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a b s t r a c t

We prove that the list-chromatic index and paintability index of K6 is 5. That indeed
χ ′

ℓ(K6) = 5 was a still open special case of the List Coloring Conjecture. Our proof demon-
strates how colorability problems can numerically be approached by the use of computer
algebra systems and the Combinatorial Nullstellensatz.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Given a graph G and an assignment of a family L = (Le)e∈E(G) of non-empty sets Le to the edges e of G, we say that G is
L-list-edge colorable if it is possible to assign to each edge e ∈ E(G) an element from the list Le in such a way that adjacent
edges of G are assigned distinct elements of C =


e∈E(G) Le. The set C is conventionally called the set of colors. Given a

positive integer k, we say that a graph G is k-list-edge colorable if, for any assignment L = (Le)e∈E(G), satisfying |Le| = k
for every e ∈ E(G), the graph G is L-list-edge colorable. The list-chromatic index of G, denoted by χ ′

ℓ(G), is the minimum
positive integer k such that G is k-list-edge colorable.

It is easy to see that χ ′

ℓ(G) ≥ χ ′(G), where χ ′(G) is the (ordinary) chromatic index of G, since, if k = χ ′

ℓ(G), and we set
L = (Le)e∈E(G), where Le = {1, 2, . . . , k} for every e ∈ E(G), then the fact that G is L-list-edge colorable guarantees the
existence of a k-edge coloring of G, and hence, by definition, k ≥ χ ′(G). The opposite was conjectured independently by
several researchers; see [10, Section 12.20]:

Conjecture 1.1 (List Coloring Conjecture). χ ′

ℓ(G) = χ ′(G) for every multigraph G.

This conjecture appears to be very hard and it has been proven only for some special cases, most famously for bipartite
graphs by Galvin in [6]. One indication of the difficulty of Conjecture 1.1 is provided by the fact that it is still open for some
apparently trivial classes of graphs, such as the class of complete (simple) graphs. It is well known (see e.g. [5]) that the
chromatic index of the complete graph Kn, with n > 1, is given by

χ ′(Kn) =


n − 1 if n is even
n if n is odd, n ≥ 3.
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Thus, for complete graphs, Conjecture 1.1 reduces to proving that the list-chromatic index of Kn equals the quantity
indicated above. Themost successful attempt in this direction is given by the following theoremofHäggkvist and Janssen [7].

Theorem 1.2 (Häggkvist and Janssen [7]). χ ′

ℓ(Kn) ≤ n for every positive integer n.

This result leaves the question open only for complete graphs of even order. For convenience,we state this case separately
as a special case of the List Coloring Conjecture.

Conjecture 1.3. χ ′

ℓ(K2m) = 2m − 1 for every positive integer m.

Note that the Häggkvist–Janssen theorem can be derived as a consequence of Conjecture 1.3. To see this, we can clearly
confine ourselves to the case of odd order. Let m ∈ Z+, and consider a list assignment L = (Le)e∈E(K2m+1) on the edges of
K2m+1, where |Le| = 2m + 1 for every e ∈ E(K2m+1). Let v0, v1, . . . , v2m be the vertices of K2m+1, and let e1 = v0v1, e2 =

v0v2, . . . , e2m = v0v2m. Assign a distinct color to each of the edges e1, e2, . . . , e2m from their respective lists (this is always
possible since the size of each list is 2m+1). Let ϕ(e1), ϕ(e2), . . . , ϕ(e2m) be the colors assigned to the edges e1, e2, . . . , e2m.
Consider now the graph K2m+1 − v0 and, for each edge f = vivj ∈ E(K2m+1 − v0), consider the list

L′

f = Lf \ {ϕ(ei), ϕ(ej)},

where Lf ∈ L. This defines a list assignment L′ on the edges of K2m+1 − v0 with

|L′

f | ≥ 2m − 1 for every f ∈ E(K2m+1 − v0).

