545 research outputs found

    The list-chromatic index of K 6

    Get PDF
    We prove that the list-chromatic index and paintability index of K"6 is 5. That indeed @g"@?^'(K"6)=5 was a still open special case of the List Coloring Conjecture. Our proof demonstrates how colorability problems can numerically be approached by the use of computer algebra systems and the Combinatorial Nullstellensatz

    The List Square Coloring Conjecture fails for cubic bipartite graphs and planar line graphs

    Full text link
    Kostochka and Woodall (2001) conjectured that the square of every graph has the same chromatic number and list chromatic number. In 2015 Kim and Park disproved this conjecture for non-bipartie graphs and alternatively they developed their construction to bipartite graphs such that one partite set has maximum degree 77. Motivated by the List Total Coloring Conjecture, they also asked whether this number can be pushed down to 22. At about the same time, Kim, SooKwon, and Park (2015) asked whether there would exist a claw-free counterexample to establish a generalization for a conjecture of Gravier and Maffray (1997). In this note, we answer the problem of Kim and Park by pushing the desired upper bound down to 33 by introducing a family of cubic bipartite counterexamples, and positively answer the problem of Kim, SooKwon, and Park by introducing a family of planar line graphs

    Defective and Clustered Graph Colouring

    Full text link
    Consider the following two ways to colour the vertices of a graph where the requirement that adjacent vertices get distinct colours is relaxed. A colouring has "defect" dd if each monochromatic component has maximum degree at most dd. A colouring has "clustering" cc if each monochromatic component has at most cc vertices. This paper surveys research on these types of colourings, where the first priority is to minimise the number of colours, with small defect or small clustering as a secondary goal. List colouring variants are also considered. The following graph classes are studied: outerplanar graphs, planar graphs, graphs embeddable in surfaces, graphs with given maximum degree, graphs with given maximum average degree, graphs excluding a given subgraph, graphs with linear crossing number, linklessly or knotlessly embeddable graphs, graphs with given Colin de Verdi\`ere parameter, graphs with given circumference, graphs excluding a fixed graph as an immersion, graphs with given thickness, graphs with given stack- or queue-number, graphs excluding KtK_t as a minor, graphs excluding Ks,tK_{s,t} as a minor, and graphs excluding an arbitrary graph HH as a minor. Several open problems are discussed.Comment: This is a preliminary version of a dynamic survey to be published in the Electronic Journal of Combinatoric

    Graphs and graph polynomials

    Get PDF
    A dissertation submitted to the School of Mathematics in fulfilment of the requirements for the degree of Master of Science School of Mathematics University of the Witwatersrand, October 2017In this work we study the k-defect polynomials of a graph G. The k defect polynomial is a function in λ that gives the number of improper colourings of a graph using λ colours. The k-defect polynomials generate the bad colouring polynomial which is equivalent to the Tutte polynomial, hence their importance in a more general graph theoretic setting. By setting up a one-to-one correspondence between triangular numbers and complete graphs, we use number theoretical methods to study certain characteristics of the k-defect polynomials of complete graphs. Specifically we are able to generate an expression for any k-defect polynomial of a complete graph, determine integer intervals for k on which the k-defect polynomials for complete graphs are equal to zero and also determine a formula to calculate the minimum number of k-defect polynomials that are equal to zero for any complete graph.XL201

    On topological relaxations of chromatic conjectures

    Get PDF
    There are several famous unsolved conjectures about the chromatic number that were relaxed and already proven to hold for the fractional chromatic number. We discuss similar relaxations for the topological lower bound(s) of the chromatic number. In particular, we prove that such a relaxed version is true for the Behzad-Vizing conjecture and also discuss the conjectures of Hedetniemi and of Hadwiger from this point of view. For the latter, a similar statement was already proven in an earlier paper of the first author with G. Tardos, our main concern here is that the so-called odd Hadwiger conjecture looks much more difficult in this respect. We prove that the statement of the odd Hadwiger conjecture holds for large enough Kneser graphs and Schrijver graphs of any fixed chromatic number
    corecore