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Abstract

In this work we study the k-defect polynomials of a graph G. The k defect polynomial

is a function in λ that gives the number of improper colourings of a graph using

λ colours. The k-defect polynomials generate the bad colouring polynomial which

is equivalent to the Tutte polynomial, hence their importance in a more general

graph theoretic setting. By setting up a one-to-one correspondence between triangular

numbers and complete graphs, we use number theoretical methods to study certain

characteristics of the k-defect polynomials of complete graphs. Specifically we are able

to generate an expression for any k-defect polynomial of a complete graph, determine

integer intervals for k on which the k-defect polynomials for complete graphs are equal

to zero and also determine a formula to calculate the minimum number of k-defect

polynomials that are equal to zero for any complete graph.

— Christo Kriel
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Chapter 1

Introduction

In this chapter we give a brief background to colouring problems, the general area

in graph theory under which the problems discussed in this dissertation fall. Then

we give an overview of the dissertation, followed by some basic definitions. We list

a number of graph operations that we use throughout this dissertation as well as

some definitions that follow from these operations, most notably the definition of a

closed set. In Sections 1.5 and 1.6 we describe proper and improper colourings and

the related chromatic and k-defect polynomials.

1.1 Background to colouring problems

It would not be hard to present the history of graph theory as an account

of the struggle to prove the four colour conjecture, or at least to find out

why the problem is difficult.

William T. Tutte (1967)

The subject matter of this dissertation falls broadly under the umbrella of graph

colouring problems. The quotation by Tutte at the beginning of this section, quoted

in [3], not only points to the importance of graph colouring problems in the area

of Graph Theory, but specifically to what was, arguably, the first and most famous
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problem in graph colouring, the four colour conjecture. The short overview of the

history of the four colour problem and how it influenced the subject matter of this

work was compiled from [3, 6, 10, 12] and [13].

In 1852 Francis Guthrie noticed that it is possible to colour all the counties of

England with just four colours, such that counties that share a contiguous border

are always coloured differently. This led to a conjecture that it is possible to do so

for all maps. Francis’s brother, Frederick, brought the conjecture to the attention

of Augustus de Morgan, professor at University College London. De Morgan was

intrigued by the conjecture, but was unable to prove it. In 1879, Alfred Kempe

put forward a proof of the conjecture, but this was shown to be erroneous by Percy

Heawood in 1890. Thus followed almost a hundred years of attempts to prove or

disprove the conjecture until 1976 when Wolfgang Haken and Kenneth Appel put

forward a, at the time controversial, computer aided proof of the conjecture by using

an unavoidable set of 1482 reducible configurations in maps.

How does a map colouring translate to a problem in graph theory? Suppose we

draw a dot in each country and draw a line from the dot through the border shared

by two adjoining countries to the dot in the adjacent country, then we end up with

a graph in which none of the edges cross, that is, what is called a planar graph. The

conjecture thus translates to it being possible to colour the vertices of a planar graph

with no more than four colours in such a way that no two adjacent vertices are the

same colour. This is called a proper colouring of a graph.

Most colouring problems in graph theory involve proper colourings, not just be-

cause of the famous four colour theorem, but also because of the many applications

of proper colourings in problems that can be modeled by graphs. But, we don’t just

have proper vertex colouring problems in graphs. We also have edge colouring prob-

lems and many different types of vertex colourings that emerge if we relax some of

the conditions of a proper colouring or add more constraints. See, for example, the

section on graph colouring in [10] or the survey on (m, k)-colourings by Frick in [9].

2



As an example of problems in graph colouring see Section 5.6 of [10], where graph

colouring is applied to four different types of timetabling problems. The automation

of timetabling in educational institutions is an area that has seen much growth since

the 1970’s and still continues to be an area of great interest to graph theorists.

Back to the four colour problem. In 1912 George Birkhoff defined a function

χ(M ;λ) that gives the number of proper colourings of a map M for a positive integer

λ. This is a polynomial in λ, called the chromatic polynomial of M . If it could be

shown that χ(M ; 4) > 0 for every map M , the truth of the four colour conjecture

would be established. In 1932 Hassler Whitney generalised the chromatic polynomial

of a map to the chromatic polynomial of an arbitrary graph, χ(G;λ), and established

many results for this polynomial, see [6]. In 1968, Ronald Read aroused renewed in-

terest in the subject of chromatic polynomials with his survey paper “An Introduction

to Chromatic Polynomials”, see [20]. Since then, the subject of chromatic polyno-

mials has been widely studied. We refer to the monograph by Dong, Koh and Teo,

see [6], for many of the latest results and open problems surrounding the chromatic

polynomial.

The main object of study in this work is the k-defect polynomial of a graph, with

specific reference to complete graphs. If we relax the condition that no two adjacent

vertices in a graph colouring be the same colour and allow a certain number of such

vertices to be coloured the same, we get an improper colouring of a graph. The

k-defect polynomial is a function φk(G;λ) that gives the number of such improper

colourings of a graph G for a positive integer λ. This is a generalisation of the

chromatic polynomial which is then the 0-defect polynomial of a graph. We describe

proper and improper colourings and their associated polynomials in more detail in

Sections 1.5 and 1.6.

Tutte noticed certain properties of the chromatic polynomial that were similar to

other functions on graphs. These observations eventually led to the definition of the

Tutte polynomial, see the 1947 paper [22] as well as [23] for Tutte’s own account of
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discovering the polynomial that is now named after him. The Tutte polynomial is a

very important graph invariant that encodes many of the properties of a graph. It

turns out that the Tutte polynomial is equivalent to the bad colouring polynomial.

The bad colouring polynomial was originally defined and studied by Crapo, in 1969,

as a generating function in S of the k-defect polynomials, see [4] and [19]. Hence, the

study of the k-defect polynomials could potentially yield some important results with

respect to both the Tutte and bad colouring polynomials. We describe the equivalence

of the different polynomials studied in this dissertation in more detail in Chapter 2.

1.2 Overview

In Chapter 2, we introduce and define the concept of a polynomial of a graph G. We

discuss some graph polynomials, specifically the k-defect, dichromatic, Tutte (dichro-

mate) and bad colouring polynomials. We point out the importance of the Tutte

polynomial and the relationship between the Tutte polynomial and the other three

polynomials. In Sections 2.2 to 2.5 we define these different polynomials and give

examples of how to calculate these polynomials from the given definition. Finally, we

use alternative methods of calculating these polynomials and verify their equivalence

found in the literature.

In Chapter 3, we start by defining triangular numbers and number partitions.

Then we describe and define complete graphs and closed sets of a complete graph.

By setting up a one-to-one correspondence between complete graphs and triangular

numbers in Section 3.3, we are able to state and prove one of the main results of this

dissertation on the relationship between sizes of closed sets and triangular number

partitions in Section 3.5.

In Chapter 4, we start by looking at known methods in the literature for calcu-
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lating k-defect polynomials of a graph. In Section 4.3 we give one of the main results

where we use the concept of triangular number partitions and closed sets of complete

graphs from Chapter 3 to develop an algorithm for calculating a k-defect polynomial

of a complete graph, using triangular number partitions of k. In Subsection 4.3.2 we

use this algorithm to generate an expression for any k defect polynomial of a complete

graph, another of the main results of this dissertation.

In Chapter 5, we investigate k-defect polynomials of a graph that are equal to

zero. We use known methods and formulae to find some of the values of such k. In

Section 5.3 we state and prove one of the main results of this chapter by applying the

theory of triangular number partitions to identify the values of such k for complete

graphs and proving that the k-defect polynomials of complete graphs are zero on

certain integer intervals of k. In Subsection 5.3.1 we give an algorithm to identify for

which values of k the k-defect polynomial of a complete graph is equal to zero. In

Subsection 5.3.2 we use known summation properties of the triangular numbers to

determine a lower bound on the number of k-defect polynomials of a complete graph

that are equal to zero.

In Chapter 6, we conclude this dissertation by pointing out some further problems

that have emerged from this study and may be interesting to look at and merit further

investigation.

1.3 Basic definitions

In this section we start by defining a graph G, the main structure of investigation,

and some of its related concepts and properties which are useful to this work. For

basic definitions and properties of graphs we will follow the details and notation as

given in [3].
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Definition 1.3.1. A graph G is a finite nonempty set V of objects called vertices

together with a possibly empty set E of 2-element subsets of vertices called edges.

