Note

The list-chromatic index of K_{6}

David Cariolaro ${ }^{\text {a }}$, Gianfranco Cariolaro ${ }^{\text {b }}$, Uwe Schauz ${ }^{\text {a,* }}$, Xu Sun ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Mathematical Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
${ }^{\mathrm{b}}$ Department of Information Engineering, University of Padova, Italy

ARTICLE INFO

Article history:

Received 24 June 2013
Received in revised form 23 December 2013
Accepted 26 December 2013

Keywords:

List coloring
Edge coloring
List-chromatic index
List coloring conjecture
Combinatorial Nullstellensatz
Complete graph
Computer algebra systems

Abstract

We prove that the list-chromatic index and paintability index of K_{6} is 5 . That indeed $\chi_{\ell}^{\prime}\left(K_{6}\right)=5$ was a still open special case of the List Coloring Conjecture. Our proof demonstrates how colorability problems can numerically be approached by the use of computer algebra systems and the Combinatorial Nullstellensatz.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Given a graph G and an assignment of a family $\mathcal{L}=\left(L_{e}\right)_{e \in E(G)}$ of non-empty sets L_{e} to the edges e of G, we say that G is \mathcal{L}-list-edge colorable if it is possible to assign to each edge $e \in E(G)$ an element from the list L_{e} in such a way that adjacent edges of G are assigned distinct elements of $\mathcal{C}=\bigcup_{e \in E(G)} L_{e}$. The set \mathcal{C} is conventionally called the set of colors. Given a positive integer k, we say that a graph G is k-list-edge colorable if, for any assignment $\mathcal{L}=\left(L_{e}\right)_{e \in E(G)}$, satisfying $\left|L_{e}\right|=k$ for every $e \in E(G)$, the graph G is \mathcal{L}-list-edge colorable. The list-chromatic index of G, denoted by $\chi_{\ell}^{\prime}(G)$, is the minimum positive integer k such that G is k-list-edge colorable.

It is easy to see that $\chi_{\ell}^{\prime}(G) \geq \chi^{\prime}(G)$, where $\chi^{\prime}(G)$ is the (ordinary) chromatic index of G, since, if $k=\chi_{\ell}^{\prime}(G)$, and we set $\mathcal{L}=\left(L_{e}\right)_{e \in E(G)}$, where $L_{e}=\{1,2, \ldots, k\}$ for every $e \in E(G)$, then the fact that G is \mathcal{L}-list-edge colorable guarantees the existence of a k-edge coloring of G, and hence, by definition, $k \geq \chi^{\prime}(G)$. The opposite was conjectured independently by several researchers; see [10, Section 12.20]:

Conjecture 1.1 (List Coloring Conjecture). $\chi_{\ell}^{\prime}(G)=\chi^{\prime}(G)$ for every multigraph G.
This conjecture appears to be very hard and it has been proven only for some special cases, most famously for bipartite graphs by Galvin in [6]. One indication of the difficulty of Conjecture 1.1 is provided by the fact that it is still open for some apparently trivial classes of graphs, such as the class of complete (simple) graphs. It is well known (see e.g. [5]) that the chromatic index of the complete graph K_{n}, with $n>1$, is given by

$$
\chi^{\prime}\left(K_{n}\right)= \begin{cases}n-1 & \text { if } n \text { is even } \\ n & \text { if } n \text { is odd, } n \geq 3\end{cases}
$$

[^0]Thus, for complete graphs, Conjecture 1.1 reduces to proving that the list-chromatic index of K_{n} equals the quantity indicated above. The most successful attempt in this direction is given by the following theorem of Häggkvist and Janssen [7].

Theorem 1.2 (Häggkvist and Janssen [7]). $\chi_{\ell}^{\prime}\left(K_{n}\right) \leq n$ for every positive integer n.
This result leaves the question open only for complete graphs of even order. For convenience, we state this case separately as a special case of the List Coloring Conjecture.

