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Abstract

In a matroid, (X, e) is a rooted circuit if X is a set not containing element e and X ∪ {e} is a circuit. We call X a broken circuit
of e. A broken circuit clutter is the collection of broken circuits of a fixed element. Seymour [The matroids with the max-flow
min-cut property, J. Combinatorial Theory B 23 (1977) 189–222] proved that a broken circuit clutter of a binary matroid has the
max-flow min-cut property if and only if it does not contain a minor isomorphic to Q6. We shall present an analogue of this result
in affine convex geometries. Precisely, we shall show that a broken circuit clutter of an element e in a convex geometry arising from
two-dimensional point configuration has the max-flow min-cut property if and only if the configuration has no subset forming a
‘Pentagon’ configuration with center e.

Firstly we introduce the notion of closed set systems. This leads to a common generalization of rooted circuits both of matroids
and convex geometries (antimatroids). We further study some properties of affine convex geometries and their broken circuit clutters.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A convex geometry is a combinatorial abstraction of convex sets of ordinary affine space Rn. A closed set system
is a collection of sets of a finite set E such that it contains the entire set E and is closed under intersection. A closed
set system naturally gives rise to a closure operator on 2E . And if the closure operator satisfies the anti-exchange
property, the closed set system is called a convex geometry. A set belonging to a convex geometry is called a convex
set. The complement of a convex set is a feasible set, and the collection of the feasible sets is called an antimatroid. An
antimatroid is usually defined through ‘shelling’ on combinatorial objects. Since antimatroids and convex geometries
are simply the complement of each other and completely equivalent mathematical objects, we refer to this object as
a ‘convex geometry’ throughout this paper, although the words of antimatroid and convex geometry have a rather
different flavor and we need both approaches when considering a problem on convex geometries.

In a lattice theoretic terminology, a convex geometry is equivalent to a meet-distributive lattice, and an antimatroid
is equivalent to a join-distributive lattice (which is also called a locally free lattice). Monjardet [19] described the
history of the study of meet-distributive lattices, the origin of which can be traced back to Dilworth’s result in 1940 [6].
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Edelman [7] established the equivalence between the class of meet-distributive lattices and the anti-exchange property
of the corresponding closure operators. An antimatroid, in the meanwhile, was studied under the name of a shelling
structure or an alternative precedence structure by Korte and Lovász [15]. Antimatroids as well as matroids are special
cases of greedoids. For the theory of greedoids, we refer to [2,4,16].

A lot of examples of convex geometries arise from various combinatorial structures such as posets, graphs, point
configurations, and so on. For a finite set in an affine space, an ordinary convex hull determines a convex geometry
on it. Another typical example of convex geometry is the collection of monophonically convex sets of a chordal graph
[10]. The shelling corresponding to this convex geometry is known as ‘simplicial shelling’. The family of ideals of
a poset is a simple example of convex geometry. It is also known that the collection of all the sub-semilattices of a
semilattice forms a meet-distributive lattice [18], and that the lattice consisting of all the partial orders on a finite set is
meet-distributive [9,12]. In addition, an acyclic oriented matroid gives rise to a convex geometry [3,8].

In matroid theory, quite a few ‘nice’ properties can be characterized by a rather small set of ‘forbidden minors’,
while in the theory of convex geometry these types of nice characterizations by ‘forbidden substructures’ seem to be
unknown until the works by the second author [20,22], in which the class of node-search convex geometries on rooted
graphs and digraphs are shown to be characterized by certain forbidden minors.

For a matroid on E, if X ∪ {e} is a circuit and e /∈ X ⊆ E, we shall call (X, e) a rooted circuit with root e, and X a
broken circuit of e. The collection of all the broken circuits of e forms a clutter, which is called a broken circuit clutter
and denoted by C(e). Seymour [24] proved that in a binary matroid, a broken circuit clutter C(e) has the max-flow
min-cut property if and only if C(e) contains no minor isomorphic to Q6.

In this paper, introducing the notion of ‘closed set systems’, we present a common generalization of rooted circuits
of matroids and convex geometries (antimatroids). In light of this point of view, it seems worth trying to investigate
and seek for some analogue of Seymour’s result in convex geometry. And we have established that a broken circuit
clutter C(e) of an affine convex geometry in two-dimensional space R2 has the max-flow min-cut property if and only
if there is no set of five points that constitutes a ‘Pentagon’ configuration with center e.

In Section 2 the terms of set systems and packing theory needed in this paper are described. In Section 3 we shall
introduce the notions of closed set systems, and the associated rooted circuits and cocircuits. In Section 4 the axiom
sets for convex geometries and antimatroids are given. And in the succeeding sections we shall study affine convex
geometries. In particular, we shall fully characterize affine convex geometries with kernel settled in two-dimensional
space R2, and their broken circuit clutters. Also we shall establish a ‘forbidden-minor’ condition for a broken circuit
of two-dimensional affine convex geometries to possess the max-flow min-cut property.

2. Set systems and packing of clutters

We shall describe the notions and the definitions that will be used in this paper.
Let E be a finite nonempty set. A set system is a pair (S, E) such that S is a family of subsets of E. There are three

ways of defining a ‘subfamily’ of S: For A ⊆ E, we can define subfamilies S/A, S\A and S − A by

S/A = {X\A : X ∈ S, A ⊆ X}, (2.1)

S\A = {X : X ∈ S, X ∩ A = ∅}, (2.2)

S − A = {X\A : X ∈ S}, (2.3)

respectively. We say that (S/A, E\A) is a contraction-minor, (S\A, E\A) is a deletion-minor, and (S − A, E\A) is
a reduction-minor. We also use a notation S|A = S\(E\A), called a restriction, and S : A is defined as S − (E\A),
and called a trace. The collection of the complements of elements of S is denoted by SC .

A clutter is a family L ⊆ 2E such that any element of L does not contain other elements as a proper subset.
The collection of minimal sets which intersect every member of L is called a blocker of L , and denoted by b(L). It

is easy to check that b(b(L)) = L holds.
Besides the deletion and the contraction of set systems, those of clutters are defined as follows. For a subset A ⊆ E,

L/A is the collection consisting of the minimal elements of {X\A : X ∈ L}, which is a contraction-minor of L. And
L\A = {X ∈ L : X ∩ A = ∅} is a deletion-minor of L. A family obtained by repeating contraction and deletion is called
a minor of a clutter. The contraction and the deletion of clutters are dual in the blocking relation. That is, b(L/A)=L\A
and b(L\A) = L/A.
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A subfamily {Xi : i = 1, . . . , k} of a clutter L is a packing family if Xi’s are disjoint with each other. The packing
number of L is the maximum size of the packing families. The minimum size of the elements of b(L) is the blocking
number of L. Clearly, a packing number does not exceed the blocking number. A clutter L is said to pack if the
packing number equals to the blocking number.An odd cycle C2k+1={{a1, a2}, {a2, a3}, . . . , {a2k, a2k+1}, {a2k+1, a1}}
(k�1) is a typical example of clutters that do not pack.