Graphically, we represent the vertices as dots or points and the edges are the lines

that join them. That is, if two vertices are in the same 2-element subset, then the

dots representing them are joined by a line. We refer to two such vertices as the end

points of the edge. We say that these vertices are adjacent and will call two adjacent

vertices neighbours of each other. If a vertex v is the endpoint of an edge e we say

that v is incident on e. If E(G) is a multiset, a set containing more than one copy of

a 2-element subset, we have multiple edges between vertices and we call such edges

parallel edges.

The order of a graph G is the number of vertices of G, denoted |V (G)|, and the

size of a graph G is the number of edges of G, denoted |E(G)|. The degree of a vertex

v, denoted deg(v), is the number of edges incident on it.

Definition 1.3.2. Two graphs, G and H, are isomorphic if there is a bijective func-

tion ψ : V (G)→ V (H), such that two vertices, u and v, are adjacent in G, if and only

if ψ(u) and ψ(v) are adjacent in H. We denote the isomorphism of the two graphs

with G ∼= H.

Definition 1.3.3. Let G be a graph with multiple edges between vertices. Let H

be a graph, without multiple edges, or at least fewer multiple edges than G, and

ψ : V (G) → V (H) a bijective function such that two vertices, u and v, are adjacent

in G, if and only if ψ(u) and ψ(v) are adjacent in H, then we say G and H are

isomorphic up to parallel class. That is |V (G)| = |V (H)| and |E(G)| 6= |E(H)|, but

ψ preserves the adjacency of the vertices in the mapping.

Definition 1.3.4. A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and

E(H) ⊆ E(G). In this case we write H ⊆ G. A spanning subgraph is a subgraph H

of G such that V (H) = V (G).
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We will regularly encounter certain classes of graphs, that is, graphs that share

certain properties by definition. In what follows, we define three such classes, namely

paths, cycles and complete graphs. After defining connectedness we define a fourth

class, that of trees.

Definition 1.3.5. A path, Pn, is a graph of order n and size n−1, in which the vertices

can be labeled v1, v2, . . . , vn and the edges are the pairs vivi+1 for i = 1, 2, . . . , n−1.

Definition 1.3.6. A cycle, Cn, is a graph of order n and size n, n ≥ 3, in which the

vertices can be labeled v1, v2, . . . , vn and the edges are the pairs vnv1 and vivi+1 for

i = 1, 2, . . . , n− 1.

Definition 1.3.7. A complete graph, Kn, is graph of order n in which every pair of

vertices is adjacent.

Definition 1.3.8. A graph G of order n is connected if, for every pair of vertices u

and w, there is a subgraph H ⊆ G such that H ∼= Pi, a path on i vertices, i ≤ n,

with u = v1 and w = vi. A graph that is not connected is disconnected. A connected

subgraph H of a graph G is called a component of G if it is not a proper subgraph of

another connected subgraph of G. We denote by k(G) the number of components or

“connected pieces” of a graph G.

Definition 1.3.9. A tree, Tn, is a connected graph of order n and size n − 1 that

contains no subgraph isomorphic to a cycle. Note that a path, Pn, is a tree.

Definition 1.3.10. A loop is an edge with the same vertex as both end points.

Note that if we add a loop to a vertex, then the degree of the vertex increases by

two, since v is incident on e twice.

Definition 1.3.11. A bridge is an edge, the removal of which will disconnect a

connected graph G.
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Definition 1.3.12. The rank of a graph G is

r(G) = |V (G)| − k(G),

where |V (G)| is the order and k(G) the number of components of G.

Definition 1.3.13. The nullity or cycle rank of a graph G is

µ(G) = |E(G)| − |V (G)|+ k(G),

where |E(G)| is the size, |V (G)| the order and k(G) the number of components of G.

One can think of the nullity of a graph as the minimum number of edges that

must be deleted in order to break all the cycles of the graph, see [10].

Example 1.3.14. The diagram in Figure 1.3 is a connected graph G with vertex set

V (G) = {v1, v2, v3, v4} and edge set E(G) = {e1, e2, e3, e4, e5}. G has size 5 and order

4. Edge e1 is a loop and edge e2 is a bridge. The rank of G is r(G) = 4− 1 = 3 and

the nullity of G is µ(G) = 5− 4 + 1 = 2. Finally, the degrees of the vertices of G are

deg(v1) = deg(v2) = 3 and deg(v3) = deg(v4) = 2.

Figure 1.1: A graph G.
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1.4 Graph operations

In this section we list some operations on graphs which allow us to create new graphs

from old ones. The first two operations are on edges and will be used frequently in

the subsequent calculations of different graph polynomials in this work, see [7].

1. Deleting an edge e ∈ E(G) gives a graph G\e with the edge e removed.

2. Contracting an edge e means identifying the two endpoints of e followed by re-

moval of e (see Figure 1.2). We denote the graph resulting from the contraction

of edge e in G as G/e.

Example 1.4.1. The diagrams in Figure 1.2 are graphs G, G\e and G/e.

Figure 1.2: A graph G, G\e and G/e.

3. Deleting a vertex v ∈ V (G) gives a graph G\v with v, and all edges incident

with it, removed.

4. The closure operation: In a graph of order n, add an edge between two non-

adjacent vertices u and v if degu+ degv ≥ n.

9



Example 1.4.2. The diagrams in Figure 1.3 illustrate the closure of a cycle on

four vertices. Each of the vertices v1, v2, v3 and v4 are of degree 2 which means

that we should add an edge between v1 and v3 and also between v2 and v4.

Figure 1.3: The closure operation.

5. The join of two graphs G and H, denoted by G+H, is a graph with vertex set

V (G+H) = V (G) ∪ V (H) and edge set

E(G+H) = E(G) ∪ E(H) ∪ {uv|u ∈ V (G) and v ∈ V (H)}.

Definition 1.4.3. A graph H is a minor of a graph G if H ∼= G or H can be obtained

from G by a succession of edge contractions, edge deletions and vertex deletions. Each

of the graphs G\e and G/e in Figure 1.2 are minors of the original graph G.

Definition 1.4.4. A set S of graphs is said to be minor-closed if for every graph G

in S, every minor of G also belongs to S.

Definition 1.4.5. A closed set X of size k, is defined as the largest rank-r subgraph

of E(G) containing X, see [24].

Example 1.4.6. The diagrams in Figure 1.4 show the graph of K6 with two of its

subgraphs, G1 and G2, on the vertex set {v1, v2, v5, v6}, isomorphic to the cycle

C4 and the complete graph K4, respectively. By Definition 1.3.12 the rank of G1 is
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r(G1) = 4− 1 = 3 and we say that G1 is a subgraph of K6 of rank 3. The edge set of

this subgraph is not a closed set of edges in K6, since G1 is a subgraph of G2, also of

rank 3. Thus G1 is not the largest rank-3 subgraph on the given vertex set in K6.

Figure 1.4: Closed and not closed sets in K6.

Informally we can think of a closed set of edges in a graph G as a set of edges,

E1 ⊆ E(G), with vertex set V1 ⊆ V (G); where the set of endpoints of the edges in

E1 is such that no further edges from E(G) can be added to E1 without adding more

vertices from V (G) to V1.

1.5 Proper colouring and chromatic polynomials

A proper colouring of a graph G is a colouring of the vertices of G in such a way that

no two adjacent vertices are coloured with the same colour. The minimum number

of colours required for such a colouring is called the chromatic number of the graph,

denoted χ(G). A colouring for which this is not true is called an improper colouring.

Definition 1.5.1. The number of distinct proper λ-colourings of G, λ ∈ N, which

we denote by χ(G;λ), is a polynomial in λ called the chromatic polynomial.
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The smallest integer value k for which χ(G;λ) > 0, is the chromatic number χ(G)

and, by convention, χ(G; 0) = 0, see [3]. For more details on the proper colouring

of a graph G and an introduction to chromatic polynomials, see [20], as well as

the monograph, [6], by Dong, Koh and Teo for a detailed exposition on chromatic

polynomials and chromaticity of graphs.