Conjecture 1.3. $\chi_{\ell}^{\prime}\left(K_{2 m}\right)=2 m-1$ for every positive integer m.
Note that the Häggkvist-Janssen theorem can be derived as a consequence of Conjecture 1.3. To see this, we can clearly confine ourselves to the case of odd order. Let $m \in \mathbb{Z}^{+}$, and consider a list assignment $\mathcal{L}=\left(L_{e}\right)_{e \in E\left(K_{2 m+1}\right)}$ on the edges of $K_{2 m+1}$, where $\left|L_{e}\right|=2 m+1$ for every $e \in E\left(K_{2 m+1}\right)$. Let $v_{0}, v_{1}, \ldots, v_{2 m}$ be the vertices of $K_{2 m+1}$, and let $e_{1}=v_{0} v_{1}, e_{2}=$ $v_{0} v_{2}, \ldots, e_{2 m}=v_{0} v_{2 m}$. Assign a distinct color to each of the edges $e_{1}, e_{2}, \ldots, e_{2 m}$ from their respective lists (this is always possible since the size of each list is $2 m+1)$. Let $\varphi\left(e_{1}\right), \varphi\left(e_{2}\right), \ldots, \varphi\left(e_{2 m}\right)$ be the colors assigned to the edges $e_{1}, e_{2}, \ldots, e_{2 m}$. Consider now the graph $K_{2 m+1}-v_{0}$ and, for each edge $f=v_{i} v_{j} \in E\left(K_{2 m+1}-v_{0}\right)$, consider the list

$$
L_{f}^{\prime}=L_{f} \backslash\left\{\varphi\left(e_{i}\right), \varphi\left(e_{j}\right)\right\}
$$

where $L_{f} \in \mathcal{L}$. This defines a list assignment \mathcal{L}^{\prime} on the edges of $K_{2 m+1}-v_{0}$ with

$$
\left|L_{f}^{\prime}\right| \geq 2 m-1 \quad \text { for every } f \in E\left(K_{2 m+1}-v_{0}\right)
$$

Assuming that Conjecture 1.3 holds, there exists an \mathscr{L}^{\prime}-list edge coloring ψ of $K_{2 m+1}-v_{0}$, as $K_{2 m+1}-v_{0} \cong K_{2 m}$. Now, it is easy to see that, by construction, the function

$$
\sigma(e)= \begin{cases}\varphi(e) & \text { if } e=e_{1}, e_{2}, \ldots, e_{2 m} \\ \psi(e) & \text { if } e \in E\left(K_{2 m+1}-v_{0}\right)\end{cases}
$$

is an \mathcal{L}-list-edge coloring of $K_{2 m+1}$. This proves that $\chi_{\ell}^{\prime}\left(K_{2 m+1}\right) \leq 2 m+1$, and we obtain the Häggkvist-Janssen theorem.
Conjecture 1.3 clearly holds for $m=1$ since K_{2} is obviously 1 -list-edge colorable. For $m=2$, Conjecture 1.3 holds as a consequence of the fact that every 1 -factorable planar graph satisfies Conjecture 1.1, a fact established by Ellingham and Goddyn [4]. A short direct and elementary proof of the case $m=2$ of Conjecture 1.3 was given by Ko-Wei Lih and the first author in [2]. As far as we know Conjecture 1.3 is open for $m \geq 3$, and the purpose of this paper is to settle the case $m=3$. Various attempts of the first and second authors to settle this case by an elementary, direct proof have not materialized.

2. The edge distance polynomial

To settle Conjecture 1.3 for $K_{6}(m=3)$, we will examine the edge distance polynomial $P_{L\left(K_{6}\right)}$ of its line graph $L\left(K_{6}\right)$. Here, the edge distance polynomial P_{G} of a graph G on numbered vertices $v_{1}, v_{2}, \ldots, v_{k}$ is a polynomial in the variables $x_{1}, x_{2}, \ldots, x_{k}$, with one variable x_{j} for each vertex v_{j}. It is defined as the product over all differences $x_{i}-x_{j}$ with $v_{i} v_{j} \in E(G)$ and $i<j$, and we view it as a polynomial over \mathbb{Q}. The nonzeros in \mathbb{Q}^{k} of this polynomial are precisely the vertex colorings of G with rational numbers as colors (and we always may view the set of colors \mathcal{C} as contained in \mathbb{Q}). This is easy to see. The points $\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in \mathbb{Q}^{k}$ are interpreted as vertex labelings of G via $v_{j} \longmapsto x_{j}$. If there is some difference $x_{i}-x_{j}$ that is zero, in such a point $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$, this means that the vertices v_{i} and v_{j} receive the same color, $x_{i}=x_{j}$. Hence, indeed, the nonzeros of P_{G} are precisely those labelings that are correct colorings.