Let M be a 0, 1-matrix whose columns are indexed by E and whose rows are the characteristic vectors of the elements
of L. We consider the following pair of dual linear programs:

min{wx : x�0, Mx�1} (2.4)

= max{y1 : y�0, yM �w}. (2.5)

Here 1 denotes a column vector whose components are all equal to one. In terms of this linear program, L packs if
and only if when w = 1, both (2.4) and (2.5) have optimal integral solutions x, y. Every deletion-minor of L packs if
and only if (2.4) and (2.5) have optimal integral solutions for an arbitrary 0, 1-vector w. Every minor of L packs if and
only if (2.4) and (2.5) have optimal integral solutions for an arbitrary w ∈ {0, 1, +∞}n. L is said to have the max-flow
min-cut property if both (2.4) and (2.5) have optimal integral solutions x and y for an arbitrary nonnegative integral
vector w.

We shall introduce the notion of amplification of set systems, and the notion of replication and duplication of clutters.
Let E and E′ be nonempty finite sets, and � : E′ → E be a surjection.

For a set system (S, E), the set system (�∗(S), E′) defined as below

�∗(S) = {X ⊆ E′ : �(X) ∈ S}
is the amplification of (S, E) by �. Then

Lemma 2.1. (�∗(S))C = �∗(SC).

For a clutter (L, E), the replication of (L, E) by �, denoted by �r (L), is the collection of all the minimal sets of
�∗(L). The duplication of (L, E) by �, denoted by �d(L), is the collection of all the maximal sets of �∗(L).

Then:

Proposition 2.1 (Cornúejols [5]). For a clutter (L, E), the following conditions are equivalent.

(1) (L, E) has the max-flow min-cut property.
(2) For every deletion-minor (L\A) where A ⊆ E, the replication �r (L\A) arising from an arbitrary surjection

� : E′ → E packs.

3. Closed set systems and rooted circuits

In this section, we introduce the notion of closed set systems and rooted circuits.
A set system (K, E) is a closed set system if

(1) E ∈ K,
(2) if X, Y ∈ K, then X ∩ Y ∈ K.

A set in K is a closed set, and the complement of a closed set is an open set.
A closed set system defines a closure operator � on 2E by

�(A) = ∩{X : X ∈ K, A ⊆ X}. (3.1)

In other words �(A) is the smallest closed set containing A.
Let O be the collection of all the open sets. Then (O, E) is called an open set system. For each Z ⊆ E, B =⋃
Y∈O,Y⊆ZY is the maximum open set in Z, called a basis of Z. For an arbitrary set A ⊆ E, let B be the basis of E\A.
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Then it is obvious that

�(A) =
⋂

A⊆X,X∈K

X =
⋃

Y⊆E\A,Y∈O

Y = E\B. (3.2)

An element x in A is an extremal element of A if x /∈ �(A − x). Let Ex(A) denote the set of extremal elements of A.
We say that A is independent if A = Ex(A).

Lemma 3.1. If Y =Ex(Y ) and X ⊆ Y , then X=Ex(X). In other words, any subset of an independent set is independent.

Proof. By definition, for each x ∈ X ⊆ Y , we have x /∈ �(Y − x). Since �(X − x) ⊆ �(Y − x), x /∈ �(X − x) follows
and x ∈ Ex(X). Hence X = Ex(X). �

Hence the collection of all the independent sets forms a simplicial complex.A set is dependent if it is not independent,
and we shall call a minimal dependent set a circuit.

Typical examples of closed set systems are the family of flats (closed sets) of a matroid and the family of convex
sets of a convex geometry, the definition of which will be presented in the next section. The open set system of flats
of a matroid coincides with the collection of unions of cocircuits, and the open set system of a convex geometry is an
antimatroid.

Following the terminology of Klain [14] and Edelman and Reiner [11], we say that a set is free if it is both closed
and independent. In Korte et al. [16], a set A is called ‘free’ if A = Ex(E\B) where B is a basis (maximum open set)
in E\A. Let us call a set �-free if it is ‘free’ in the sense of [16]. Then as will be shown later in Proposition 4.2, in a
convex geometry (and an antimatroid), �-freeness is equivalent to the independency defined in this paper.

Let (K, E) be a closed set system, and � be the associated closure operator. Let (O, E) be the open-set system that
is the complement of (K, E). For a fixed element e ∈ E, which we call a root, let us denote by C(e) the collection of
all the minimal sets X ⊆ E\e which satisfies e ∈ �(X), and call a set in C(e) a broken circuit of e. And a pair (X, e)

of a broken circuit and a root is called a rooted circuit. Let us denote by D(e) the collection of all the minimal sets
Y ⊆ E\{e} such that Y ∪ e is an open set in O. For Y ∈ D(e), (Y, e) is a rooted cocircuit, and Y is a cut-set of e. C(e)

and D(e) are called a broken circuit clutter and a cut-set clutter, respectively. (For more details, see [21].)
In case that (K, E) is the collection of flats of a matroid, it is easily observed that (X, e) is a rooted circuit if and

only if e /∈ X and X ∪ e is a circuit in the ordinary sense of matroid theory. Similarly, (Y, e) ∈ D(e) if and only if e /∈ Y

and Y ∪ e is a cocircuit of a matroid. (See, for instance, Oxley [23].)

Proposition 3.1. Suppose that a closed set system is given. Then for e ∈ E and X ⊆ E\e,

e ∈ �(X) if and only if A ∈ O, e ∈ A ⇒ X ∩ A �= ∅. (3.3)

In particular, D(e) and C(e) are the blockers of each other.

Proof. (⇒) Suppose that A ∈ O, e ∈ A and X ∩A=∅. Since X ⊆ E −A ∈ K, we have �(X) ⊆ E −A, which leads
to e /∈ �(X), a contradiction.

(⇐) Suppose contrarily e is not in �(X). Set A = E − �(X). Then we have e ∈ A and A ∈ O. Since X ⊆ �(X), this
implies X ∩ A = ∅, a contradiction. �

Let E and E′ be nonempty finite sets, and � : E′ → E be a surjection. Fix an element e ∈ E, and suppose |�−1(e)|=1
and �(e′) = {e}(e′ ∈ E′). Let C(e) and D(e) be the broken circuit clutter and the cut-set clutter of (K, E) with respect
to root e, and let C∗(e′) and D∗(e′) be the broken circuit clutter and the cut-set clutter of (�∗(K), E′) with respect to
root e′, respectively. Then:

Proposition 3.2. C∗(e′) is the replication of C(e) by �, and D∗(e′) is the duplication of D(e) by �.

