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a b s t r a c t

There are several famousunsolved conjectures about the chromatic
number that were relaxed and already proven to hold for the
fractional chromatic number.Wediscuss similar relaxations for the
topological lower bound(s) of the chromatic number. In particular,
we prove that such a relaxed version is true for the Behzad–Vizing
conjecture and also discuss the conjectures of Hedetniemi and of
Hadwiger from this point of view. For the latter, a similar statement
was already proven in Simonyi and Tardos (2006) [41], our main
concern here is that the so-called odd Hadwiger conjecture looks
muchmore difficult in this respect. We prove that the statement of
the odd Hadwiger conjecture holds for large enough Kneser graphs
and Schrijver graphs of any fixed chromatic number.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

There are several hard conjectures about the chromatic number that are still open, while their
fractional relaxation is solved, i.e., a similar, but weaker statement is proven for the fractional
chromatic number in place of the chromatic number. (For the definition and basic facts about the
fractional chromatic number, cf. [39].) Examples include the Behzad–Vizing conjecture [25], the
Erdős–Faber–Lovász conjecture [21], Hedetniemi’s conjecture [46], a relaxed version of Hadwiger’s
conjecture [36], as well as a similarly relaxed version of the so-called odd Hadwiger conjecture [23].
(In some of these cases the proven fractional version has an approximative form, nevertheless, it is a
statement not known to hold for the chromatic number.)
There are not very many examples of graphs with a large gap between their chromatic and frac-

tional chromatic numbers. To determine the chromatic number of such a graph is usually difficult
because no lower bound that also bounds the fractional chromatic number from below can give a
tight result. The primary example for such a graph family is that of Kneser graphs. The value of their
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chromatic number was conjectured by Kneser [26] in 1955 and proved by Lovász [31] in 1978 thereby
developing the topological method for estimating the chromatic number. This method was later suc-
cessfully applied to other graphs, e.g., generalizedMycielski graphs, cf. [44,17], see [33] for a thorough
survey on the later developments.
The above suggests that one could gain further supporting evidence for the above conjectures if

one could prove that the topological lower bound for the chromatic number, considered as a graph
parameter for its own sake, also satisfies the above statements if it is put in place of the chromatic
number. (In fact, ‘‘the topological lower bound’’ is not a well-defined term, as there are more than one
such bounds, for further details see the next section.)
Such a result already appears in the last section of [41] concerning a relaxation of Hadwiger’s

conjecture. Further impetus for such studies was given to us by a conversation of the first author
with Claude Tardif and Gábor Tardos at the first CanaDAM Conference in summer 2007 where the
idea of considering the topological lower bound(s) as a graph parameter was made more explicit.
In particular, Tardif asked, whether a result of the above type would be possible concerning the
Erdős–Faber–Lovász conjecture. Though we were not able to make progress in this particular ques-
tion, we will prove in this paper a similar result about the Behzad–Vizing conjecture and elaborate
about some of the others.
The paper is organized as follows. Section 2 contains somebasic facts about the topologicalmethod.

In Section 3 we prove our result concerning the Behzad–Vizing conjecture. In Section 4 we give a
simple topological analog of Hedetniemi’s conjecture. In Sections 5 and 6 we discuss Hadwiger’s
conjecture and the odd Hadwiger conjecture. In the latter section we prove that the odd Hadwiger
conjecture holds for some of the graphs for which the topological method gives a tight bound on
the chromatic number, in particular, large enough Kneser graphs, Schrijver graphs, and generalized
Mycielski graphs.