Example 1.5.2. We calculate χ(G;λ) where G = K3. The diagram shown in Fig-

ure 1.5 is K3 with labeled vertices. Using λ colours in a proper colouring of K3, there

are λ ways to colour vertex v1, λ−1 ways to colour vertex v2 and λ−2 ways to colour

vertex v3. Therefore, there are λ(λ− 1)(λ− 2) ways to colour K3 using λ colours. It

follows that the chromatic polynomial of K3 is λ3− 3λ2 + 2λ. Any values of λ giving

values such that χ(G;λ) ≤ 0 implies that there is no proper colouring of the graph G

using that number of colours. Hence, we need at least χ(K3) = 3 colours for a proper

colouring of K3.

Figure 1.5: K3 with labeled vertices

We note that we regard graphs as if their vertices were fixed in space, see [20].

In other words, a colouring with colours a, b, c of the labeled vertices in the diagram

shown in Figure 1.5 given by the ordered pairs (v1, a), (v2, b), (v3, c), is different to

(v1, c), (v2, a), (v3, b). The two colourings may be regarded as differing only by a

cyclic permutation, and hence equivalent, but, since we regard the vertices as fixed

in space, we will regard these colourings as different.

The following theorem, of fundamental importance, in Read’s own words, leads to
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a method for computing the chromatic polynomial for any graph G. See [20] for the

proof.

Theorem 1.5.3.

χ(G;λ) = χ(G+ e;λ) + χ(G/e;λ)

where G+e is a graph obtained from G by adding an edge e between two non-adjacent

vertices u, v ∈ V (G)and G/e is obtained from G by identifying u and v.

By repeated application of Theorem 1.5.3 we reach a point where all the chromatic

polynomials in the sum are the chromatic polynomials of complete graphs, see [20].

It is easy to calculate the chromatic polynomial of a complete graph. Simply follow

the same procedure as in Example 1.5.2. It should be clear that for any Kn,

χ(Kn;λ) = λ(λ− 1) · · · (λ− n+ 1).

Hence, it follows that χ(G;λ) is a sum of factorials and thus χ(G;λ) is a polynomial.

Note that Theorem 1.5.3 can be rewritten in the form

χ(G+ e;λ) = χ(G;λ)− χ(G/e;λ)

which is the form in which the theorem by R.M. Foster is written as mentioned in

Section 2.1.

We summarise known formulas for chromatic polynomials of certain classes of

graphs in the following proposition, see for example [6].

Proposition 1.5.4. Let Tn be a tree, Cn a cycle and Kn a complete graph on n

vertices, respectively. Then the chromatic polynomial,

1. χ(Tn;λ) = λ(λ− 1)n−1,

2. χ(Cn;λ) = (λ− 1)n + (−1)n(λ− 1),

3. χ(Kn;λ) = λ(λ− 1)(λ− 2) . . . (λ− n+ 1).
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Definition 1.5.5. The falling factorial

λ(n) = λ(λ− 1) . . . (λ− n+ 1).

We note that χ(Kn;λ) = λ(n). Also, viewing K2 as a complete graph or as a

tree gives the same chromatic polynomial, λ(λ − 1), and, similarly, the chromatic

polynomial for C3 and K3 is λ(λ−1)(λ−2) in both cases. This results from K2
∼= T2

and K3
∼= C3 as per Definition 1.3.2.

1.6 Improper colouring and k-defect polynomials

If we allow an improper colouring of a graph, we allow certain adjacent vertices to

have the same colour.

Definition 1.6.1. In a colouring of a graph G, a bad edge is an edge e ∈ E(G) with

endpoints u, v ∈ V (G) such that u and v are assigned the same colour. We denote

the number of bad edges allowed in an improper colouring of a graph G with k, where

k is a non-negative integer.

Definition 1.6.2. The k-defect polynomial, denoted φk(G, λ), of G is a polynomial

that counts the number of λ colourings of the vertices of G with k bad edges.

Example 1.6.3. We calculate the k-defect polynomials of K3.

Suppose we allow one bad edge in a colouring of K3, that is, we let k = 1. In the

diagram in Figure 1.6 the bad edges are represented with solid lines and the dotted

lines represent edges incident on vertices coloured differently. There are three edges,

so there are three ways in which we can choose one bad edge. This gives λ ways

to colour the two adjacent vertices of the bad edge and λ − 1 ways to colour the

remaining vertex. So the 1-defect polynomial for K3 is 3λ(λ− 1) = 3λ2 − 3λ.
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Figure 1.6: K3 with 0, 1, 2 and 3 bad edges solid.

There is no way to choose two bad edges, since this would imply that all three

vertices are the same colour. This would in turn imply that the third edge has to be

bad too, because it joins two vertices of the same colour. Since we cannot choose two

bad edges in K3, the 2-defect polynomial must be 0.

The 3-defect polynomial for K3 would then simply be λ. In general it should be

clear that for any connected graph G of order n and size m, the m-defect polynomial

must be λ, since, if all the edges are bad, then all the vertices are the same colour.

It is clear from Definition 1.6.2 that the chromatic polynomial is the 0-defect

polynomial. Hence, the idea of k-defect polynomials is a generalisation of chromatic

polynomials.
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Chapter 2

The Tutte, Bad Colouring and

k-defect Polynomials

2.1 Introduction

In this chapter we look at some graph polynomials, specifically the k-defect, dichro-

matic, Tutte (dichromate) and bad colouring polynomials of a graph G. We look at

different ways in the literature of calculating these polynomials.

Following Ellis-Monaghan and Merino, in [8], we define a graph polynomial as

follows:

Definition 2.1.1. A graph polynomial is an algebraic object associated with a graph

that is usually invariant at least under graph isomorphism. As such it encodes infor-

mation about the graph and enables algebraic methods for extracting this information.

One of the earliest graph polynomials, for example, is the edge-difference polyno-

mial and was studied originally by Sylvester as well as Peterson in the late 1800s, see

[8]. Another example is the chromatic polynomial described in Section 1.5. Due to its

theoretical and applied importance, the chromatic polynomial has generated a large

body of work, see [6], as well as the seminal work by Read, [20], which introduced
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many of the properties of the chromatic polynomial.

While doing PhD research, Tutte came across a theorem of R.M. Foster, that

states that the chromatic polynomials satisfy the recursion

χ(G, λ) = χ(G\e, λ)− χ(G/e, λ)

and discovered a similar property for the Flow Polynomial,

F (G, λ) = F (G/e, λ)− F (G\e, λ).

These observations, see [23], led to a paper in 1947, [22], in which a function f on

graphs is discussed that would satisfy the rules

f(G) = f(G\e) + f(G/e), (2.1)

f(H
⋃

K) = f(H)f(K), (2.2)

where e is any edge of the graph G. H
⋃
K is a graph which is the union of two

disjoint subgraphs H and K of G. Tutte’s attempts to find a sum over subgraphs

that satisfies both equations 2.1 and 2.2 succeeded with the dichromatic polynomial

Q(G;x, y).

The Tutte polynomial (or dichromate), T (G;x, y), is a simplification of the dichro-

matic polynomial, as shown in [23]. It is an important two variable polynomial that

encodes many characteristics of a graph. For an extensive treatment of the Tutte

polynomial and its applications, see [7].

As an example of the power of the Tutte polynomial we give the following theo-

rem from [7], illustrating how to extract information about the graph, by evaluating

T (G;x, y) at certain values of x and y.

Theorem 2.1.2. If G = (V,E) is a connected graph then:

1. T (G, 1, 1) = τ(G), the number of spanning trees of G.

2. T (G; 2, 1) equals the number of spanning forests of G.
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3. T (G, 1, 2) equals the number of spanning connected subgraphs of G.

4. T (G; 2, 2) = 2|E|.

In [7], we also find the universality property of the Tutte polynomial as one

of its most powerful aspects. This property says that any graph invariant that is

multiplicative on disjoint unions and one-point joins of graphs and that has a dele-

tion/contraction reduction must be an evaluation of the Tutte polynomial.