Proof. Let � and �∗ be the closure operator of (K, E) and (K∗, E′) = (�∗(K), E′), respectively. Define

A = {X′ ⊆ E′\e′ : e ∈ �(�(X′))}, B = {X′ ⊆ E′\e′ : e′ ∈ �∗(X′)},
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and we shall show A = B. Since �r (C(e)) is the collection of minimal elements of A and C∗(e′) is the collection of
minimal elements of B, the assertion of the proposition follows.

Let us first show A ⊆ B. Take a set X′ in A. By definition, e ∈ �(�(X′)). We would like to show e′ ∈ �∗(X′) and
hence X′ ∈ B. Suppose contrarily that e′ /∈ �∗(X′). Then there exists W ′ ∈ K such that X′ ⊆ W ′ and e′ /∈ W ′. Hence,
we have �(X′) ⊆ �(W ′) and e /∈ �(W ′) ∈ K, which contradicts the assumption that e ∈ �(�(X′)).

Next we shall show B ⊆ A. Suppose X′ ∈ B and e′ ∈ �∗(X′). Take an arbitrary closed set W ∈ K with �(X′) ⊆ W .
When we set W ′ = �−1(W), W ′ is in K∗. By assumption, X′ ⊆ W ′. The assumption that e′ ∈ �∗(X′) implies e′ ∈ W ′.
Hence e = �(e′) ∈ �(W ′) = W , and since W is arbitrarily chosen, this implies e ∈ �(�(X′)). Hence B ⊆ A is shown,
and the proof is completed. �

4. Convex geometries and antimatroids

A convex geometry is a closed set system (K, E) satisfying (3) in addition to (1) and (2):

(1) E ∈ K.
(2) If X, Y ∈ K, then X ∩ Y ∈ K.
(3) For each closed set X ∈ K with X �= E, there exists an element x ∈ E\X such that X ∪ x ∈ K [accessibility to

E].

A closed set of a convex geometry is called a convex set, and the complement of a convex set is called a feasible set.
Let F be the collection of all the feasible sets. Then an open set system (F, E) is called an antimatroid.

There are several ways of formulating convex geometries.

Proposition 4.1 (Ando [1], Edelman [7,9], Edelman and Jamison [10]). For a closed set system (K, E), the following
conditions are equivalent.

(1) (K, E) is a convex geometry.
(2) � satisfies the anti-exchange property, i.e. it holds that

x, y /∈ �(A), x �= y, x ∈ �(A ∪ y) ⇒ y /∈ �(A ∪ x).

(3) For each closed set X ∈ K, X = �(Ex(X)) [Minkowski–Klein–Milman property].
(4) For each X ⊆ E, Ex(�(X)) = Ex(X) (Ando [1]).

For a convex geometry, each contraction-minor is again a convex geometry as well as each trace (i.e. reduction-minor)
is a convex geometry. However, a deletion-minor is not necessarily a convex geometry. Although K|X = K − (E − X)

is a convex geometry provided that X is a convex set.
The axioms for convex geometries can be restated as a set of axioms for antimatroids as below.

(A1) ∅ ∈ F,
(A2) X ∈ F, X �= ∅ ⇒ there exists an element e ∈ X such that X\e ∈ F,
(A3) X, Y ∈ F ⇒ X ∪ Y ∈ F.

An apparently weaker but equivalent set of axioms for antimatroids is

(A1) ∅ ∈ F,
(A2) X ∈ F, X �= ∅ ⇒ there exists an element e ∈ X such that X\e ∈ F,
(LF) For each X ∈ F and x, y ∈ E, if X ∪ x ∈ F and X ∪ y ∈ F, then X ∪ {x, y} ∈ F [locally free].

When we assume (A3), (LF) readily follows, while (A3) follows from (A1), (A2) and (LF). Hence these two sets
of axioms for antimatroids are equivalent. The notion of alternative precedence structures (or shelling structures)
introduced by Korte and Lovász [15] is equivalent to antimatroid.
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Since a convex geometry is a closed set system, its rooted circuits and rooted cocircuits are correspondingly deter-
mined following the definition in Section 3. However, in the former literature [15,16], etc., the rooted circuits of convex
geometries are introduced as ‘minimal nonfree’ sets. We describe the equivalence of their definitions and ours.

Proposition 4.2. Let (K, E) be a convex geometry, and (F, E) be the associated complementary antimatroid. For a
subset X of E, the following statements are equivalent.

(1) X is an independent set, i.e. X = Ex(X).
(2) X = Ex(E\B) = {e ∈ X : B ∪ {e} ∈ F} where B is the maximum feasible set (basis) in E\X.
(3) F : X ≡ {X ∩ A : A ∈ F} = 2X.

Proof. We first prove (1) ⇔ (2). By (3.2), we have E\B = �(X). Then it follows from (4) of Proposition 4.1, that

X = Ex(X) ⇐⇒ X = Ex(�(X)) ⇐⇒ X = Ex(E\B)

Hence (1) and (2) are equivalent.
(2) ⇔ (3) is obvious since the lattice of open sets of a convex geometry is join-distributive, and satisfies (LF). �

Lemma 4.1. Let C be a circuit of a convex geometry. Then there exists uniquely an element e ∈ C such thatC\e=Ex(C).

Proof. By definition, there exists a nonextremal element e in C, i.e. e ∈ �(C\e). We show that this e is unique.
Otherwise suppose there is another element x of C with x �= e and x ∈ �(C\x). Let A = C\{e, x}. By the definition
of circuit, A ∪ {e} and A ∪ {x} are both independent. Hence e, x /∈ �(A), while e ∈ �(C\e) = �(A ∪ {x}). By the
anti-exchange property, we have x /∈ �(A ∪ {e}) = �(C\x), which is a contradiction. This completes the proof. �

Now we shall call a distinguished element e of Lemma 4.1 the root of a circuit C, and C\e a broken circuit. And
(C\e, e) is a rooted circuit. In Section 3, we have already defined broken circuit clutters C(e) and rooted circuits for
closed set systems generally. We shall show that the definitions here for convex geometries are consistent with the
previous ones.

Proposition 4.3. Let (K, E) be a convex geometry, and e be an element of E. Then for a subset X ⊆ E\e, the following
statements are equivalent.