Since we are interested in edge colorings, but employ techniques for vertex colorings, first, we have to switch from K_{6} to its line graph $L\left(K_{6}\right)$. Second, we consider the edge distance polynomial $P_{L\left(K_{6}\right)}$. Our process for generating $P_{L\left(K_{6}\right)}$ is presented in the first three parts of the algorithm in the next section. It also works for general complete graphs K_{n}. Note that our systematic approach requires double indexed variables $x_{i, j}$. This is because the vertices $v_{i, j}$ of the line graph are the edges $v_{i} v_{j}$ of the underlying graph, and each edge $v_{i} v_{j}$ has two ends v_{i} and v_{j}.

After the third part of the algorithm, the polynomial $P_{L\left(K_{6}\right)}$ is printed; it has $\left|E\left(K_{6}\right)\right|=15$ variables and $\left|E\left(L\left(K_{6}\right)\right)\right|=60=$ 15×4 factors. The expansion of this product is not advisable, as it would result in 2^{60} summands. We will use another method to determine the coefficient of the monomial

$$
\begin{equation*}
x_{1,2}^{4} x_{1,3}^{4} x_{1,4}^{4} x_{1,5}^{4} x_{1,6}^{4} x_{2,3}^{4} x_{2,4}^{4} x_{2,5}^{4} x_{2,6}^{4} \chi_{3,4}^{4} \chi_{3,5}^{4} \chi_{3,6}^{4} \chi_{4,5}^{4} \chi_{4,6}^{4} \chi_{5,6}^{4} \tag{1}
\end{equation*}
$$

as equal to -720 . Since this is different from zero, the famous Combinatorial Nullstellensatz [1] will then guarantee a nonzero in any list assignment \mathcal{L} with lists of size 5 . In fact, edge distance polynomials are always homogeneous so that all monomials have maximal degree, and the following elegant formulation of the Combinatorial Nullstellensatz applies.

Theorem 2.1 (Combinatorial Nullstellensatz). If $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{k}^{\alpha_{k}}$ occurs as monomial of maximal degree in a polynomial $P\left(x_{1}, x_{2}\right.$, \ldots, x_{k}), then this polynomial has a nonzero in any domain $L_{1} \times L_{2} \times \cdots \times L_{k}$ with $\left|L_{j}\right|>\alpha_{j}$ for $j=1,2, \ldots, k$.

As explained, the guaranteed nonzeros are vertex colorings of $L\left(K_{6}\right)$ and \mathcal{L}-list-edge colorings of K_{6}. Hence, our conjecture will then be verified for K_{6}. Moreover, the third author introduced in [11] (and already in [14]) the stronger concept
of paintability. In this concept, the lists can still be modified during an interactive coloration process. He showed in [12] (and [14]) that the Combinatorial Nullstellensatz holds for paintability as well so that our approach will even prove that K_{6} is edge 5-paintable.

Following the suggestion of the referee, we explain the concept of paintability and the mentioned version of the Combinatorial Nullstellensatz here briefly. The idea is that, if the set of all colors \mathcal{C} is contained in \mathbb{Z}^{+}, one may try to use color 1 at first, of course, only for vertices v whose lists L_{v} contain color 1 . Afterwards, one may allow the change of the remaining lists $L_{v} \backslash\{1\}$, without changing their cardinalities, and then extend the partial coloring with color 2 . This extension process is then repeated with color 3 , color 4 and so forth, where, in between, the remaining tails of the color lists may be altered. This more flexible on-line list coloring can also be formulated for polynomials. The partial colorings just correspond to partial substitutions that do not make the polynomial zero. However, on the more general level of polynomials, there is the additional difficulty that the assumption $\mathcal{C} \subseteq \mathbb{Z}^{+}$is not sufficient, as the Paintability Nullstellensatz requires algebraically independent colors. Without lose of generality, here, one may assume $\mathcal{C} \subseteq\left\{T_{1}, T_{2}, \ldots\right\}$, with symbolic variables T_{j}. Substantially new techniques are also required in the proof of the Paintability Nullstellensatz, but the result itself is not surprising. In fact, the great majority of all list coloring theorems in graph theory could already be generalized to paintability; see e.g. [$11,13,12,8,15,9,3$]. In these graph-theoretic cases, an elegant recursive way to define k-paintability may even have added some clarity to the proofs of these theorems.