2. About the topological bound(s) on the chromatic number

There are several formally different topological lower bounds on the chromatic number that are
all closely related to each other. As we will only use combinatorial consequences of the situation
when these parameters achieve certain values rather than using them directly, we will not give full
definitions of these bounds. (Most importantly, we are not defining the topological notions used. They
can be looked up in several of the references and though they give important background, familiarity
with these notions, or even knowing them, is not essential for understanding this paper.) Instead we
only hint the definitions and give references for detailed treatments, while list those statements that
are to be used in this paper.
The idea behind all versions of the topological lower bound of the chromatic number is to associate

a topological space to the graph and use its topological invariants for bounding the chromatic number.
Originally Lovász [31] used the connectivity of the associated topological space defined via a simplicial
complex, called the neighborhood complex, and showed that this parameter is less than the chromatic
number of the graph by at least 3.
Other variants of the same idea appeared over the years that use Z2-spaces defined by certain box

complexes. (In fact, Z2-maps and the Borsuk–Ulam theorem are also key in Lovász’ original proof,
the difference is only the more direct use of Z2-spaces in these later variants.) For a variety of box
complexes, see [34]. One of the most basic box complexes, B(G), associated to graph G, is a simplicial
complex that has V (G) × {1} ∪ V (G) × {2} as its vertex set, and a subset of vertices forms a simplex
in it iff it has the form A ] B := A × {1} ∪ B × {2}, the induced subgraph of G on A ∪ B ⊆ V (G)
contains a complete bipartite graph with color classes A and B, and in case A (or B) is empty, we have
that the vertices in B (resp. A) have at least one common neighbor. (In other words, simplices of the
form A ] ∅ and ∅ ] B are contained only when they should be by the hereditary nature of simplicial
complexes.) The Z2-space evolving from this simplicial complex is the topological space given by its
geometric realization equippedwith the involution generated by the simplicialmap ν : A]B 7→ B]A.
The most important property of this construction is that whenever G and H are two graphs such that
there exists a homomorphism, i.e., an edge preserving map of the vertices, from G to H , then there is
also a simplicial Z2-map (that is, a simplicial map respecting the involution ν) from B(G) to B(H). It is
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not hard to show that B(Kn) is homotopy equivalent to the sphere Sn−2. (As aZ2-space the sphere Sh is
considered to be equippedwith the antipodal map as the involution.) One can define for any Z2-space
T = (T , ν) its Z2-index ind (T ) as the smallest dimension h for which a Z2-map exists from T to Sh.
The celebrated Borsuk–Ulam theorem (cf. e.g. [33]) states in one of its standard forms, that no Z2-map
exists from Sh to Sh

′

if h′ < h. Putting all this together, and using the fact that a proper coloring withm
colors is nothing but a homomorphism to Km, one obtains that χ(G) ≥ ind (B(G))+ 2 should always
hold.
A somewhat different box complex B0(G) can be defined by simply dropping the extra condition

about common neighbors for the containment of simplices having the form A ] ∅ or ∅ ] B. (Thus
V (G) ] ∅, ∅ ] V (G) and all their subsets are simplices in B0(G).) Csorba [5] proved that B0(G) is Z2-
homotopy equivalent to the suspension of B(G), cf. also [34] for this and other relations between
various box complexes. The latter fact implies ind (B0(G)) ≤ ind (B(G)) + 1 thus we have by the
foregoing that the inequality χ(G) ≥ ind (B0(G))+ 1 holds, too.
By the above mentioned form of the Borsuk–Ulam theorem, the Z2-index of a Z2-space T is

bounded from below by the Z2-coindex, coind (T ) which is defined as the largest dimension h for
which aZ2-mapexists from the sphereSh to T . By the suspension relationshipwehave coind (B0(G)) ≥
coind (B(G))+ 1. Thus the Z2-index and Z2-coindex of the two box complexes we discussed give the
following chain of lower bounds on the chromatic number:

χ(G) ≥ ind (B(G))+ 2 ≥ ind (B0(G))+ 1 ≥ coind (B0(G))+ 1 ≥ coind (B(G))+ 2.

For a more thorough introduction to these notions we refer to [33] or [41].
Seeing the four lower bounds on χ(G) in the above chain of inequalities one may ask why we

do not keep only the strongest one and drop the rest. The reason is that if a weaker lower bound of
the above gives the same value as one of the stronger ones, that may have stronger graph theoretic
consequences compared to the situation when there is a gap between the two bounds. An example of
this phenomenon is demonstrated in [43].
We will use the following results of earlier papers that give graph theoretic consequences of the

property that one of the above lower bounds attain a certain value.
The first such theorem we need involves the strongest of the above bounds. It is proven by Csorba

et al. in [9] where it is called the K`,m-theorem.