(1) C = X ∪ {e} is a circuit, and e is its root, i.e. Ex(C) = X.
(2) F : C = 2C − {e}, and X = C\e is minimal with respect to this property.
(3) X ∈ C(e) where the broken circuit clutter C(e) is defined with respect to the closed set system (K, E), that is, X

is a minimal set in E\e satisfying e ∈ �(X).

(Note: Proposition 4.1 in Chapter 3 of [15] is implicitly included in our Proposition 4.3.)

Proof. (1) ⇒ (2). Take a maximal open set B in E\C. Take any x ∈ C\e. Then since �(B) = Ex(C) = C\e, we
have {x} ∈ F : C. By assumption, C\x is an independent set. Hence B ∪ {x, e} is an open set in F. These imply that
F : C =2C −{e}. And since any proper subset C′ of C is independent, F : C′ =2C′

holds, which implies the minimality
of X in (2).

(2) ⇒ (3). Suppose contrarily e /∈ �(X). Then we have Y = E\�(X) ∈ F and e ∈ Y , which gives Y ∩ (X ∪ e) = {e},
a contradiction. The minimality of X in (3) readily follows from (2).

(3) ⇒ (1). We shall firstly show that for each a ∈ X there exists A ∈ F such that (X ∪ e) ∩ A = {a}.
From the minimality of X, e /∈ �(X − a) readily follows. Put X′ = X − a.
Now suppose, contrarily, a ∈ �(X′). Then we have X = X′ ∪ a ⊆ �(X′). Hence �(X) = �(X′) and e ∈ �(X′)

follows, which contradicts the minimality of X. Hence we have a /∈ �(X′).
From assumption, we have e ∈ �(X) = �(X′ ∪ a). By the above argument, we have e, a /∈ �(X′). Hence from the

anti-exchange property, it follows that a /∈ �(X′ ∪ e). Now set A=E\�(X′ ∪ e). Then A is an open set in F and satisfies
that (X ∪ e) ∩ A = {a}.
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Next we shall show that there does not exist such A′ ∈ F that (X ∪ e) ∩ A′ = {e}. Suppose that such an open set
A′ ∈ F exists. We have X ⊆ E\A′ and since E\A′ is a convex set, �(X) ⊆ E\A′ follows. On the other hand, e /∈ E\A′
holds, which contradicts the assumption that e ∈ �(X).

Now it is shown that Ex(C) = Ex(X) = X and that C = X ∪ e is a dependent set.
We shall further show that for each x ∈ C = X ∪ e, Ex(C\x) = C\x and C\x is an independent set. This will show

that C minimally dependent.
In case of x = e, we have already established Ex(X) = X, which implies that C\e = X is an independent set.
In case of x ∈ X, set X′ =X\x, and we shall show X′ is an independent set. By assumption, e ∈ �(X) and henceforth

�(X ∪ e) = �(X), from which it follows that

�(X′) ⊆ �(X′ ∪ e) ⊆ �(X ∪ e) = �(X).

Setting A=E −�(X) and A′ =E −�(X′), we have A, A′ ∈ F. Now A ⊆ A′ is obvious. Here the locally free property
of antimatroids and Proposition 4.1 (4) gives

�(A)\A′ ⊆ �(A′) = Ex(�(X′)) = Ex(X′).

At the same time, we have �(A) = Ex(�(X)) = Ex(X) = X. Hence, X′ ⊆ X = �(A), while X′ ∩ A′ = ∅. These
induce X′ ⊆ Ex(X′). Since Ex(X′) ⊆ X′ holds by definition, we have X′ = Ex(X′). Hence X′ is now shown to be an
independent set.

The minimality of X in (1) readily follows that in (3). This completes the proof of (3) ⇒ (1). �

5. Affine convex geometries

An ordinary convex hull in an affine space gives rise to an associated convex geometry. Let E be a finite set in an
n-dimensional affine space Rn. Then

�(X) = E ∩ conv.hull(X) (conv.hull is an ordinary convex hull in Rn). (5.1)

is a closure operator on 2E satisfying the anti-exchange property and hence gives rise to a convex geometry (K, E).
We shall call it an affine convex geometry defined from a point configuration E.

Take a nonempty finite set T ⊆ Rn. Then we can also define a closure operator �T by

�T (X) = E ∩ conv.hull(X ∪ T ), (5.2)

which determines a convex geometry (KT , E), called a kernelled affine convex geometry. The nonempty set T is called
its kernel. That is, a kernelled affine convex geometry arises from a pair (E, T ) of finite sets in Rn such that T is
nonempty. And it is easy to verify that every affine convex geometry in Rn is isomorphic to some kernelled affine
convex geometry in Rn+1.

A reduction-minor (K−A, E\A) is obviously equal to the affine convex geometry arising from the point configuration
E\A. And the class of affine convex geometries and that of kernelled affine convex geometries are both closed under
taking reduction-minor. In contrast, for a nonempty subset A of E, a contraction-minor (K/A, E\A) of an affine
convex geometry of a point configuration E is equal to the kernelled affine convex geometry of the point configuration
E\A with kernel A and is not necessarily an affine convex geometry. Hence, the class of affine convex geometries is
not closed under the operation of taking minors. On the contrary, the class of kernelled affine convex geometries is
obviously closed under taking minors since a contraction-minor (KT /A, E\A) of a kernelled affine convex geometry
is a kernelled affine convex geometry on E\A with the kernel T ∪ A.

The class of kernelled affine convex geometries is ‘universal’ in the sense that every convex geometry can be
represented by a certain kernelled affine convex geometry. In fact, let (K, E) be an arbitrary convex geometry. Set
n = |E|, and let �n−1 be an (n − 1)-dimensional simplex with vertices v1, . . . , vn in Rn−1. Take arbitrary bijection
� : E → {v1, . . . , vn}. With each rooted circuit (X, e) of K, we associate a point r(X,e) defined by

r(X,e) = (|X| + 1)�(e) −
∑

x∈X

�(x). (5.3)

We use the set T = {r(X,e) : (X, e) is a rooted circuit of K} as a kernel.
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Then:

Theorem 5.1 (Kashiwabara et al. [13]). A convex geometry K on E is isomorphic to the kernelled affine convex
geometry given by the pair (�(E), T ) in Rn−1 where n = |E|.

The maximum size of broken circuits of a convex geometry is known as Caratheodory number [16]. The Caratheodory
number of a kernelled affine convex geometry is bounded by the dimension of the space of point configurations.
That is:

Proposition 5.1. Let (E, T ) be a disjoint pair of finite sets in Rn, and suppose that T is not empty. Then the size of
broken circuits of the kernelled affine convex geometry derived from (E, T ) is at most n.