All that is left in our approach to K_{6}, whether its edge 5-paintability or just its edge 5-choosability, is to calculate the coefficient of monomial (1). To do so, we use the simple fact that the coefficient $P_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}}$ of $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots x_{k}^{\alpha_{k}}$ in P is given by

$$
\begin{equation*}
\alpha_{1}!\alpha_{2}!\ldots \alpha_{k}!P_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}}=\left.\left(\frac{\partial^{\alpha_{1}}}{\partial x_{1}^{\alpha_{1}}} \frac{\partial^{\alpha_{2}}}{\partial x_{2}^{\alpha_{2}}} \ldots \frac{\partial^{\alpha_{k}}}{\partial x_{k}^{\alpha_{k}}} P\right)\right|_{x_{1}=x_{2}=\cdots=x_{k}=0} \tag{2}
\end{equation*}
$$

Actually, this calculation is still too heavy for a normal personal computer, as the product rule for differentiation brings us many summands. However, we can accelerate it by plugging in the zeros as early as possible. In this way, we kill many terms and save memory and time. If, for example, we want to calculate the coefficient $P_{2,3}$ of $x_{1}^{2} x_{2}^{3}$ in a polynomial $P\left(x_{1}, x_{2}\right)$, we can use

$$
\begin{equation*}
2!3!P_{2,3}=\left.\left(\frac{\partial^{2}}{\partial x_{1}^{2}} \frac{\partial^{3}}{\partial x_{2}^{3}} P\right)\right|_{x_{1}=x_{2}=0}=\left.\left(\frac{\partial^{2}}{\partial x_{1}^{2}}\left[\left.\left(\frac{\partial^{3}}{\partial x_{2}^{3}} P\right)\right|_{x_{2}=0}\right]\right)\right|_{x_{1}=0} \tag{3}
\end{equation*}
$$

This trick is incorporated into the last part of our algorithm, where, for each variable at a time, we differentiate $n-2=4$ many times, substitute zero and then divide by $(n-2)!=4!$. In the main line of this algorithm, the variable $x[e[1]$, e[2]] belongs to the edge $e \in E g s:=E\left(K_{n}\right)$, e.g. $x_{3,5}=x[3,5]$ belongs to the edge $\{3,5\}$. The expression diff (P, $\mathrm{x}[\mathrm{e}[1]$, e[2]] $\$ n-2$) denotes the ($n-2$) nd derivative of P in that variable. Finally, to substitute 0 for $x[e[1]$, e[2]], this command has been extended to

$$
\operatorname{subs}(\operatorname{diff}(P, x[e[1], e[2]] \$ n-2), x[e[1], e[2]]=0) /(n-2)!,
$$

which includes the division by $(n-2)$! already. As explained, this command has to be repeated for each edge e \in Egs $:=$ $E\left(K_{n}\right)$, and eventually results in the value of our coefficient.

As mentioned, the initial three parts of the algorithm calculate the edge distance polynomial P of $L\left(K_{6}\right)$, which is printed right before the fourth and last part. Its 60 factors could have been entered manually, but we wanted to provide a generic solution that works for arbitrary n. The edge distance polynomial is just the following product of edge distances, where the edges $l e$ of the line graph are listed in LEgs as ordered pairs $[\{i, j\},\{k, \ell\}]$ of adjacent edges $\{i, j\}$ and $\{k, \ell\}$ of the underlying complete graph:

$$
\mathrm{P}:=\prod_{\substack{[\{i, j\},\{, k \ell\}] \in \operatorname{LEgs} \\ i<j, k<\ell}}\left(x_{k, \ell}-x_{i, j}\right)=\prod_{l \mathrm{e} \in \mathrm{LEgs}}(\mathrm{x}[1 \mathrm{e}[2][1], 1 \mathrm{e}[2][2]]-\mathrm{x}[1 \mathrm{e}[1][1], 1 \mathrm{e}[1][2]]) .
$$