Recall Definition 1.6.2 and the description of the k-defect polynomial in Section

1.6. The bad colouring polynomial of a graph G, B(G;λ, S), or co-boundary polyno-

mial in matroids, was originally defined and studied by Crapo as a generating function

in S, see [4, 19], where the polynomial coefficients of the Sk are the k-defect polyno-

mials of a graph G. Since the bad colouring polynomial has a deletion/contraction

reduction, see Proposition 2.5.3, it should not surprise us to find, given the universal-

ity property, that we can evaluate the bad colouring polynomial, B(G;λ, S), through

the Tutte polynomial and vice versa.

Hence, since we can generate B(G;λ, S) from the k-defect polynomials and evalu-

ate B(G;λ, S) to find T (G;x, y), it seems that it should be possible to identify certain

properties of the Tutte polynomial from the k-defect polynomials of a graph G.

Given this close relationship between the dichromatic, Tutte (dichromate), bad

colouring and k-defect polynomials of a graph G, we will define these polynomials in

this chapter and use an example for each to illustrate their calculation by definition

and other means.

For each of the polynomials discussed in this chapter, we will use the graph K4\e,

shown in the diagram in Figure 2.1, the complete graph on four vertices with one

edge deleted, as an example to calculate the respective polynomials.
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Figure 2.1: The graph G = K4\e.

2.2 The k-defect Polynomial

Recall from Section 1.6 that an improper colouring of a graph is a colouring where

we allow certain adjacent vertices to have the same colour and we call an edge “bad”

if it joins two vertices of the same colour.

For convenience we restate Definition 1.6.2 here: The k-defect polynomial, denoted

φk(G, λ), of a graph G is a polynomial that counts the number of λ colourings of the

vertices of a graph with k bad edges.

In the rest of this section we calculate, as an example, the k-defect polynomials

of the graph G = K4\e from Figure 2.1, using Definition 1.6.2.

Example 2.2.1. The k-defect polynomials for G = K4\e.

In the diagram of Figure 2.2 the “good” edges are represented as dotted edges

and the “bad” edges are the solid edges. Each row in the diagram shows the different

choices for each 0 ≤ k ≤ 5 edges to be bad. Hence, the vertices incident on those

edges have the same colour. Where two bad edges are disjoint, their vertices are

assigned different colours. We also have the λ number of colorings for the vertices.

So, for example, in row 2, we choose one bad edge. The first four choices all

give the same number of λ colourings. That is, λ colours are available to colour the

two vertices on the bad edge, λ − 1 colours are available for the third vertex and

λ − 2 colours for the last. The fifth choice, however, gives a different colouring: λ

colours are available for the two vertices on the bad edge, but, since the remaining
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two vertices are not adjacent, there are λ−1 colours available to colour each of them.

Figure 2.2: G = K4\e with all possible choices of bad edges.

Using the number of choices for bad edges as shown in Figure 2.2, we see that the

k-defect polynomials of G are:

φ0(G, λ) = λ(λ− 1)(λ− 2)2 = −4λ+ 8λ2 − 5λ3 + λ4

φ1(G, λ) = 4λ(λ− 1)(λ− 2) + λ(λ− 1)2 = 9λ− 14λ2 + 5λ3

φ2(G, λ) = 4λ(λ− 1) = −4λ+ 4λ2

φ3(G, λ) = 2λ(λ− 1) = −2λ+ 2λ2

φ4(G, λ) = 0

φ5(G, λ) = λ

The 4-defect polynomial is equal to zero, since there is no way to choose four bad

edges. Choosing four bad edges would mean four vertices the same colour and, hence,

the fifth edge would also have to be bad.

In Section 2.5 the relationship between the k-defect polynomial and the other
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polynomials discussed in this chapter will be made explicit.

2.3 The Dichromatic Polynomial

In this section we define the dichromatic polynomial of a graph. As an example, we

calculate the dichromatic polynomial of the graph G = K4\e, the diagram in Figure

2.1.

Definition 2.3.1. The dichromatic polynomial of a graph G is

Q(G;x, y) =
∑
S

xk(G:S)yµ(G:S)

where S runs through the subsets of E(G), G : S denotes the spanning subgraph of

G whose edges are the members of S and k(G : S) and µ(G : S) denote the number

of components and nullity of G : S respectively, see Definitions 1.3.8 and 1.3.13.

Example 2.3.2. We calculate the dichromatic polynomial of the graph G = K4\e

from Definition 2.3.1. For ease of reference the subgraphs, G : S, are shown in Figure

2.3 in order to confirm the number of components and nullity. The diagrams in Figure

2.3, show the number of vertices, edges and components of G : S.
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Figure 2.3: G : S where G = K4\e.

The subsets of E(G) are given in Table 2.1, together with the corresponding values

of xk(G:S)yµ(G:S).

Subsets of E(G) xk(G:S)yµ(G:S)

{} x4y0

{1}, {2}, {3}, {4}, {5} 5x3y0

{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5} 10x2y0

{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {2, 3, 4}, {2, 4, 5}, {3, 4, 5} 8xy0

{1, 4, 5}, {2, 3, 5} 2x2y

{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5} 5xy

{1, 2, 3, 4, 5} xy2

Table 2.1: The subsets of G and corresponding xk(G:S)yµ(G:S).

Therefore, the dichromatic polynomial for the given graph is x4 + 5x3 + 10x2 +

8x+ 2x2y + 5xy + xy2.
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2.4 The Tutte Polynomial

In this section we define the Tutte polynomial of a graph G. We then calculate the

Tutte polynomial of the graph G = K4\e, given in the diagram of Figure 2.1, using

the definition. We verify the simplification of the dichromatic polynomial to the Tutte

polynomial with an example. Finally, we demonstrate the computation of the Tutte

polynomial using the most commonly used method of deletion and contraction.

Definition 2.4.1. The Tutte polynomial (dichromate) of a graph G is

T (G;x, y) =
∑
A⊆E

(x− 1)r(E)−r(A)(y − 1)µ(A)

where r(E) denotes the rank of G and r(A) the rank of the subgraph induced by the

edge set A.

Example 2.4.2. We calculate the Tutte polynomial for the graph G = K4\e. Table

2.2 shows the subsets of the edge set and the variables making up the polynomial as

per the definition.

Subsets of E(G) (x− 1)r(E)−r(A)(y − 1)µ(A)

{} (x− 1)3(y − 1)0

{1}, {2}, {3}, {4}, {5} 5(x− 1)2(y − 1)0

{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5} 10(x− 1)(y − 1)0

{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {2, 3, 4}, {2, 4, 5}, {3, 4, 5} 8(x− 1)0(y − 1)0

{1, 4, 5}, {2, 3, 5} 2(x− 1)(y − 1)

{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5} 5(x− 1)0(y − 1)

{1, 2, 3, 4, 5} (y − 1)2

Table 2.2: Subsets of G and corresponding values of (x− 1)r(E)−r(A)(y − 1)µ(A).

Therefore, the Tutte polynomial for the given graph is T (G;x, y) = x+2x2 +x3 +

y + 2xy + y2.

The following proposition is given by Tutte, see [23], as the simplification of the

dichromatic polynomial to the dichromate, nowadays known as the Tutte polynomial.
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Proposition 2.4.3. The Tutte polynomial of a graph G, T (G;x, y), is a two variable

polynomial given by

T (G;x, y) = (x− 1)−k(G)Q(G;x− 1, y − 1)

where k(G) is the number of components of a graph G and Q(G;x, y) is the dichro-

matic polynomial of G.

Example 2.4.4. Let G = K4\e be the graph given in the diagram of Figure 2.1.

Using the dichromatic polynomial calculated in Example 2.3.2 and the Tutte poly-

nomial calculated in Example 2.4.2, we verify the relationship given in Proposition

2.4.3.

(x− 1)−1Q(G;x− 1, y − 1) = (x− 1)−1[(x− 1)4 + 5(x− 1)3

+ 10(x− 1)2 + 8(x− 1) + 2(x− 1)2(y − 1)

+ 5(x− 1)(y − 1) + (x− 1)(y − 1)2]

= x+ 2x2 + x3 + y + 2xy + y2 = T (G;x, y)

In the literature we find a number of other ways of calculating the Tutte poly-

nomial, see [7, 11, 16]. Of interest to this work will be the method of deletion and

contraction summarised in the following proposition.