Proof. Take an arbitrary rooted circuit (X, e). If e ∈ conv.hull(T ), then C(e) = {∅} and the assertion trivially follows.
Hence we can assume e /∈ conv.hull(T ). Now we suppose e ∈ conv.hull(X ∪ T ), X ⊆ E\e, and X is minimal with
respect to this property. Let T ′ be a minimal set of T such that e ∈ conv.hull(X ∪ T ′). It is obvious that all the elements
of T ′ are the vertices of P = conv.hull(X ∪ T ′). By the minimality of definition, each element of X is also a vertex of
P, and the set of vertices of P coincides with the set X ∪ T ′.

First we consider the case T ′ =∅. Since T is not empty, we can take an element w ∈ T . Let d be the dimension of the
polytope of conv.hull(X, w). Here we can construct a triangulation of conv.hull(X, w) to d-simplexes each of which
contains w as a vertex. (Actually, this can be done by “pulling [17, p. 272]” all the vertices in a sequence starting from
w.) Hence, there is a subset X′ of X such that X′ ∪ w is a d-simplex and e ∈ conv.hull(X′ ∪ w). We have |X′| = d �n

by the definition, while the minimality of circuits implies X′ = X, Hence |X| = |X′|�n follows.
In case that T ′ �= ∅, take an element w′ in T ′, which is automatically a vertex of P. As is similar to the first case,

P can be triangulated to d-simplexes so that each d-simplex contains w′. Hence the same argument gives the assertion
that |X|�n. �

6. Broken circuit clutters of two-dimensional kernelled affine convex geometries

Let S be a finite nonempty set in Rn, and v be a point in Rn such that v /∈ conv.hull(S). Suppose C+(v, S) and
C−(v, S) to be a convex cone with apex v defined by

C+(v, S) = {(1 − �)v + �a|��0, a ∈ conv.hull(S)}, (6.1)

C−(v, S) = {(1 − �)v + �a|��0, a ∈ conv.hull(S)}, (6.2)

respectively.

Lemma 6.1. Let (E, T ) be a disjoint pair of finite sets in Rn, and suppose that T is not empty. For a point v ∈ E and
a subset X ⊆ E\v, the following statements are equivalent.

(1) (X, v) is a rooted circuit of a kernelled affine convex geometry defined from (E, T ).
(2) The intersection of conv.hull(X) and C−(v, T ) is not empty, and X is minimal with respect to this property.

Proof. It is obvious that v ∈ conv.hull(X ∪ T ) if and only if conv.hull(X) ∩ C−(v, T ) �= ∅. The assertion directly
follows from this and the definition of rooted circuits. �

Lemma 6.2. A clutter E2+2 = {{v1, v2}, {v3, v4}} on four-element set {v1, v2, v3, v4} cannot be realized as a broken
circuit clutter of a kernelled affine convex geometry in two-dimensional space.

Proof. Suppose, contrarily, that (E, T ) is a pair of point configurations in R2 with E = {v, v1, v2, v3, v4}, and that the
broken circuit clutter with root v is C = {{v1, v2}, {v3, v4}}.

Deleting C+(v, T ) ∪ C−(v, T ) from R2, we have two disjoint open regions S1 and S2. Since {v1, v2} ∈ C, either
C1 ∈ S1, v2 ∈ S2 or v1 ∈ S2, v2 ∈ S1 holds. Here we suppose v1 ∈ S1 and v2 ∈ S2. We can apply the same argument
to {v3, v4} ∈ C, and so we may assume v1, v3 ∈ S1 and v2, v4 ∈ S2 without loss of generality.
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Let L1 be a line going through v and v1. Then R2 − L1 is a union of a pair of open half spaces. Let H be the one of
these two which contains T. Then since {v1, v4} is not a broken circuit of v, v4 must belong to H. Similarly, let L2 be
the line passing through points v and v2, and H ′ be the one of the two half spaces in R2\L2 which contains T. Since
{v2, v3} is not in C, v3 must belong to H ′. Here note that v /∈ H, H ′.

Now H ∩H ′ is a convex set and contains v3, v4, and T. Hence we have v /∈ conv.hull({v3, v4}∪T ), but this contradicts
our assumption {v3, v4} ∈ C and v ∈ �({v3, v4}) = E ∩ conv.hull({v3, v4} ∪ T ). This completes the proof. �

In a two-dimensional kernelled affine convex geometry, from Proposition 5.1, the size of broken circuits is at most
two. Hence by considering each element of size 2 in C(e) as an edge, and a singleton as an isolated vertex, we can
consider a graph G(C(e)) on vertex set E. Then

Lemma 6.3. G(C(e)) is a bipartite graph.

Proof. This is obvious from the proof of Lemma 6.2. �

Corollary 6.1. A broken circuit clutter of a two-dimensional kernelled affine convex geometry necessarily has the
max-flow min-cut property.

Proof. This is obvious from Lemma 6.3 due to the fact that 0, 1-matrix representing a broken circuit clutter here is a
node-arc incidence matrix of a bipartite graph and hence is totally unimodular. �

The following properties determine the same class of bipartite graphs.

Lemma 6.4. Let G be a bipartite graph without isolated vertices, and L be the clutter consisting of edges of G. Then
the following statements are equivalent.

(1) L does not contain a minor isomorphic to E2+2.
(2) L does not contain a deletion-minor isomorphic to E2+2.
(3) G does not contain an induced subgraph isomorphic to K2 ⊕ K2 (a pair of nonadjacent edges).
(4) Let W1, W2 denote the partition of the vertex set of the bipartite graph G. Suppose W1 = {u1, . . . , uk}. Then after

a suitable permutation of indices, {Adj(ui) : i = 1, . . . , k} becomes a monotone nondecreasing sequence, i.e.

Adj(u1) ⊆ Adj(u2) ⊆ · · · ⊆ Adj(uk), (6.3)

where Adj(ui) denotes the set of vertices in W2 incident to ui .

Proof. (1) ⇒ (2) is obvious.
Proof of (2) ⇒ (1). Let E = A ∪ X ∪ Y be a partition such that |A| = 4 and L0 ≡ (L/X)\Y = E2+2.
Now suppose L\(X ∪ Y ) contains an element e other than those in L0 = {e1, e2}. From the definition of E2+2, e

is never a singleton. Then e ∩ (X ∪ Y ) = ∅ holds, and it implies L0 = (L/X)\Y contains e, which contradicts the
assumption that L0 is isomorphic to E2+2. Hence, we have L0 = (L/X)\Y = L\(X ∪ Y ).