3. The algorithm

Our algorithm is written in the easily understandable MuPAD language, in red. The output of the different steps is printed in blue. The running time on a usual personal computer, using MATLAB with Symbolic Math Toolbox, was about five minutes. More than 450 megabytes memory was allocated by the process. On future faster high performance computers it might become possible to do the next step, by replacing the very first command " $\mathrm{n}:=6$ " with " $\mathrm{n}:=8$ ":

```
n:=6: Egs:=[]: print(Unquoted,NoNL,"Edges of K_".n.": ");
for i from 1 to \(\mathrm{n}-1\) do for \(j\) from \(i+1\) to \(n\) do Egs:=Egs. [\{i,j\}]
end_for end_for //output Egs
```

Edges of $K _6$: $[\{1,2\},\{1,3\},\{1,4\},\{1,5\},\{1,6\},\{2,3\},\{2,4\},\{2,5\},\{2,6\},\{3,4\},\{3,5\},\{3,6\},\{4,5\},\{4,6\},\{5,6\}]$

```
LEgs:=[]: print(Unquoted,NoNL,"Arcs of L(K_".n."): ");
for i from 1 to nops(Egs)-1 do for j from i+1 to nops(Egs) do
    if card(Egs[i] intersect Egs[j])=1 then LEgs:=LEgs.[[Egs[i],Egs[j]]]
    end_if
end_for end_for //output LEgs
```

Arcs of $L\left(K _6\right):[[\{1,2\},\{1,3\}],[\{1,2\},\{1,4\}],[\{1,2\},\{1,5\}], \ldots,[\{4,6\},\{5,6\}]]$
P:=1: print(Unquoted,NoNL,"Edge distance polynomial of $L\left(K_{-}\right.$".n."): "); for le in LEgs do $P:=P *(x[l e[2][1], l e[2][2]]-x[l e[1][1], l e[1][2]])$ end_for //output P

Edge distance polynomial of $L\left(K_{6}\right): \quad\left(x_{1,2}-x_{1,3}\right)\left(x_{1,2}-x_{1,4}\right)\left(x_{1,2}-x_{2,3}\right)\left(x_{1,2}-x_{1,5}\right)$
$\left(x_{1,2}-x_{2,4}\right)\left(x_{1,3}-x_{1,4}\right)\left(x_{1,3}-x_{2,3}\right)\left(x_{1,2}-x_{1,6}\right)\left(x_{1,2}-x_{2,5}\right)\left(x_{1,3}-x_{1,5}\right)\left(x_{1,2}-x_{2,6}\right)\left(x_{1,3}-x_{1,6}\right)$
$\left(x_{1,3}-x_{3,4}\right)\left(x_{1,4}-x_{1,5}\right)\left(x_{1,4}-x_{2,4}\right)\left(x_{2,3}-x_{2,4}\right)\left(x_{1,3}-x_{3,5}\right)\left(x_{1,4}-x_{1,6}\right)\left(x_{1,4}-x_{3,4}\right)\left(x_{2,3}-x_{2,5}\right)$
$\left(x_{2,3}-x_{3,4}\right)\left(x_{1,3}-x_{3,6}\right)\left(x_{2,3}-x_{2,6}\right)\left(x_{2,3}-x_{3,5}\right)\left(x_{1,5}-x_{1,6}\right)\left(x_{1,5}-x_{2,5}\right)\left(x_{2,4}-x_{2,5}\right)\left(x_{2,4}-x_{3,4}\right)$
$\left(x_{1,4}-x_{4,5}\right)\left(x_{2,3}-x_{3,6}\right)\left(x_{1,5}-x_{3,5}\right)\left(x_{2,4}-x_{2,6}\right)\left(x_{1,4}-x_{4,6}\right)\left(x_{1,5}-x_{4,5}\right)\left(x_{2,4}-x_{4,5}\right)\left(x_{1,6}-x_{2,6}\right)$
$\left(x_{2,5}-x_{2,6}\right)\left(x_{2,5}-x_{3,5}\right)\left(x_{3,4}-x_{3,5}\right)\left(x_{2,4}-x_{4,6}\right)\left(x_{1,6}-x_{3,6}\right)\left(x_{2,5}-x_{4,5}\right)\left(x_{3,4}-x_{3,6}\right)\left(x_{3,4}-x_{4,5}\right)$
$\left(x_{1,5}-x_{5,6}\right)\left(x_{1,6}-x_{4,6}\right)\left(x_{3,4}-x_{4,6}\right)\left(x_{2,6}-x_{3,6}\right)\left(x_{3,5}-x_{3,6}\right)\left(x_{3,5}-x_{4,5}\right)\left(x_{1,6}-x_{5,6}\right)\left(x_{2,5}-x_{5,6}\right)$
$\left(x_{2,6}-x_{4,6}\right)\left(x_{2,6}-x_{5,6}\right)\left(x_{3,5}-x_{5,6}\right)\left(x_{3,6}-x_{4,6}\right)\left(x_{4,5}-x_{4,6}\right)\left(x_{3,6}-x_{5,6}\right)\left(x_{4,5}-x_{5,6}\right)\left(x_{4,6}-x_{5,6}\right)$
print(Unquoted,NoNL,"'Leading' coefficient: ");
for e in Egs do P:=subs(diff(P,x[e[1],e[2]]\$n-2), x[e[1],e[2]]=0)/(n-2)! end_for //output P
'Leading' coefficient: -720