K`,m-theorem ([9]). If G is a graph satisfying ind (B(G))+ 2 ≥ t, then for every possible `,m ∈ N with
`+m = t, the complete bipartite graph K`,m appears as a subgraph of G.

The following result, that was named Zig–zag Theorem in [41], involves the third of the above
bounds.

Zig–zag Theorem ([41], cf. Also [15]). If G is a graph satisfying coind (B0(G))+1 ≥ t, then the following
holds for every proper coloring c : V (G) → N. G contains a Kdt/2e,bt/2c subgraph all t vertices of which
receive a different color by c. Furthermore, these t colors, if considered in their natural order as natural
numbers, appear alternately on the two sides of the given Kdt/2e, bt/2c subgraph.

Note that the number of colors used for the coloring in the Zig–zag Theorem may be much more
than χ(G). In case χ(G) = t = coind (B0(G)) + 1 a colorful version of the K`,m-theorem is proven
in [42].
Wequote another result from [41] that gives a characterization of those graphs forwhich the fourth

of the above lower bounds is above a certain value. This characterization needs the notion of Borsuk
graphs defined by Erdős and Hajnal [13].

Definition 1 ([13]). The Borsuk graph B(n, α) of parameters n and 0 < α < 2 is an infinite graph
whose vertices are the points of the unit sphereSn−1 inRn andwhose edges connect its pairs of vertices
with distance at least α.

Theorem B (Lemma 4.4 in [41]). A finite graph G satisfies coind (B(G)) ≥ n − 1 if and only if there is a
graph homomorphism from B(n, α) to G for some α < 2.
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Note that coind (B(G)) ≥ t − 2 implies χ(G) ≥ t and χ(B(t − 1, α)) = t for large enough α < 2
is equivalent to the Borsuk–Ulam theorem, cf. [32]. We remark that graphs satisfying coind (B(G)) ≥
t − 2 are called strongly topologically t-chromatic in [41] as opposed to topologically t-chromatic
graphs defined by satisfying coind (B0(G)) ≥ t − 1.

3. On the Behzad–Vizing conjecture

The Behzad–Vizing conjecture states that one can always color the vertices and the edges of a
simple graph G with at most 1(G) + 2 colors in such a way that neither adjacent vertices nor edges
with a common endvertex get the same color, furthermore, no edge is colored the same as one of its
endpoints. Here1(G) denotes the maximum degree of G. The minimum number of colors needed for
such a coloring is called the total chromatic number and is often denoted by χ ′′(G). It is simply the
chromatic number of T (G), the total graph of G defined by

V (T (G)) = V (G) ∪ E(G)

and

E(T (G)) = {{a, b} : a, b ∈ V (G), {a, b} ∈ E(G) or a ∈ V (G), b ∈ E(G), a ∈ b or
a, b ∈ E(G), a ∩ b 6= ∅}.

This problem is open for more than forty years. Its original appearance seems to be indepen-
dently [1,2,53], see also [35,19]. It was solved for 1(G) = 3 by Rosenfeld [38] and Vijayaditya [52]
(it is trivial for 1(G) ≤ 2) and for 1(G) = 4 and 5 by Kostochka [27–29]. The fractional chromatic
number χf (T (G)) is proven to be at most1(G)+ 2 for any value of1(G) by Kilakos and Reed [25].
Hereweprove a topological version, stating that even the strongest of the above topological bounds

is at most1(G)+ 2 for T (G).

Theorem 1. For any simple graph G the inequality

ind (B(T (G))) ≤ 1(G)

holds.