It follows from this that every minor can be obtained as a deletion-minor.
(3) is a mere restatement of (2), and they are equivalent.
(3) ⇒ (4). In order to show (4), it is sufficient to prove that for each 1� i, j �k, either Adj(ai) ⊆ Adj(aj ) or

Adj(aj ) ⊆ Adj(ai) holds. Suppose contrarily that there is a pair i, j for which this assertion fails. Then there exist
b1 ∈ Adj(ai)\Adj(aj ) and b2 ∈ Adj(aj )\Adj(ai). The subgraph induced by {a1, a2, b1, b2} is isomorphic to K2 ⊕ K2,
a contradiction.

(4) ⇒ (3). Suppose contrarily that G contains K2 ⊕ K2 as an induced subgraph. Let a1b1, a2b2 be the edges of
the induced subgraph K2 ⊕ K2 with {a1, a2} ⊆ W1, {b1, b2} ⊆ W2. Without loss of generality, we can assume that a1
precedes a2 in the monotone sequence of (4). Then

b1 ∈ Adj(a1) ⊆ Adj(a2)

holds. But this implies G has an edge a2b1, a contradiction. �
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By Lemma 6.2, the condition of Lemma 6.4 is a necessary condition for a clutter to be realized as a broken circuit
clutter of a kernelled two-dimensional affine convex geometry. From Lemma 6.3, a broken circuit clutter of a two-
dimensional kernelled affine convex geometry never contains an odd cycles C2k+1(k�1). We prove conversely that
this set of conditions is sufficient.

Theorem 6.1. Let L be a clutter on a finite set E. A necessary and sufficient condition for L to be realized as a broken
circuit clutter C(e) of a kernelled affine convex geometry in two-dimensional space is that the size of elements of L is
at most two, and L neither contains odd cycles C2k+1(k�1) nor E2+2 as a minor of clutter.

Proof. Necessity is already shown. We shall show the sufficiency. Suppose a clutter L is given which satisfies the
conditions. We construct a point configuration in two-dimensional affine space such that the resultant broken circuit
clutter is isomorphic to L.

Let E0 be the set of elements of E not contained in any member of L, and E1 be the set of elements which form
singletons in L. Set E′ = E − (E0 ∪ E1). Then a graph G on the vertex set E′ with the edge set L is a bipartite graph
without isolated vertices such that the condition of Lemma 6.4 holds. Let (W1, W2) be the partition of the bipartite
graph G. By assumption, we can assume that W1 = {u1, . . . , uk} satisfies (6.3).

Let us define a one-to-one map � : E → R2. For the root e, we set �(e)= (0, (k + 1)/2). We let � map the elements
of W1 into the line l1 = {(−1, 	) : 	�0}, and those of W2 into the line l2 = {(1, 	) : 	�0}.

For each element ui ∈ W1, we assign �(ui) ∈ R2 by

ui �→ �(ui) = (−1, i) ∈ R2.

Let us divide l2 to the intervals

L1 = {(1, 	) ∈ R2|k�	},
Li = {(1, 	) ∈ R2|k − (i − 1)�	 < k − (i − 2)} (2� i�k).

Then for each element v of W2, from the monotonicity of (6.3), there uniquely exists an index j such that Adj(v) =
{uj , uj+1, . . . , uk}. Take a point p arbitrarily on the segment Lj , and set �(v) = p ∈ R2 so that no two elements of
W2 correspond to the same point in R2. (That is clearly always possible. See Fig. 1.)

For each singleton {x} ∈ L, �(x) is set to be a point arbitrarily in {(0, t) : (k + 1)/2 < t}. For elements in E0, their
images are taken arbitrarily in

{(0, t) : t < (k + 1)/2}.
Take T = {(−1, 0), (1, 0)} as a kernel.
It is easy to see that the broken circuit clutter with respect to the root �(e) = (0, (k + 1)/2) of the kernelled affine

convex geometry derived from (�(E), T ) in R2 is isomorphic to L. �

(1, 0)(1, 0) T

l3

L4

L3

L2

L1

ϕ (e)

l1

x1

x2

ϕ (u3)

ϕ (u2)

ϕ (u1)

ϕ (u4)

Fig. 1. Proof of Theorem 6.1.
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7. Max-flow min-cut property of broken circuit clutters of two-dimensional affine convex geometries

Let E be a finite set in two-dimensional space R2. Fix an element e ∈ E, and set E′ = E\e, and let (K, E) be an
affine convex geometry derived from (E, R2). C(e) and D(e) are the broken circuit clutter and the cut-set clutter with
root e, respectively.

Let S1
e be the unit circle in R2 with center e. We shall define a map �e : E → S1

e as follows: For each x ∈ E′, the
line starting from e and going through x intersects with S1

e uniquely at a point, which we set to be �e(x). We define
�e(e) = e.

Let T = �e(E
′) ⊆ S1

e . Clearly, �e : E → T ∪ {e} is a surjection, and |�−1
e (e)| = 1.

Let us denote by (KT , T ∪ {e}) the convex geometry of point configuration T ∪ {e} in R2. Let CT and DT denote
the broken circuit clutter and the cut-set clutter of e in KT , respectively.

Since �e : E → S1
e is a surjection, it gives rise to an amplification of set system (KT , T ∪ {e}), which is denoted by

(�∗
e (KT ), E). Although (�∗

e (KT ), E) is in general not equal to (K, E), C(e) coincides with the replication of CT by
�e, and D(e) with the duplication of DT by �e.

For a point t on the circle S1
e , t̃ denotes its antipodal point, that is, t̃ is a point such that 1

2 t + 1
2 t̃ = e.

For two points t1, t2 on S1
e , [t1, t2) is the arc of S1

e traced from t1 to t2 clockwise, including t1, and not including t2.
And (t1, t2] denotes an arc similarly defined not including t1 but including t2. [t1, t2] and (t1, t2) are defined in the same
manner.

For each point t on S1
e , its multiplicity degree of �e is

deg e(t) = |�−1
e (t)|.

For a subset A of S1
e , the total degree of multiplicity is

Deg(A) =
∑

t∈A

deg e(t).

An arc of the form of [t, t̃ ) or (t, t̃] for a point t ∈ S1
e is called a half circle. For a half circle C ⊆ S1

e , the region

H = {x ∈ R2\{e} : �e(x) ∈ C}
is called a half space. We set C̃ = {t̃ : t ∈ C} and H̃ = {x ∈ R2\{e} : �e(x) ∈ C̃}. Then H and H̃ constitute a partition
of R2\{e}.