Assuming that Conjecture 1.3 holds, there exists an L′-list edge coloring ψ of K2m+1 − v0, as K2m+1 − v0 ∼= K2m. Now, it is
easy to see that, by construction, the function

σ(e) =


ϕ(e) if e = e1, e2, . . . , e2m,
ψ(e) if e ∈ E(K2m+1 − v0)

is an L-list-edge coloring of K2m+1. This proves that χ ′

ℓ(K2m+1) ≤ 2m + 1, and we obtain the Häggkvist–Janssen theorem.
Conjecture 1.3 clearly holds for m = 1 since K2 is obviously 1-list-edge colorable. For m = 2, Conjecture 1.3 holds as

a consequence of the fact that every 1-factorable planar graph satisfies Conjecture 1.1, a fact established by Ellingham and
Goddyn [4]. A short direct and elementary proof of the case m = 2 of Conjecture 1.3 was given by Ko-Wei Lih and the first
author in [2]. As far as we know Conjecture 1.3 is open for m ≥ 3, and the purpose of this paper is to settle the case m = 3.
Various attempts of the first and second authors to settle this case by an elementary, direct proof have not materialized.

2. The edge distance polynomial

To settle Conjecture 1.3 for K6 (m = 3), we will examine the edge distance polynomial PL(K6) of its line graph L(K6).
Here, the edge distance polynomial PG of a graph G on numbered vertices v1, v2, . . . , vk is a polynomial in the variables
x1, x2, . . . , xk, with one variable xj for each vertex vj. It is defined as the product over all differences xi − xj with vivj ∈ E(G)
and i < j, and we view it as a polynomial over Q. The nonzeros in Qk of this polynomial are precisely the vertex colorings of
G with rational numbers as colors (and we always may view the set of colors C as contained in Q). This is easy to see. The
points (x1, x2, . . . , xk) ∈ Qk are interpreted as vertex labelings of G via vj −→ xj. If there is some difference xi − xj that is
zero, in such a point (x1, x2, . . . , xk), this means that the vertices vi and vj receive the same color, xi = xj. Hence, indeed, the
nonzeros of PG are precisely those labelings that are correct colorings.

Since we are interested in edge colorings, but employ techniques for vertex colorings, first, we have to switch from K6 to
its line graph L(K6). Second, we consider the edge distance polynomial PL(K6). Our process for generating PL(K6) is presented
in the first three parts of the algorithm in the next section. It also works for general complete graphs Kn. Note that our
systematic approach requires double indexed variables xi,j. This is because the vertices vi,j of the line graph are the edges
vivj of the underlying graph, and each edge vivj has two ends vi and vj.

After the third part of the algorithm, the polynomial PL(K6) is printed; it has |E(K6)| = 15 variables and |E(L(K6))| = 60 =

15×4 factors. The expansion of this product is not advisable, as itwould result in 260 summands.Wewill use anothermethod
to determine the coefficient of the monomial
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as equal to−720. Since this is different from zero, the famous Combinatorial Nullstellensatz [1] will then guarantee a nonzero
in any list assignmentLwith lists of size 5. In fact, edge distance polynomials are always homogeneous so that allmonomials

have maximal degree, and the following elegant formulation of the Combinatorial Nullstellensatz applies.

Theorem 2.1 (Combinatorial Nullstellensatz). If xα11 xα22 . . . xαkk occurs as monomial of maximal degree in a polynomial P(x1, x2,
. . . , xk), then this polynomial has a nonzero in any domain L1 × L2 × · · · × Lk with |Lj| > αj for j = 1, 2, . . . , k.

As explained, the guaranteed nonzeros are vertex colorings of L(K6) and L-list-edge colorings of K6. Hence, our conjec-
ture will then be verified for K6. Moreover, the third author introduced in [11] (and already in [14]) the stronger concept
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of paintability. In this concept, the lists can still be modified during an interactive coloration process. He showed in [12]
(and [14]) that the Combinatorial Nullstellensatz holds for paintability as well so that our approach will even prove that K6
is edge 5-paintable.