Proof. Let ∆ = 1(G). We prove that T (G) can contain the complete bipartite graph K2,∆+1 as a
subgraph only if ∆ ≤ 3. In the latter case the statement of the theorem follows from the above
mentioned result of Rosenfeld [38] and Vijayaditya [52] that verifies the original conjecture in this
case. For ∆ > 3 the lack of the above complete bipartite subgraph proves the theorem by the K`,m-
theorem of Csorba et al. [9] quoted in Section 2.
Assume for a contradiction that T (G) does contain a K2,∆+1 subgraph, while ∆ > 3. Let the two

sides (color classes) of this complete bipartite subgraph be denoted by A and B, where |A| = 2 and
|B| = ∆+ 1.
Recall that V (T (G)) = V (G)∪E(G). Wewill simply denote V (G) by V and E(G) by E and distinguish

among a few cases according to the size of the intersections of A and Bwith V and E, respectively.
First observe that A ∪ B ⊆ V is impossible, because then the vertices of G in A should have degree

at least∆+ 1 contradicting the definition of∆.
So there is some e ∈ E that belongs to A ∪ B. First assume e ∈ B and A ⊆ V . Then the two vertices

in Amust be the two endpoints of e. Since there is no other edge both of these vertices belong to, we
must have |B ∩ V | = |B \ {e}| = ∆. Then the elements of A are adjacent in G (as vertices of G) to the
∆ vertices in |B ∩ V | plus each other (by e), so their degree in G is at least∆+ 1, a contradiction.
This proves that A ∩ E cannot be empty, so we may assume e ∈ A. If |A ∩ E| = 2 (that is both

elements of A are edges of G), say A = {e, f } ⊆ E, then B ∩ V ⊆ e ∩ f . If the edges e and f have no
common endpoint, then B ∩ V = ∅ and∆+ 1 = |B| = |B ∩ E| ≤ 4, as there are at most 4 edges that
have a common endpoint with both e and f . This contradicts to ∆ > 3. If, on the other hand, e and f
have a common endpoint u, then we still have |B ∩ E| ≥ |B| − 1 = ∆ and all these edges except at
most one must have u as one of its endpoints. (One exceptional edge can connect the endpoints of e
and f different from u.) But then the degree of u is at least∆+ 1 in G, a contradiction.
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So we may assume |A ∩ E| = 1. Let A = {v, e} where v ∈ V and e ∈ E. If v is an endpoint of e
then |B ∩ V | ≤ 1 as there are only 2 vertices e is connected to in T (G) and one of them is v 6∈ B. Thus
|B∩E| = |B|−1 = ∆ and all these∆ edges have v as one of their endpoints. But v is also an endpoint
of e 6∈ B, so v has degree at least∆+ 1 in G, a contradiction again. Finally we have to look at the case
when v is not an endpoint of e. Then |B ∩ V | ≤ 2 since e has only two endpoints and |B ∩ E| ≤ 2,
because there are at most 2 edges containing v as an endpoint and having the other endpoint at one
end of e. Thus∆+ 1 = |B| ≤ 4 contradicting the assumption that∆ > 3. �

Remark 1. In the proof above we had two cases where the contradiction was with 1(G) > 3, i.e.,
where we relied on Rosenfeld’s and Vijayaditya’s theorem. The first such case is inessential, there we
could continue by simply saying that if A ∪ B ⊆ E and the two elements in A are independent edges
of G, then getting |B| = 4 means that the 6 edges in A ∪ B form a K4 subgraph of G which must be a
connected component itself and from this point the argument is easy to complete. The second case
when we relied on∆ > 3 is more essential. This is at the very end of the proof and the K2,4 produced
there can in fact come up in T (G) without forcing the vertices and edges belonging to it to form a
separate component of G. �

4. On Hedetniemi’s conjecture

For two graphs F and G their direct (or categorical) product F × G is defined on vertex set
V (F) × V (G) such that two vertices (f1, g1) and (f2, g2) are adjacent if and only if {f1, f2} ∈ E(F) and
{g1, g2} ∈ E(G). Let F and G be simple graphs. It is easy to check that χ(F × G) ≤ min{χ(F), χ(G)}
(simply color vertex (f , g) of F × G with the color of f to obtain a proper coloring with χ(F) colors),
andHedetniemi’s conjecture states that equality holds. This conjecture iswide open, themajor special
case proven is when the right hand side is 4 [12]. In fact, even that is not knownwhether the function
f (t) := min{χ(F×G) : χ(F) ≥ t, χ(G) ≥ t} goes to infinitywith t or not. (Though rather surprisingly,
if it does not, then it remains below 10.) For further information and references we refer the reader to
the excellent recent survey by Tardif [47].
Concerning relaxations involving the fractional chromatic number, Tardif proved in [48] that