Proposition 2.4.5. The Tutte Polynomial of a graph G is a two variable polynomial

T (G;x, y). If G is a graph and e is an edge, then

T (G;x, y) =



yT (G\e;x, y) if e is a loop

xT (G/e;x, y) if e is a bridge

T (G\e;x, y) + T (G/e;x, y) if e is neither

xiyj if G consists of i bridges and j loops.
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Example 2.4.6. In Figure 2.4 we illustrate the method of calculating the Tutte

polynomial of G = K4\e using deletion and contraction. In the diagram we start

with G with a dotted edge. We delete the dotted edge to get the graph to its left and

contract the dotted edge to get the graph to its right. We repeat this process until we

get bridges and loops only. We now apply Proposition 2.4.5 to collect the variables.

Figure 2.4: Deletion and contraction of G.

Collecting the variables at the end of the process we find T (G;x, y) = x + 2x2 +

x3 + y + 2xy + y2 as we did from the definition.
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2.5 The Bad Colouring Polynomial

In this section we define the bad colouring polynomial, B(G;λ, S), of a graph G.

We calculate B(G;λ, S) of G = K4\e as an example and give the equivalence of

the bad colouring and Tutte polynomials. Finally, we verify that the bad colouring

polynomial is a generating function in S, where the coefficients of the Sk are the

k-defect polynomials in λ of a graph G.

Definition 2.5.1. The bad colouring polynomial of a graph G is a polynomial in two

independent variables and is defined as

B(G;λ, S) = λk(G)
∑
A⊆E

(S − 1)|A|λr(E)−r(A)

where |A| is the size of the subgraph induced by the subset A of edges.

Example 2.5.2. In Table 2.3 we have the subsets of E(G). The subsets are the same

as shown in Figure 2.3.

Subsets of G(E) (S − 1)|A|λr(E)−r(A)

{} (S − 1)0λ3

{1}, {2}, {3}, {4}, {5} 5(S − 1)1λ2

{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5} 10(S − 1)2λ1

{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {2, 3, 4}, {2, 4, 5}, {3, 4, 5} 8(S − 1)3λ0

{1, 4, 5}, {2, 3, 5} 2(S − 1)3λ1

{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5} 5(S − 1)4λ0

{1, 2, 3, 4, 5} (S − 1)5λ0

Table 2.3: Subsets of G = K4\e and the corresponding values of (S − 1)|A|λr(E)−r(A).

Since G is connected, k(G) = 1. Hence, expanding and factoring out powers of S,

we have

B(G;λ, S) = (−4λ+ 8λ2 − 5λ3 + λ4) + (9λ− 14λ2 + 5λ3)S

+ (−4λ+ 4λ2)S2 + (−2λ+ 2λ2)S3 + λS5.
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As shown in [7], we can also calculate λ−k(G)B(G;λ, S) = B̄(G;λ, S), where k(G)

is the number of components of G, by the method of deletion and contraction as

follows.

Proposition 2.5.3. For a graph G and an edge e the bad colouring polynomial of G

is given by

B(G;λ, S) = λk(G)B̄(G;λ, S),

where

B̄(G;λ, S) =


SB̄(G\e;λ, S) if e is a loop

(S + λ− 1)B̄(G/e;λ, S) if e is a bridge

B̄(G\e;λ, S) + (S − 1)B̄(G/e;λ, S) if e is neither.

The Tutte polynomial and bad colouring polynomial of a graph are equivalent; we

refer the reader to [18]. The following relationship between T (G;x, y) and B(G;λ, S)

shows this equivalence.

B(G;λ, S) = λ(S − 1)rT (G;
S + λ− 1

S − 1
, S),

where r is the rank of G. If G is connected r = n− 1, where n is the order of G.

Vice versa, given the bad colouring polynomial of G, we can calculate the Tutte

polynomial,

T (G;x, y) =
1

(x− 1)(y − 1)(y − 1)r
B(G; (x− 1)(y − 1), y).

As mentioned in Section 2.1, the bad colouring polynomial of a graph G was

originally defined and studied by Crapo as a generating function in S, see [4, 19].

Proposition 2.5.4. The bad colouring polynomial, B(G;λ, S), of a graph G is given

by

B(G;λ, S) =
∑

Skφk(G;λ),

where φk(G;λ) is the k-defect polynomial of the graph G.

27



Recall that the k-defect polynomials of G = K4\e calculated in Section 2.2 are

φ0(G, λ) = λ(λ− 1)(λ− 2)2 = −4λ+ 8λ2 − 5λ3 + λ4

φ1(G, λ) = 4λ(λ− 1)(λ− 2) + λ(λ− 1)2 = 9λ− 14λ2 + 5λ3

φ2(G, λ) = 4λ(λ− 1) = −4λ+ 4λ2

φ3(G, λ) = 2λ(λ− 1) = −2λ+ 2λ2

φ4(G, λ) = 0

φ5(G, λ) = λ.

We confirm that

∑
Skφk(G;λ) = (−4λ+ 8λ2 − 5λ3 + λ4)S0

+(9λ− 14λ2 + 5λ3)S1 + (−4λ+ 4λ2)S2

+(−2λ+ 2λ2)S3 + λS5 = B(G;λ, S)

as calculated from Table 2.3.

2.6 Conclusion

In this chapter we defined the k-defect, dichromatic, Tutte and bad colouring poly-

nomials. We calculated, from the definitions and various other methods found in the

literature, these polynomials for the graph G = K4\e.

Using the polynomials from the examples, we verified the equivalence of the Tutte

and bad colouring polynomials. We also verified that the bad colouring polynomial

is a generating function for the k-defect polynomials of a graph G.

Given the importance of the Tutte polynomial in identifying many characteristics

of a graph G, and the equivalences explored in this chapter, we motivate the further

study of the k-defect polynomial in the rest of this work as a way of possibly casting

new light on the properties of the Tutte polynomial.
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Chapter 3

Integer partitions, Triangular

numbers and Closed sets of

complete graphs

3.1 Introduction

In this chapter we start by defining triangular numbers and number partitions. Then

we describe and define complete graphs and closed sets of a complete graph. By set-

ting up a one-to-one correspondence between complete graphs and triangular num-

bers, we are able to state and prove one of the main results of this dissertation on the

relationship between sizes of closed sets and triangular number partitions. In Chap-

ter 4 we will use this relationship to generate the k-defect polynomials of complete

graphs.

3.2 Triangular number partitions

In this section, we give some well known definitions and theorems involving triangular

number partitions which are relevant to this work. For further details, we refer the
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reader to [2, 14].

An integer partition is a way of splitting a number into integer parts. For example,

we can write the number 4 as 1+1+1+1 or 2+1+1 or 2+2 or 3+1 or 4. The partition

of a number into integer parts should not be confused with the representations of a

number by integer parts, see [14]. Note that 2 + 1 + 1, 1 + 2 + 1 and 1 + 1 + 2 are all

representations of 4 stemming from the same partition 2 + 1 + 1.

Definition 3.2.1. The nth triangular number, ∆n, is n(n−1)
2

or
(
n
2

)
.

Of special interest in this work are integer partitions involving the triangular num-

bers. We denote a partition of an integer k into triangular numbers by π∆(k) and

we will say that ∆i ∈ π∆(k) if we use a triangular number, ∆i, in the partition. By

definition,
(
n
r

)
= 0 for n < r. Hence, we note from Definition 3.2.1 that 0 is the first

triangular number. This means that our definition differs slightly from the usual defi-

nition given in [2], that is, ∆n = n(n+1)
2

, which implies that the first triangular number

is 1. The need for this change in the definition will become clear once we set up the

correspondence between triangular numbers and the sizes of complete graphs in The-

orem 3.3.2. Thus, in this dissertation, the triangular numbers {∆1,∆2,∆3,∆4, . . .}

are {0, 1, 3, 6, . . .}, respectively. It is clear from the definition that

∆n + n =

(
n

2

)
+ n =

n(n− 1) + 2n

2
=

(n+ 1)n

2
= ∆n+1.

Pictorially the triangular numbers can be viewed as the number of dots in triangles

of increasing size. In Figure 3.1 we see the triangular numbers 1, 3, 6 and 10 as dots

in triangles. ∆1 = 0 is just a blank space.