Following the suggestion of the referee, we explain the concept of paintability and the mentioned version of the Combi-
natorial Nullstellensatz here briefly. The idea is that, if the set of all colors C is contained in Z+, one may try to use color 1
at first, of course, only for vertices v whose lists Lv contain color 1. Afterwards, one may allow the change of the remaining
lists Lv \ {1}, without changing their cardinalities, and then extend the partial coloring with color 2. This extension process
is then repeated with color 3, color 4 and so forth, where, in between, the remaining tails of the color lists may be altered.
This more flexible on-line list coloring can also be formulated for polynomials. The partial colorings just correspond to par-
tial substitutions that do not make the polynomial zero. However, on the more general level of polynomials, there is the
additional difficulty that the assumption C ⊆ Z+ is not sufficient, as the Paintability Nullstellensatz requires algebraically
independent colors.Without lose of generality, here, onemay assumeC ⊆ {T1, T2, . . .}, with symbolic variables Tj. Substan-
tially new techniques are also required in the proof of the Paintability Nullstellensatz, but the result itself is not surprising.
In fact, the great majority of all list coloring theorems in graph theory could already be generalized to paintability; see e.g.
[11,13,12,8,15,9,3]. In these graph-theoretic cases, an elegant recursive way to define k-paintability may even have added
some clarity to the proofs of these theorems.

All that is left in our approach to K6, whether its edge 5-paintability or just its edge 5-choosability, is to calculate the
coefficient of monomial (1). To do so, we use the simple fact that the coefficient Pα1,α2,...,αk of x

α1
1 xα22 . . . xαkk in P is given by

α1!α2! . . . αk! Pα1,α2,...,αk =


∂α1

∂xα11

∂α2

∂xα22
. . .

∂αk

∂xαkk
P


x1=x2=···=xk=0

. (2)

Actually, this calculation is still too heavy for a normal personal computer, as the product rule for differentiation brings us
many summands. However, we can accelerate it by plugging in the zeros as early as possible. In this way, we kill many terms
and save memory and time. If, for example, we want to calculate the coefficient P2,3 of x21x

3
2 in a polynomial P(x1, x2), we

can use

2! 3! P2,3 =


∂2

∂x21

∂3

∂x32
P


x1=x2=0

=


∂2

∂x21


∂3

∂x32
P


x2=0


x1=0

. (3)

This trick is incorporated into the last part of our algorithm, where, for each variable at a time, we differentiate n − 2 = 4
many times, substitute zero and then divide by (n−2)! = 4!. In themain line of this algorithm, the variable x[e[1], e[2]] be-
longs to the edge e ∈ Egs := E(Kn), e.g. x3,5 = x[3, 5] belongs to the edge {3, 5}. The expression diff(P,x[e[1],e[2]]
$n-2) denotes the (n − 2)nd derivative of P in that variable. Finally, to substitute 0 for x[e[1], e[2]], this command has
been extended to

subs(diff(P, x[e[1], e[2]]$n − 2), x[e[1], e[2]] = 0)/(n − 2)!,

which includes the division by (n − 2)! already. As explained, this command has to be repeated for each edge e ∈ Egs :=

E(Kn), and eventually results in the value of our coefficient.
As mentioned, the initial three parts of the algorithm calculate the edge distance polynomial P of L(K6), which is printed

right before the fourth and last part. Its 60 factors could have been entered manually, but we wanted to provide a generic
solution that works for arbitrary n. The edge distance polynomial is just the following product of edge distances, where the
edges le of the line graph are listed in LEgs as ordered pairs [{i, j}, {k, ℓ}] of adjacent edges {i, j} and {k, ℓ} of the underlying
complete graph:

P :=


[{i,j},{k,ℓ}]∈LEgs

i<j,k<ℓ

(xk,ℓ − xi,j) =


le∈LEgs


x[le[2][1], le[2][2]] − x[le[1][1], le[1][2]]


.