References

[1] N. Alon, Combinatorial Nullstellensatz, Combin. Probab. Comput. 8 (1-2) (1999) 7-29.
[2] D. Cariolaro, K.-W. Lih, The edge-choosability of the tetrahedron, Math. Gaz. 92:525 (2008) 543-546.
[3] J. Carraher, S. Loeb, T. Mahoney, G. Puleo, M.-T. Tsai, D. West, Extending graph choosability results to paintability, 2011, Manuscript.
[4] M.N. Ellingham, L. Goddyn, List edge colourings of some 1-factorable multigraphs, Combinatorica 16 (1996) 343-352.
[5] S. Fiorini, R.J. Wilson, Edge-Colourings of Graphs, in: Research Notes in Mathematics, Pitman, 1977.
[6] F. Galvin, The list chromatic index of a bipartite multigraph, J. Combin. Theory Ser. B 63 (1995) 153-158.
[7] R. Häggkvist, J. Janssen, New bounds on the list-chromatic index of the complete graph and other simple graphs, Combin. Probab. Comput. 6 (1997) 295-313.
[8] J. Hladký, D. Král', U. Schauz, Brooks' theorem via the Alon-Tarsi theorem, Discrete Math. 310 (2010) 3426-3428.
[9] P.-Y. Huang, T.-L. Wong, X. Zhu, Application of polynomial method to on-line list colouring of graphs, European J. Combin. 33 (5) (2012) 872-883.
[10] T.R. Jensen, B. Toft, Graph Coloring Problems, Wiley, New York, 1995.
[11] U. Schauz, Mr. Paint and Mrs. Correct, Electron. J. Combin. 15 (2008) \#R145.
[12] U. Schauz, A paintability version of the Combinatorial Nullstellensatz, and list colorings of k-partite k-uniform hypergraphs, Electron. J. Combin. 17 (1) (2010) \#R176.
[13] U. Schauz, Flexible color lists in Alon and Tarsi's theorem, and time scheduling with unreliable participants, Electron. J. Combin. 17 (1) (2010) \#R13.
[14] U. Schauz, Algebraically solvable problems, Doctoral Thesis. http://tobias-lib.ub.uni-tuebingen.de/volltexte/2007/2955.
[15] Xuding Zhu, On-line list colouring of graphs, Electron. J. Combin. 16 (1) (2009) \#R127.

[^0]: * Corresponding author.

 E-mail addresses: david.cariolaro@xjtlu.edu.cn (D. Cariolaro), cariolar@dei.unipd.it (G. Cariolaro), uwe.schauz@xjtlu.edu.cn (U. Schauz), sxshelley@gmail.com (X. Sun).