χ(F × G) ≥ 1
2 min{χf (F), χf (G)} and in [46] that χf (F × G) ≥

1
4 min{χf (F), χf (G)}, where χf stands

for the fractional chromatic number. Note that while the first of these inequalities is a weakening of
Hedetniemi’s conjecture, the second is only an analog, although if the exact value of themultiplicative
constant is ignored then it also implies the first one.
Another relaxation mentioned in Tardif’s survey [47] is due to Hell [18]. It already connects

Hedetniemi’s conjecture to Lovász’s topological lower bound on the chromatic number. In particular,
in Tardif’s formulation, Hell shows that if F and G are two graphs for which Lovász’s bound is tight
then χ(F × G) = min{χ(F), χ(G)}. This result can also be found in Dochtermann’s paper [10].
Along these lines we state the following topological analog of Hedetniemi’s conjecture.

Theorem 2.

coind (B(F × G)) = min{coind (B(F)), coind (B(G))}.

Proof. It is true for any pair of graphs F and G that a homomorphism from F×G exists both to F and G
(simply by taking projections). Assume coind (B(F×G)) = h. Then, by TheoremB, there is someBorsuk
graph B(h + 1, α) which homomorphically maps into F × G. Combining this homomorphism with
either of the projection homomorphismsmentioned above, we get a homomorphism from B(h+1, α)
to F and to G, respectively. Thus coind (B(F)) ≥ h and coind (B(G)) ≥ h also holds. This proves
coind (B(F × G)) ≤ min{coind (B(F)), coind (B(G))}.
To prove the reverse inequality let d = min{coind (B(F)), coind (B(G))}. Then by Theorem B

there is some large enough α < 2 for which B(d + 1, α) admits a homomorphism f to F and also
a homomorphism g to G. But then the function which maps every vertex v ∈ V (B(d + 1, α)) to
(f (v), g(v)) is a homomorphism of B(d + 1, α) to F × G and its existence proves coind (F × G) ≥ d.
Therefore we have coind (B(F × G)) ≥ min{coind (B(F)), coind (B(G))} completing the proof. �
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Remark 2. Dochtermann and Schultz [11] found another class of graphs that satisfy a similar state-
ment as Theorem B if put in place of Borsuk graphs. One could base the above proof also on this result
instead of Theorem B. �

Remark 3. Péter Csorba [6] observed that a result of Kozlov (equation 2.4.2 in [30]; cf. also [18,10])
combinedwith results fromCsorba [7] implies that B(F×G) isZ2-homotopy equivalent to B(F)×B(G)
for every pair of graphs F and G. The product A × B here is meant to be the product topological
space equipped with the involution ν : (x, y) 7→ (νA(x), νB(y)) where νA and νB are the respective
involutions on the Z2-spaces A and B. From this observation an alternative proof for Theorem 2 can
easily be obtained. �

5. On Hadwiger’s conjecture

Hadwiger’s conjecture states that if χ(G) ≥ t , then G contains a Kt minor. It is essentially trivial for
t ≤ 3, relatively easy to prove for t = 4, known to be equivalent to the Four Color Theorem for t = 5,
and proven to be so also for t = 6 [37]; see [51] for an excellent survey. For t ≥ 7 the conjecture
is open and is widely considered as one of the most important open problems in graph theory. Even
a linear approximation is not proven, that is, it is not known whether there exists a constant c such
that χ(G) ≥ t implies that G contains a complete minor on ct vertices. Such a result is proven for the
fractional chromatic number in place of the chromatic number with c = 1/2 by Reed and Seymour
[36]. Stating in the counterpositive form they proved that if a graph contains no complete minor on
m + 1 vertices then its fractional chromatic number is at most 2m. In [41] it was observed that an
analogous statement immediately follows from the K`,m-theorem for the topological lower bounds
on the chromatic number. Namely, if G contains no Km+1 minor, then ind (B(G))+ 2 < 2m.
Although Hadwiger’s conjecture is wide open, a strengthening, called the ‘‘odd Hadwiger conjec-

ture’’ received much attention in recent years, see [16,22–24]. To state it we need the concept of an
odd Km minor.