For a half space H, the set H ∩ E′ is called a residual set, and res(H) = |H ∩ E′| is called its residual number. In
case that H is an extension of a half circle C, it is obvious that res(H) = Deg(C) = ∑

deg e(�) : � ∈ C.
Then it is easily seen that:

Lemma 7.1. The collection of minimal residual sets equals to D(e). In particular, the minimum of the residual numbers
is equal to the blocking number of C(e).

Proof. Let Z be a residual set. That is, there exists a half space H such that Z = H ∩ E′. Take any X ∈ C(e). By
definition e ∈ conv.hull(X) holds, and this implies X ∩ Z = X ∩ (E′ ∩ H) = X ∩ H �= ∅. Hence Z must contain a
cut-set Y ∈ D(e).

On the opposite side, take an arbitrary Y ∈ D(e), and we shall show there exists a residual set Z with Z ⊆ Y .
Suppose contrarily that there does not exist such a residual set. Then for an arbitrary half space H, H ∩ Y �= ∅ and
X′ ∩ (R2\(H ∪ e)) �= ∅. This implies that there does not exist a separating hyperplane between conv.hull(X′) and e.
Equivalently, the point e is in conv.hull(X′). By definition, there is a set X in C(e) such that X ⊆ X′. Hence Y ∩X =∅,
which contradicts the assumption that Y ∈ C(e). This completes the proof. �

Five points u1, . . . , u5 in R2\{e} are said to form a Pentagon configuration with center e if

(1) �e(u1), . . . ,�e(u5) are lying on S1
e (clockwise) in this order.

(2) For each i = 1, . . . , 5,

�e(ui) ∈ (�e(ui+2), �e(ui+3)) (the indices are taken in mod 5).
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u1

u3

u5

u4

u2
e

Fig. 2. Pentagon configuration with root e.

ϕ (u4)

ϕ (u5)

ϕ (u1)

ϕ (u2)

u3

ϕ (u3)

e

u1

u2

u4

u5

Fig. 3. A unit circle S1
e and �(ui ) (i = 1, . . . , 5).

A Pentagon configuration looks like as in Fig. 2. And Fig. 3 shows the projections �(ui) of ui on the unit
circle S1

e .
The broken circuit clutter of this point configuration {v1, v2, v3, v4, v5, e} with root e is

T 5
3 = {{v1, v3, v4}, {v2, v4, v5}, {v1, v3, v5}, {v1, v2, v4}, {v2, v3, v5}}. (7.1)

T 5
3 is just a 5 × 5 circulant 0, 1-matrix with three ones in each row. Clearly, T 5

3 is the blocker of an odd hole of length
5 and is minimally nonpacking.

The Pentagon configuration T 5
3 plays a crucial role in our argument.

Theorem 7.1. Let E be a finite set in two-dimensional space R2, and (K, E) the associated affine convex geometry.
Let e be an element of E, and E′ = E\e. C(e) is the broken circuit clutter of e. Then the following statements are
equivalent.

(1) Every minor of C(e) packs.
(2) C(e) does not contain a minor isomorphic to T 5

3 .
(3) C(e) does not contain a deletion-minor isomorphic to T 5

3 .
(4) There does not exist a subset of E′ composing a Pentagon configuration with center e.
(5) Every deletion-minor of C(e) packs.
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In advance to proceed to the proof of Theorem 7.1, we shall present some lemmata.
Let (K, E) be an affine convex geometry in Rd . Set Ê = {(v, 0) : v ∈ E} ⊆ Rd+1, and ê = (0, . . . , 0, 1) ∈ Rd+1.

Taking {ê} as a kernel, the kernelled affine convex geometry associated with configuration (Ê, {ê}) is equal to K.
Hence if E is a set in R2, by Proposition 5.1, the sizes of broken circuits of (K, E) are at most three. We shall
show that the broken circuits of size two can be neglected when considering packing of broken circuit clutters in
this case.

Lemma 7.2. Let L be a subfamily of C(e) of a two-dimensional affine convex geometry (K, E), and X ∈ L with |X|=2.
Then L packs if and only if L′ = L − {X} packs.

Proof. Let X = {x1, x2}, and E′ = E\X. Let b be the blocking number of L, and b′ that of L′. For an arbitrary half
space H, |H ∩ X| = 1 holds, and hence

|H ∩ E| = |H ∩ E′| + 1. (7.2)

So it follows from Lemma 7.1 that

b = b′ + 1 (7.3)

Here we shall show that L always has a maximum packing family including X. Suppose this is already shown. If
there exists a maximum packing family of L including X, say {X, X2, . . . , Xp}, obviously {X2, . . . , Xp} is a packing
family of L′. And if L packs, p is equal to b. Hence by (7.3), L′ also packs. If L′ packs, adding X to a packing family of
L′ obviously results in a packing family again, and (7.3) implies L also packs.

Now suppose {X1, X2, . . . , Xp} is a maximum packing family of L which does not contain X. Let U = ∪Xi :
i = 1, . . . , p. By assumption, U ∩ X �= ∅. Hence we have either |U ∩ X| = 1 or |U ∩ X| = 2.

In case of |U ∩ X| = 1, we can suppose X ∩ X1 = {x1} without loss of generality. Then clearly {X, X2, . . . , Xp} is
a packing family of size p, it is proven that there exists a maximum packing family of L including X.

In case of |U ∩ X| = 2, we can suppose X = {x1, x2}, X ∩ X1 = {x1}, and X ∩ X2 = {x2} without loss of generality.
Let W = X1 ∪ X2. Since the sizes of broken circuits are at most two, we only have to consider the three cases below.

(1) If |W | = 4, then |X1| = |X2| = 2. Now suppose X1 = {x1, y1} and X2 = {x2, y2}. Then from the definition, it
follows that Y = {y1, y2} ∈ C(e). Hence, {X, Y, X3, . . . , Xp} is a packing family of L.

(2) If |W | = 5, then we may suppose |X1| = 2 and |X2| = 3. Suppose X1 = {x1, y1} and X2 = {x2, y2, w2}. Then
X = {x1, x2} ∈ L as well as X1 = {x1, y1} ∈ L implies that �e(x2) and �e(y1) are the antipodal point of �e(x1).
Hence, �e(x2) = �e(y1), while we have Y = {y1, y2, w2} ∈ C(e). Thus {X, Y, X3, . . . , Xp} is a packing family
of L.

(3) Suppose |W | = 6. Then since L\(E′ − W) contains X1, X2, the packing number and the blocking number of
L\(E′ − W) are at least two. Hence the intersection of W ′ = W\{x1, x2} and each member of C(e) is nonempty.
And so e is included in conv.hull(W ′). Let Y ⊆ W ′ be a minimal set satisfying e ∈ conv.hull(Y ). Then Y belongs
to L, and {X, Y, X3, . . . , Xp} is a packing family of L. This completes the proof. �

Corollary 7.1. Let C′ be a subfamily of C(e) obtained by deleting all the elements of size at most two. Then C(e)

packs if and only if C′ packs.