The following theorem, which is stated without proof, is well known in the litera-

ture, sometimes as the Gauss “Eureka Theorem”. We refer the reader to [1] and [5]

for further discussion and proof.

Theorem 3.2.2 (Gauss Eureka). Every integer can be written as the sum of three

triangular numbers.
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Figure 3.1: Triangular numbers. ∆1 = 0 is just a blank space.

Note that integers can also be written as the sum of more than three triangular

numbers. For example, we have not only 8 = 6 + 1 + 1, but also 8 = 3 + 3 + 1 + 1 or

8 = 3 + 1 + 1 + 1 + 1 + 1 and so on.

3.3 Complete Graphs

In this section we state a few known facts about complete graphs. Then we set up a

one-to-one correspondence between complete graphs and triangular numbers.

Recall from Definition 1.3.7 that a complete graph is a graph in which every two

distinct vertices are adjacent. We denote the complete graph of order n as Kn. Recall

also from Chapter 1, Section 1.3, that the order of a graph is the number of vertices

and the size of a graph is the number of edges. The following proposition summarises

some of the properties of complete graphs well known in the literature, see for example

in [3].

Proposition 3.3.1. Let Kn be the complete graph of order n and size m. Then

1. the size of Kn is
(
n
2

)
,

2. Kn is (n− 1)-regular, that is, every vertex has degree n− 1,

3. the chromatic polynomial of Kn is λ(λ− 1) . . . (λ− n+ 1),

4. the chromatic number of Kn is n.
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The graphs in the diagrams in Figure 3.2 are examples of K1, K2, . . . , K6, with

sizes 0, 1, 3, 6, 10 and 15 respectively.

Figure 3.2: Complete graphs of order 1 to 6

The following theorem, one of the main results of this chapter, provides a link

between graph theory and number theory that we will use extensively in the rest of

this dissertation.

Theorem 3.3.2. There is a one-to-one correspondence between triangular numbers

and complete graphs.

Proof. By Proposition 3.3.1 and Definition 3.2.1 we have, for every complete graph

Kn, the size of Kn,

|E(Kn)| =
(
n

2

)
=
n(n− 1)

2
= ∆n.

Thus, for every non-negative integer n, the complete graph Kn is mapped to exactly

one triangular number by its size. By applying the quadratic formula to solve for n

where n(n−1)
2

= ∆n, we have, for every triangular number ∆n,

1 +
√

1 + 8∆n

2
= n = |V (Kn)|.

Thus every triangular number ∆n is mapped back to exactly one complete graph of

order n for every non-negative integer n.
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3.4 Closed sets of size k of complete graphs

In this section we give some definitions and theorems on closed sets which are relevant

to this work. We refer the reader to [25], one of the original papers describing sets of

bad edges as bonds and, more recently, to [3] and [17].

Definition 3.4.1. A vertex induced subgraph Gi of a graph G has vertex set V (Gi) ⊆

V (G). For each pair of vertices u, v ∈ V (Gi), if u and v are adjacent in G, then they

are adjacent in Gi.

Definition 3.4.2. An edge induced subgraph Gi of a graph G has edge set E(Gi) ⊆

E(G). A vertex v ∈ V (Gi), if v is incident with at least one edge in Gi.

In this work we denote induced subgraphs simply as Gi. However, if confusion is

possible, we will refer to the subgraph induced by S ⊆ V (G) as G[S] or the subgraph

induced by X ⊆ E(G) as G[X].

For example, in the diagram in Figure 3.3, G1 is the edge induced subgraph of G

on edge set X = {e1, e2, e3, e4}, while G2 is the vertex induced subgraph of G with

vertex set S = {1, 2, 3, 4}.

Lemma 3.4.3. Let G be a complete graph of order n. Then every induced subgraph

on m vertices of G is a complete graph Km.

Proof. Let Gi be an induced subgraph on m vertices of G. By Definition 3.4.1, each

pair of vertices u, v ∈ V (Gi) are adjacent in Gi if they are adjacent in G. But G is a

complete graph. Hence every pair of vertices in G are adjacent. Therefore every pair

of vertices in Gi are adjacent and Gi is a complete graph of order m.

We state the following well-known proposition without proof, see [3].

Proposition 3.4.4. Let G be a connected graph. Then there is a path between every

pair of vertices u and v of G.
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Figure 3.3: Edge and vertex induced subgraphs

.

Recall from Chapter 1 Section 1.6 that a bad edge joins two vertices of the same

colour in an improper colouring of a graph. Also from Sections 1.3 and 1.4 that a

closed set X of size k, is the largest rank-r subgraph of E(G) containing X, where

the rank r(X) of X is |V (G[X])| − k(G[X]).

Proposition 3.4.5. Let Xk be the set of k bad edges in an improper colouring of a

graph G. If Gi is a connected edge induced subgraph of G on Xk, then all the vertices

of Gi are the same colour.

Proof. Label a vertex of Gi as v. Since Xk is the edge set of Gi, all the edges incident

with v are bad edges in G, and it follows that every vertex adjacent to v is the same

colour as v in the bad colouring of G. Similarly, every vertex adjacent to a neighbour

of v has the same colour as v. Since Gi is connected there is a path between every

two vertices. Thus all the vertices on every path have the same colour, that is, the

same colour as v.

Proposition 3.4.6. Let Xk be the set of k bad edges in an improper colouring of a

graph G. If S is the vertex set of Gi, the edge induced subgraph of G on Xk, then all

the edges of G[S] are bad.
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Proof. By Proposition 3.4.5, if Gi is connected then all the vertices of S are the same

colour. But, by Definition 3.4.1, this means that any other edges of G[S] must also be

bad. By extension, if Gi is not connected then the vertices of each of its components

with vertex sets S1, S2, . . . , Si must be the same colour, which implies that all the

edges of G[S1], G[S1], . . . , G[Si] must be bad.

Proposition 3.4.7. Let Xk be the set of k bad edges in an improper colouring of a

graph G. Then Xk is a closed subgraph or the disjoint union of closed subgraphs of

G.

Proof. Let Xk =
⋃
Xi, be the disjoint union of i sets of bad edges. Note that (i− 1)

of the Xi may be empty if G[Xk] is connected. If any of the Xi is not closed in

G, then, by the definition of a closed subgraph, there is some X1, say, such that

X1 ⊂ E(G1), where G1 is a subgraph of G with same vertex set and rank as G[X1],

but |X1| < |E(G1)|. But, by Proposition 3.4.5 all the vertices of G[X1], and hence G1,

are the same colour. Therefore, by Proposition 3.4.6 all the edges of G1 are bad. But

this would imply an improper colouring of G with more than k edges, contradicting

the assumption that |Xk| = k.

Corollary 3.4.8. Let Xk be the set of k bad edges in an improper colouring of a graph

G. Then the vertex set S = V (G[Xk]) is a set of vertices such that |E(G[S])| = k or

|E(G[S1])|+ |E(G[S2])|+ . . . |E(G[Si])| = k, where S =
⋃
Si.

We now state and prove the main results of this section.

Proposition 3.4.9. All closed sets of Kn are complete graphs or disjoint unions of

complete graphs.

Proof. Let Xk be a closed set in Kn. By definition of a closed set G[Xk] 6⊂ Gi,

where Gi is an induced subgraph of G with the same vertex set as G[Xk]. But, by

Lemma 3.4.3, every induced subgraph on m vertices of G = Kn is a complete graph

Km. Therefore, G[Xk] must be a complete graph, otherwise r(Gi) > r(G[Xk]). The
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argument is the same if G[Xk] is not connected and hence a disjoint union of complete

graphs.

Theorem 3.4.10. Let Xk be the set of k bad edges in an improper colouring of

a complete graph Kn. Then Xk partitions Kn into a disjoint union of i complete

subgraphs, Ki, such that |
⋃
E(Ki)| = k.

Proof. By Proposition 3.4.7, Xk is closed or the disjoint union of closed sets. There-

fore, by Proposition 3.4.9, G[Xk] is a complete graph or the disjoint union of complete

graphs. Let S = V (G[Xk]), then, by Corollary 3.4.8, S is a set of vertices such that

|E(G[S])| = k or |E(G[S1])| + |E(G[S2])| + . . . |E(G[Si])| = k, where S =
⋃
Si.