Definition 2. An odd Km minor of graph G is formed by m vertex disjoint trees T1, . . . , Tm in G that
have the following additional properties.
The vertices in these trees can be simultaneously 2-colored such that

1. Each tree Ti is properly colored;
2. For every pair i 6= j, 1 ≤ i, j ≤ m, there is an edge between a vertex of Ti and a vertex of Tj that
have the same color.

The odd Hadwiger conjecture was suggested by Gerards and Seymour (cf. [20]) and it states that if
χ(G) ≥ t then Gmust contain an odd Kt minor.
In some cases the known results about this conjecture show surprising similarities with those

known about Hadwiger’s original conjecture. In particular, Kawarabayashi and Reed [23] have proved
an analog of the Reed–Seymour theorem, namely, they showed that if G does not contain an odd Km
minor then the fractional chromatic number of G is at most 2m. This suggests the question whether
one can prove that graphs with no odd Km minor satisfy ind (B(G)) + 2 ≤ 2m. It is clear that now
we cannot get this just from the K`,m-theorem, since its conclusion holds for large complete bipartite
graphs that contain no large odd complete minors. Though we also did not succeed to get something
similar from the Zig–zag Theorem, we wonder whether its conclusion would already imply such a
statement.

Question. Is there some constant c for which the following is true? If every proper coloring of a graph G
satisfies the conclusion of the Zig–zag Theorem (with parameter t) then G contains an odd complete minor
on ct vertices.

In the following section we prove that the odd Hadwiger conjecture holds for some graph families
that have their chromatic number equal to its topological lower bound, while the fractional chromatic
number is much smaller.
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6. The odd Hadwiger conjecture for large enough Kneser graphs and generalized Mycielski
graphs

Recall that the Kneser graph KG(n, k) is defined for n > 2k on all k-subsets of an n-element set
as vertices, where two of these form an edge iff they are disjoint. The chromatic number of graph
KG(n, k) is n − 2k + 2 [31], while their fractional chromatic number is only n/k, cf. [14,39]. We are
going to prove the following result.

Theorem 3. If t = n− 2k+ 2 is fixed and n is large enough, then the t-chromatic Kneser graph KG(n, k)
contains an odd Kt minor.

Recall that a topological Kr subgraph in a graph G is a collection of r branching vertices together
with

( r
2

)
vertex disjoint paths in G connecting all pairs of the branching vertices. We call a topological

Kr subgraph odd if all the latter
( r
2

)
paths are odd, i.e., they contain an odd number of edges. A famous

conjecture stronger than Hadwiger’s was due to Hajós claiming that every graph of chromatic number
t contains a topological Kt subgraph. This was disproved by Catlin [4] for t ≥ 7, cf. also [51]. (It is
known to hold for t ≤ 4 when it is actually equivalent to Hadwiger’s conjecture, and is still open for
t = 5, 6.) Several other counterexamples can be found in a more recent paper by Thomassen [50].
Since every odd topological Kr subgraph gives rise to an odd Kr minor, and since the odd Hadwiger

conjecture is trivial if the chromatic number is less than 4 and is also known to hold when it is equal
to 4 (the latter was proven by Catlin [4]), Theorem 3 immediately follows from the following result.

Theorem 4. If t = n−2k+2 ≥ 5 is fixed and n is large enough then the Kneser graph KG(n, k) contains
an odd topological Kt subgraph.