The next lemma is the key of the proof of Theorem 7.1.

Lemma 7.3. Suppose that C(e) do not pack, and that for every nonempty subset X of E′ = E\e, the deletion-minor
C(e)\X packs. Then there exists a Pentagon configuration in E′ whose center is e.

Proof. From Corollary 7.1, we may assume C(e) does not include a broken circuit of size one and two, and every
broken circuit in C(e) is of size three. Let b be the blocking number of C(e), and bT be that of CT .

The assumption that C(e) does not pack implies bT �1.
(a) Suppose bT = 1. From Lemma 7.1, there exists a half circle A such that A ∩ T = {t} (t ∈ S1

e ). By the assumption
that bT = 1, we have t̃ /∈ T .
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Now without loss of generality we may suppose there is a point c ∈ S1
e such that A = [c, c̃) and c, c̃ /∈ T .

Lemma 7.1 gives

Deg(A) = deg e(t)�b.

Hence, there are distinct elements x1, . . . , xb in E′ such that �e(xi) = t (i = 1, . . . , b). Similarly, it follows from
Lemma 7.1 that

Deg((t, t̃])�b, Deg([t̃ , t))�b.

Here since [c, c̃] ∩ T = {t} holds, we have

Deg((c̃, t̃ )) = Deg((t, t̃])�b, Deg((t̃ , c)) = Deg([t̃ , t))�b.

Hence, there are distinct b points in E′, say y1, . . . , yb, such that �e(yi) ∈ (c̃, t̃ ) (i = 1, . . . , b). Similarly, there are
distinct b points in E′, say w1, . . . , wb, such that �e(wi) ∈ (t̃ , c) (i = 1, . . . , b).

For each i = 1, . . . , b, it is obvious that {xi, yi, wi} is a broken circuit in C(e). Since they are pairwise disjoint, they
form a packing family of size b. In particular, C(e) is now shown to pack, which is a contradiction.

(b) Hence we can suppose bT �2. From Lemma 7.1, there exists c ∈ S1
e with c, c̃ /∈ T such that

Deg([c, c̃]) = Deg((c, c̃)) = b.

Now set (c, c̃)∩T ={t1, . . . , tbT
}. And suppose that t1, . . . , tbT

are placed on S1
e in this order (clockwise). Let t = t1 and

s = tbT
. Since Deg([t, s]) = b, there are distinct b points, say x1, . . . , xb ∈ E′, such that �e(xi) ∈ [t, s] (i = 1, . . . , b).

Since C(e) is supposed to contain no broken circuit of size two, t̃ , s̃ /∈ T must hold. From Lemma 7.1, we have

Deg([t̃ , t))�b, Deg((s, s̃])�b.

We shall show that

[t̃ , s̃] ∩ T �= ∅.

On the contrary, suppose [t̃ , s̃] ∩T =∅, i.e. suppose Deg([t̃ , s̃])= 0. Now we have Deg((s, s̃])�b and Deg((s, c̃])= 0,
which shows Deg((c̃, s̃])�b. Furthermore, since Deg([t̃ , s̃]) = 0, we have Deg((c̃, t̃ ))�b. Similarly, Deg((s̃, c))�b

follows from Deg([t̃ , t))�b and Deg([t̃ , s̃])=Deg([c, t))=0. That is, there exist distinct b points y1, . . . , yb ∈ E′such
that �e(yi) ∈ (c̃, t̃ ), and there exist distinct b points w1, . . . , wb ∈ E′ such that �e(wi) ∈ (s̃, c). By definition, for
each i = 1, . . . , b, {xi, yi, wi} is a broken circuit in C(e), and they form a packing family of size b. Hence, C(e) packs,
which is a contradiction.

Next we shall show

Deg((c̃, t̃])�1, Deg([s̃, c))�1.

Lemma 7.1 gives Deg((t, t̃])�b. First we shall show Deg((c̃, t̃ ))=Deg((c̃, t̃])�1. Suppose, contrarily, that Deg((c̃, t̃])=
0. Then,

Deg((t, t̃]) = Deg((t, c̃]) = Deg((c, c̃]) − deg (t).

Since Deg((c, c̃]) = b and deg (t)�1, we have Deg((t, t̃]) < b, a contradiction. Hence, Deg((c̃, t̃ )) = Deg((c̃, t̃])�1
is shown. Similarly, it can be shown that Deg([s̃, c)) = Deg((s̃, c))�1 .

Finally, we have

(c̃, t̃ ) ∩ T �= ∅, (t̃ , s̃) ∩ T �= ∅, (s̃, c) ∩ T �= ∅.

This implies that there exist three elements u3, u4, u5 ∈ E′ such that

�e(u3) ∈ (c̃, t̃ ) ∩ T , �e(u4) ∈ (t̃ , s̃) ∩ T , �e(u5) ∈ (s̃, c) ∩ T .

By definition, there exist elements u1, u2 in E′ such that �e(u1) = t, �e(u2) = s. And it is clear that u1, . . . , u5 form a
Pentagon configuration with center e. �
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Obviously, a Pentagon configuration with center e exists in E′ if and only if T includes a Pentagon configuration
with center e. Hence, Lemma 7.3 gives:

Corollary 7.2. C(e) packs if and only if every replication of C(e) packs.

Each proper contraction-minor of C(e) is a broken circuit clutter of a proper contraction of an affine convex geometry,
while as is seen in Section 5, a proper contraction of an affine convex geometry is necessarily a kernelled affine convex
geometry. Hence a proper contraction-minor of C(e) is a broken circuit clutter of a kernelled affine convex geometry
in two-dimensional space, and by Corollary 6.1, it necessarily packs. Hence we have:

Lemma 7.4. The following statements are equivalent.

(1) Every deletion-minor of C(e) packs.
(2) Every minor of C(e) packs.

Now we shall present the proof of Theorem 7.1.

Proof of Theorem 7.1. (1) ⇒ (2) ⇒ (3) ⇒ (4) are obvious. (4) ⇒ (5) follows from Lemma 7.3. (5) ⇒ (1) is
deduced from Lemma 7.4. �

Combining Proposition 2.1, Corollary 7.2, and Theorem 7.1, we have

Theorem 7.2. For a two-dimensional affine convex geometry (K, E) and an element e in E, the broken circuit clutter
C(e) has the max-flow min-cut property if and only if it does not contain a minor isomorphic to T 5

3 .
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