowledgement. I thank the referee for carefully reading the paper and for giving helpful suggestions.

References

[1] A. Lehman, On the width-length inequality, Mathematical Programming, 17 (1979) 403-417.
[2] S. Lins, A minimax theorem on circuits in projective graphs, Journal of Combinatorial Theory (B), 30 (1981) 253-262.
[3] H. Okamura, Multicommodity flows in graphs, Discrete Applied Mathematics, 6 (1983) 55-62.
[4] H. Oramura and P. D. Seymour, Multicommodity flows in planar graphs, Journal of Combinatorial Theory (B), 31 (1981) 75-81.
[5] A. Schrivver, Distances and cuts in planar graphs, Journal of Combinatorial Theory (B), 46 (1989), 46 - 57.
[6] P. D. Seymour, The matroids with the max-flow min-cut property, Journal of Combinatorial Theory (B), 23 (1977) 189-222.

A. Schrijver

Mathematical Centre;
Kruislaan 413; 1098 SJ Amsterdam; The Netherlands.