Proof. Arrange the n points 1, 2, . . . , n on a circle and let their k-subsets be identified with the
vertices of KG(n, k).
A k-subset formed by k cyclically consecutive points on the circle will be called a short arc, while

a long arc is formed by a set of ` :=
⌊ n−1
2

⌋
cyclically consecutive points. The first point of a long arc

is meant to be its first element when the arc is traversed in a clockwise order along the circle. The
relative position of a k-subset of a long arc within the long arc will be called its pattern if it contains
the first element of the long arc. Thus for example, if k = 3, then the subset {1, 3, 7} has the same
pattern in the long arc startingwith 1 as the subset {n−1, 1, 5} in the long arc startingwith n−1. Note
that a pattern in a given long arc defines a vertex of KG(n, k), and if we have two different pairs, both
consisting of a long arc and a pattern, then these define distinct vertices of KG(n, k). This is ensured by
the condition that the first element of the long arc is always in the k-subset defined by a pattern. Note
also that for such vertices it is meaningful to speak about the pattern of the vertex, since a k-subset
that fits into a long arc defines the long arc with which it has the same starting vertex, i.e., the one in
which it has a pattern.
Select t = n− 2k+ 2 short arcs (there are n altogether) and fix them. These will be the branching

vertices of our odd topological Kt . Call a pattern good if it is not identical with the first k vertices in the
long arc. (In other words, vertices with a good pattern are not short arcs.) Next we select a different
good pattern for each pair of the branching vertices. First we will show that this is possible, and then
we show that between any two branching vertices there is a path of odd length, all inner vertices of
which have the same pattern, namely the one attached to the given pair of vertices. These paths will
then be automatically disjoint as their inner vertices have different patterns. They also cannot touch
other branching vertices than their endpoints, since the branching vertices form short arcs and they
are excluded from the set of good patterns.
The number of good patterns is easily seen to be

(
b(n−3)/2c
k−1

)
− 1. This is equal to

(
(n−3)/2
(t−3)/2

)
− 1 if

n is odd and to
(
(n−4)/2
(t−4)/2

)
− 1 if n is even.

We can select a different good pattern for all pairs of branching vertices if the above expression
is not less than

( t
2

)
. Since t is fixed, the latter number is constant, while the above expressions go to

infinity with nwhenever t ≥ 5. This proves that for large enough n the required inequality holds.



G. Simonyi, A. Zsbán / European Journal of Combinatorics 31 (2010) 2110–2119 2117

It remains to prove that between any two branching vertices there exists a path of odd length
with all inner nodes having an arbitrarily fixed good pattern. To this end, first observe that for any
two given long arcs, a and b, one can find a sequence of long arcs a = s0, s1, . . . , sr = b, such that
si ∩ si+1 = ∅ for all i = 0, 1, . . . , r − 1 and r is even. In other words, there is an even length path
between any two vertices in KG(n, `)[L], where KG(n, `)[L] is the subgraph of KG(n, `) induced by the
set L of vertices that form long arcs. This statement is true because two closest long arcs, i.e., two long
arcs with symmetric difference 2 still have a long arc in the complement of their union. Thus with two
steps (a step meaning going from one vertex of KG(n, `)[L] to another along an edge) we can shift any
long arc along our circle by 1. Therefore we can realize any shift with an even number of steps. Given
two branching points, i.e., two short arcs x and y, choose a to be a long arc disjoint from x and b to be
a long arc containing y. Consider the above sequence of long arcs between a and b and then substitute
each long arc of the sequence by the vertex of KG(n, k) contained in the given long arc and having the
pattern attached to the pair of branching points (x, y) (while b is substituted by y). Adding x to the
beginning of this sequence we obtain the required odd length path in KG(n, k) between vertices x and
y completing the proof. �

Schrijver [40] defined a beautiful family of graphs, that appear as induced subgraphs of Kneser
graphs and share some of their important properties.

Definition 3 ([40]). The Schrijver graph SG(n, k) is defined as the induced subgraph of the Kneser
graph KG(n, k) on the vertices

V (SG(n, k)) =
{
a ⊆

(
[n]
k

)
: ∀i {i, i+ 1} 6⊆ a, {1, n} 6⊆ a

}
.