Therefore, if S = V (G), G is partitioned into a set of disjoint complete graphs. If

S 6= V (G), the remaining vertices in the partition of G cannot contribute any edges

to Xk and hence must all be isomorphic to K1.

3.5 The relationship between triangular number

partitions and closed sets of complete graphs

In this section we will state and prove one of the main results of this dissertation,

namely the correspondence between the triangular number partitions of an integer

and a disjoint union of complete graphs. In conjunction with the results from Section

3.4, we will show a correspondence between closed sets of k bad edges in complete

graphs and triangular number partitions of k. This will place us in a position to put

forward a new algorithm for calculating the k-defect polynomials of a complete graph

in Chapter 4.

Proposition 3.5.1. There is a one-to-one correspondence between every partition of

an integer k into triangular numbers and a disjoint union of complete graphs such

that the sum of the edges of the graphs is k.

36



Proof. By Theorem 3.3.2, there is a one-to-one correspondence between complete

graphs and triangular numbers. Thus, by Proposition 3.4.9 and Theorem 3.4.10, a

partition of an integer k into triangular numbers gives a corresponding disjoint union

of complete graphs such that the sum of the edges of the graphs is k.

In the following three propositions we explore some of the implications of Propo-

sition 3.5.1 and develop formulae that will be used in the subsequent chapters of this

work. Of particular importance will be Proposition 3.5.3.

Recall that π∆(k) is a partition of an integer k into triangular numbers and that

∆i ∈ π∆(k) means that the triangular number ∆i is used in the partition.

Proposition 3.5.2. Let π∆(k) be a partition of an integer k into triangular numbers.

Then ∑
∆i∈π∆(k)

1 +
√

1 + 8∆i

2

corresponds to the order of a complete graph or disjoint union of complete graphs with

size k.

Proof. By Proposition 3.5.1, there is a one-to-one correspondence between every par-

tition of an integer k into triangular numbers and a disjoint union of complete graphs

of size k. By Theorem 3.3.2 every triangular number ∆n is mapped to a complete

graph Kn of order n by 1+
√

1+8∆n

2
= n = |V (Kn)|. Thus, the sum over all the

∆i ∈ π∆(k) gives the order of a complete graph or disjoint union of complete graphs

with size k, since each of the ∆i is mapped to a complete graph of order i and the

edges of the partition sum to k.

Proposition 3.5.3. Let p∆(k) be the number of partitions, π∆(k), of an integer k

into triangular numbers ∆i, such that

∑
∆i∈π∆(k)

1 +
√

1 + 8∆i

2
≤ n,
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where n is an integer and k ≤
(
n
2

)
. Then p∆(k) is also the number of non-

isomorphic complete subgraphs or disjoint union of complete subgraphs of Kn with

size k.

Proof. By Proposition 3.5.2,
∑

∆i∈π∆(k)
1+
√

1+8∆i

2
corresponds to the order of a com-

plete graph or disjoint union of complete graphs with size k. Thus, every partition

of k into triangular numbers is a partition of a complete graph Kn into complete

subgraphs with edge sum k, as long as the sum of the order of the subgraphs making

up the partition is less than or equal to n, the order of Kn. Hence, the number of

partitions π∆(k) is also the number of non-isomorphic complete subgraphs or union

of disjoint subgraphs of Kn.

We note that we can have integer partitions of k where
∑

∆i∈π∆(k)
1+
√

1+8∆i

2
> n,

see Example 3.5.5, and hence we exclude these partitions in our definition of p∆(k).

With a slight abuse of notation we will say π∆(k) ∈ p∆(k) if π∆(k) is counted by

p∆(k).

From the definition of a closed set, Lemma 3.4.3, Corollary 3.4.8 and Proposition

3.4.9 as well as Theorem 3.4.10, we have that a closed set of k edges, cl(Xk), in a

complete graph is

cl(Xk) =
⋃
i≤n

Ki, Ki ⊆ Kn

such that |E(cl(Xk))| = k and |V (cl(Xk))| ≤ n and denote by |cl(Xk)| the number of

such non-isomorphic closed sets.

Proposition 3.5.4. Let cl(Xk) be a closed set of Kn, then

|cl(Xk)| = p∆(k).

Proof. By Proposition 3.5.1 and Proposition 3.5.2, every π∆(k) gives a partition of a

complete graph into a disjoint union of complete subgraphs. By Proposition 3.4.9 all
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closed sets of Kn are complete graphs or disjoint unions of complete graphs. Thus,

by Proposition 3.5.3, p∆(k) is the number of size k closed sets of Kn, as long as the

restriction on the order is respected.

We now demonstrate Propositions 3.5.3 and 3.5.4 with an example.

Example 3.5.5. We will partition k = 6 using the triangular numbers {0, 1, 3, 6}.

1. 6 = 1 + 1 + 1 + 1 + 1 + 1,

2. 6 = 3 + 1 + 1 + 1,

3. 6 = 3 + 3,

4. 6 = 6.

Computing
∑

∆i∈π∆(k)
1+
√

1+8∆i

2
for each of the π∆(6) above we have

1. 2 + 2 + 2 + 2 + 2 + 2 = 12,

2. 3 + 2 + 2 + 2 = 9,

3. 3 + 3 = 6,

4. 4 = 4.

We see that p∆(6) is 4 if n ≥ 12, 3 if 9 ≤ n < 12, 2 if 6 ≤ n < 9 and 1 if 4 ≤ n < 6.

Clearly if n < 4 our graph will not have enough edges to compose a closed set of 6

bad edges.

Following we list the corresponding cl(X6) and note that |cl(X6)| = p∆(6) given

the restrictions on n.

1. Disjoint union of six K2’s,

2. Disjoint union of one K3 and three K2’s,

3. Disjoint union of two K3’s,

4. One K4.
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3.6 Conclusion

In this chapter we defined triangular numbers and triangular number partitions. We

set up a one-to-one correspondence between complete graphs and triangular numbers

in Section 3.3.

We showed that a set Xk of k bad edges in an improper colouring of a graph G,

is a closed subgraph or the disjoint union of closed subgraphs of G. Furthermore, Xk

partitionsKn into a disjoint union of i complete subgraphs, Ki, such that |
⋃
E(Ki)| =

k.

In Section 3.5 we were able to prove the correspondence between the triangular

number partitions of an integer k and a disjoint union of complete graphs of size k.

We also proved the correspondence between closed sets of size k of a complete graph

and the triangular number partitions of k.

We concluded, therefore, that the triangular number partitions of an integer k cor-

respond to partitions of a complete graph into disjoint unions of complete subgraphs

such that the size of each union is k.

We are now in a position to put forward an algorithm for calculating the k-defect

polynomials of a complete graph in Chapter 4.
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Chapter 4

Calculating the k-defect

polynomial of a complete graph

4.1 Introduction

In this chapter we use the relationship between triangular number partitions and

closed sets of complete graphs discussed in Chapter 3 to develop an algorithm for

calculating the k-defect polynomial of a complete graph. We give an example on using

the algorithm to generate an expression for any k-defect polynomial of a complete

graph.

4.2 Methods for calculating k-defect polynomials

There are several known methods for calculating the k-defect polynomial of a graph.

In this section we discuss two of these methods and give examples on how to use them

to calculate the k-defect polynomials of a graph G.
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4.2.1 Method 1

Recall from Chapter 2, the definition of the Tutte and bad colouring polynomials and

their equivalence.

B(G;λ, S) = λ(S − 1)rT (G;
S + λ− 1

S − 1
, S),

where r is the rank of G. If G is connected r = n− 1, where n is the order of G.

Vice versa, given the bad colouring polynomial of G, we can calculate the Tutte

polynomial,

T (G;x, y) =
1

(x− 1)(y − 1)(y − 1)r
B(G; (x− 1)(y − 1), y).

We also recall from Proposition 2.5.4 that

B(G;λ, S) =
∑

Skφk(G;λ),

where φk(G;λ) is the k-defect polynomial of the graph G.

Thus, it is possible to read off the required k-defect polynomial of G from the bad

colouring polynomial. Given the equivalence of the Tutte and bad colouring polyno-

mials we can either obtain the bad colouring polynomial of G from the definition, or

by first calculating the Tutte polynomial of G .