3. The algorithm

Our algorithm is written in the easily understandableMuPAD language, in red. The output of the different steps is printed
in blue. The running time on a usual personal computer, usingMATLABwith SymbolicMath Toolbox,was about fiveminutes.
More than 450 megabytes memory was allocated by the process. On future faster high performance computers it might
become possible to do the next step, by replacing the very first command ‘‘n := 6’’ with ‘‘n := 8’’:

n:=6: Egs:=[]: print(Unquoted,NoNL,"Edges of K_".n.": ");
for i from 1 to n-1 do for j from i+1 to n do Egs:=Egs.[{i,j}]
end_for end_for //output Egs

Edges of K_6: [{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {2, 3}, {2, 4}, {2, 5}, {2, 6}, {3, 4}, {3, 5}, {3, 6}, {4, 5}, {4, 6}, {5, 6}]
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LEgs:=[]: print(Unquoted,NoNL,"Arcs of L(K_".n."): ");
for i from 1 to nops(Egs)-1 do for j from i+1 to nops(Egs) do

if card(Egs[i] intersect Egs[j])=1 then LEgs:=LEgs.[[Egs[i],Egs[j]]]
end_if

end_for end_for //output LEgs

Arcs of L(K_6): [[{1, 2}, {1, 3}], [{1, 2}, {1, 4}], [{1, 2}, {1, 5}], . . . , [{4, 6}, {5, 6}]]

P:=1: print(Unquoted,NoNL,"Edge distance polynomial of L(K_".n."): ");
for le in LEgs do P:=P*(x[le[2][1],le[2][2]]-x[le[1][1],le[1][2]])
end_for //output P

Edge distance polynomial of L(K6): (x1,2 − x1,3)(x1,2 − x1,4)(x1,2 − x2,3)(x1,2 − x1,5)
(x1,2 − x2,4)(x1,3 − x1,4)(x1,3 − x2,3)(x1,2 − x1,6)(x1,2 − x2,5)(x1,3 − x1,5)(x1,2 − x2,6)(x1,3 − x1,6)
(x1,3 − x3,4)(x1,4 − x1,5)(x1,4 − x2,4)(x2,3 − x2,4)(x1,3 − x3,5)(x1,4 − x1,6)(x1,4 − x3,4)(x2,3 − x2,5)
(x2,3 − x3,4)(x1,3 − x3,6)(x2,3 − x2,6)(x2,3 − x3,5)(x1,5 − x1,6)(x1,5 − x2,5)(x2,4 − x2,5)(x2,4 − x3,4)
(x1,4 − x4,5)(x2,3 − x3,6)(x1,5 − x3,5)(x2,4 − x2,6)(x1,4 − x4,6)(x1,5 − x4,5)(x2,4 − x4,5)(x1,6 − x2,6)
(x2,5 − x2,6)(x2,5 − x3,5)(x3,4 − x3,5)(x2,4 − x4,6)(x1,6 − x3,6)(x2,5 − x4,5)(x3,4 − x3,6)(x3,4 − x4,5)
(x1,5 − x5,6)(x1,6 − x4,6)(x3,4 − x4,6)(x2,6 − x3,6)(x3,5 − x3,6)(x3,5 − x4,5)(x1,6 − x5,6)(x2,5 − x5,6)
(x2,6 − x4,6)(x2,6 − x5,6)(x3,5 − x5,6)(x3,6 − x4,6)(x4,5 − x4,6)(x3,6 − x5,6)(x4,5 − x5,6)(x4,6 − x5,6)

print(Unquoted,NoNL,"’Leading’ coefficient: ");
for e in Egs do P:=subs(diff(P,x[e[1],e[2]]$n-2),x[e[1],e[2]]=0)/(n-2)!
end_for //output P

’Leading’ coefficient: −720
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