It is proven in [40] that the chromatic number of SG(n, k) is also n−2k+2 as for KG(n, k), moreover,
SG(n, k) is vertex color critical. Talbot [45] determined the independence number of SG(n, k) which
easily implies that χf (SG(n, k)) = χf (KG(n, k)), too.
It is easy to see, that if n is odd, then choosing the cyclic permutation on our circle at the beginning

of the proof of Theorem 4 as 1, 3, 5, . . . , n, 2, 4, . . . , n − 1, each long arc will be such that neither a
set {i, i + 1}, nor {n, 1} will be contained in it. Thus any k-subset of any long arc will be a vertex of
SG(n, k) and the proof goes through for SG(n, k) just as it did for KG(n, k). In case n is even, we can
simply ignore the point n and fix the circle as above on the elements 1, . . . , n − 1 only. Observing
that the proof would allowmore than t branching points, too, we apply the above argument for t + 1
branching points that goes again through the same way. Thus we obtain the following strengthening
of Theorems 3 and 4.

Corollary 5. If t = n − 2k + 2 ≥ 5 is fixed and n is large enough, then the t-chromatic Schrijver graph
SG(n, k) contains an odd topological Kt subgraph. In particular, for any fixed t = n− 2k+ 2 and n large
enough SG(n, k) contains an odd Kt minor.

Generalized Mycielski graphs form another family of graphs where topological lower bounds on
the chromatic number give sharp estimates, while the fractional chromatic number is far below the
chromatic number [49].
The r-level generalized MycielskianMr(G) of a graph G is defined on the vertex set

V (G)× {0, 1, . . . , r − 1} ∪ {z}

with edge set

E(Mr(G)) =
{
{(u, i), (v, j)} : {u, v} ∈ E(G) and (|i− j| = 1 or i = j = 0)

}
∪

{
{(u, r − 1), z} : u ∈ V (G)

}
.

Mycielski graphs are usually meant to be the graphs obtained from K2 by an iterative use of the above
general Mycielski construction with r = 2.
Results of Stiebitz [44] (cf. also [17,33]) generalized by Csorba [8] imply that if the box complex

B(G) of a graph G is homotopy equivalent to a sphere Sh (this is the case for complete graphs andmore



2118 G. Simonyi, A. Zsbán / European Journal of Combinatorics 31 (2010) 2110–2119

generally for all Schrijver graphs, see [3]), then for any positive integer r , the box complex B(Mr(G))
is homotopy equivalent to Sh+1, therefore ind (B(Mr(G))) = ind (B(G)) + 1 holds. In particular, if
the above homotopy equivalence holds and the topological lower bound (in this case the four lower
bounds we discussed coincide) of the chromatic number is tight (this also happens for all Schrijver
graphs), then it is 1 more and also tight forMr(G). (Note that there are graphs with χ(Mr(G)) = χ(G),
an example given in [49] is the complement of the 7-cycle with r = 3. Another example is given
in [8].)
Concerning the odd Hadwiger conjecture we prove the following.

Proposition 6. If G contains an odd Kt minor then Mr(G) contains an odd Kt+1 minor for every r ≥ 1.

Proof. We may assume that G is connected and that r ≥ 2. Consider G as the subgraph induced on
vertices (v, 0) ofMr(G) and the t vertex disjoint trees T1, . . . , Tt with their 2-coloring that give an odd
Kt minor in this induced subgraph G. Notice that if some of these t trees have only one vertex then
they are all colored the same, say blue.
Now take an arbitrary spanning tree Tt+1 on the vertices in the set {(v, i) : i > 0} ∪ {z} and its

proper 2-coloring that gives color blue to all vertices of the form (v, 1). (Such a coloring is valid as the
vertices {(v, i) : i > 0} ∪ {z} induce a bipartite subgraph in Mr(G) in which the distance between
any two vertices {v, 1}, {v′, 1} is even.) It remains to show only that all trees Ti with i ≤ t have a
blue colored vertex that has a neighbor among the vertices (v, 1). But this is almost obvious: By the
connectedness ofG every vertex (u, 0) has some neighbor of the form (v, 1) and all the trees T1, . . . , Tt
either have an edge and then one of its endpoints is necessarily blue or it is a one-point tree, but then
it is blue by the above observation. So we have an odd Kt+1 minor. �
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