Example 4.2.1. In this example we calculate the 6-defect polynomial of the complete

graph K6.

By Definition 2.5.1, the bad colouring polynomial is

B(G;λ, S) = λk(G)
∑
A⊆E

(S − 1)|A|λr(E)−r(A)

where |A| is the size of the subgraph induced by the subset A of edges.

K6 has
(

6
2

)
= 15 edges. Thus, for |A| = 6, we would need to look at at least

(
15
6

)
subsets A ⊂ E(K6) and calculate λr(E)−r(A) for all non-isomorphic such sets. This
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is tedious. Clearly finding the Tutte Polynomial by deletion and contraction for K6

would be equally laborious.

Hence we use Mathematica to calculate the Tutte polynomial.

T (K6;x, y) = 24x+ 50x2 + 35x3 + 10x4 + x5 + 24y + 106xy + 90x2y + 20x3y + 80y2

+ 145xy2 + 45x2y2 + 120y3 + 105xy3 + 15x2y3 + 120y4 + 60xy4 + 96y5

+ 24xy5 + 64y6 + 6xy6 + 35y7 + 15y8 + 5y9 + y10

and

B(K6;λ, S) = λ(S − 1)5T (K6;
S + λ− 1

S − 1
, S)

= −120λ+ 274λ2 − 225λ3 + 85λ4 − 15λ5 + λ6

+ (360λ− 750λ2 + 525λ3 − 150λ4 + 15λ5)S

+ (−270λ+ 495λ2 − 270λ3 + 45λ4)S2 + (−90λ+ 175λ2 − 105λ3 + 20λ4)S3

+ (120λ− 180λ2 + 60λ3)S4 + (20λ− 35λ2 + 15λ3)S6

+ (−15λ+ 15λ2)S7 + (−6λ+ 6λ2)S10 + λS15.

Reading off the 6-defect polynomial from the generating function, B(K6;λ, S), we

have

φ6(λ) = 20λ− 35λ2 + 15λ3.

4.2.2 Method 2

An alternative known method for calculating the k-defect polynomial of a graph, is

summing the chromatic polynomials of the minors obtained by contracting all closed

sets of size k, as described by Mphako in [17].

We recall from Definition 1.4.3 that a graph H is a minor of a graph G if H ∼= G

or H can be obtained from G by a succession of edge contractions, edge deletions and

vertex deletions.
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Proposition 4.2.2.

φk(G;λ) =
∑

X∈L(G),|X|=k

χ(G/X;λ)

where L(G) is the set of all closed sets of G and G has at least one closed set of size

k. G/X is the minor obtained by contracting the closed set X and χ(G/X;λ) is the

chromatic polynomial of the minor.

Proof. Let Xk be a set of k bad edges in an improper colouring of a graph G and

let S be the vertex set of G[Xk]. As noted in Proposition 3.4.5, all the vertices in

a closed set of bad edges are the same colour and by Proposition 3.4.6 all the edges

of G[S] are bad. Any adjacent vertices in the rest of the bad colouring must be

coloured differently. Otherwise we have more than k bad edges. Since all the vertices

of G[S] are connected (a similar argument holds if Xk is a disjoint union of bad

edges), contracting the edges of the closed set means that all the vertices of G[S] are

identified. Deleting any parallel edges leaves us with a minor of the graph G all of

whose adjacent vertices are coloured differently.

Hence, to calculate the k-defect polynomial of G we calculate the number of

ways of choosing isomorphic closed subsets of size k and multiply by the chromatic

polynomial of the minor. We then sum the polynomials obtained from non-isomorphic

closed sets of size k.

Before applying Method 2, we state the following lemma and illustrate the process

of contraction in a complete graph. Recall from Section 1.3 that two graphs G and

H are isomorphic up to parallel class if |V (G)| = |V (H)| and |E(G)| 6= |E(H)|, but

there is a bijective function ψ : V (G)→ V (H) that preserves the adjacency of vertices

in the mapping.

Lemma 4.2.3. Let Xk be a closed set of a complete graph G = Kn. The minor

obtained by contracting the edges of Xk is a complete graph up to parallel class.

Proof. By Proposition 3.4.9, G[Xk] is a complete subgraph of G such that the size of

G[Xk] = k. Since G[Xk] is a complete graph, k is a triangular number.
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Let k =
(
r
2

)
, for some integer r ≤ n, then |V (G[Xk])| = r and we let n = m+ r.

Recall from Section 1.4 that the operation of contracting an edge e means identi-

fying the two endpoints of e followed by removal of e.

Thus, identifying the r vertices of G[Xk] and deleting the edges of Xk leaves a

single vertex u. But, since G is a complete graph, each of the r vertices in G[Xk] is

adjacent to each of the m vertices not in V (G[Xk]). These edges are not deleted by

the operation of contraction, and, hence, u is adjacent to all m remaining vertices

in V (G). By Lemma 3.4.3 every induced subgraph on m vertices of G is a complete

graph Km. Hence, G[V (Km) + u] is also a complete graph, Km+1, with extra parallel

edges remaining after contracting Xk.

Example 4.2.4. Without loss of generality, we illustrate the proof using the diagrams

in Figure 4.1, where k = 6 and n = 6.

Figure 4.1: Minor isomorphic to K3 up to parallel class.

In the first diagram in Figure 4.1 the set Xk of bad edges are the 6 solid edges

and G[Xk] is the complete subgraph K4 with vertex set {u1, . . . , u4}.
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In the second diagram in Figure 4.1 we identify the vertices {u1, . . . , u4} by

contracting the six solid edges of the closed set of size 6 in K6. We obtain a minor

isomorphic to K3 up to parallel class.

Clearly none of the parallel edges are “bad” edges since the three vertices in the

minor are all coloured differently and, hence, the chromatic polynomial is the same

as that of K3. That is, the “extra” edges do not contribute anything to the chromatic

polynomial and we can safely ignore them. Since the edge set that we are contracting

is closed, we also have no loops and hence the chromatic polynomial is not zero.

Example 4.2.5. In this example we use Method 2 to calculate the 6-defect polyno-

mial of K6 as outlined in Section 4.2.2.

There are only two partitions of the vertex set of K6 that will yield closed sets of

size 6. That is, a subgraph isomorphic to K4 or two disjoint subgraphs isomorphic to

K3, see the diagrams in Figure 4.2. The minors obtained by contraction and deletion

are isomorphic to K3 and K2 respectively.

Recall from Section 1.5 that the chromatic polynomials of the two minors are

χ(K3, λ) = λ(λ − 1)(λ − 2) and χ(K2, λ) = λ(λ − 1). Also, by Lemma 3.4.3, every

induced subgraph on m vertices of K6 is a complete graph Km. Thus there are(
6
4

)
subgraphs of K6 isomorphic to K4. Similarly, there are

(6
3)(

3
3)

2
subgraphs of K6

isomorphic to two disjoint copies of K3.

Thus

φ6(K6;λ) =
∑

X∈L(K6),|X|=6

χ(K6/X;λ)

=

(
6

4

)
λ(λ− 1)(λ− 2) +

(
6
3

)(
3
3

)
2

λ(λ− 1)

= 15λ(λ− 1)(λ− 2) + 10λ(λ− 1) = λ(λ− 1)(15λ− 20)

= 20λ− 35λ2 + 15λ3,

as calculated using Method 1.

It should be clear that identifying all the closed sets of size k is fairly straight
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Figure 4.2: Closed sets of K6 with k = 6

forward in complete graphs of small order. The task becomes more laborious, however,

when dealing with complete graphs of large order and greater values of k. Hence the

effort in the next section to find an easy way of calculating the k-defect polynomial

using an algorithm. We use the algorithm to calculate the 6-defect polynomial of

K6, which gives a straight forward method to guarantee that we have identified all

possible non-isomorphic closed sets of Kn of size k.

4.3 An algorithm for finding the k-defect polyno-

mial of a complete graph

In this section, we give a step by step procedure on how to calculate a k-defect

polynomial of a complete graph using the partitions of k into triangular numbers.

Recall that π∆(k) is a partition of an integer k into triangular numbers. We also

47



need the following definition of a block with reference to set partitions, see [15]. This

should not be confused with the graph theoretical term used when referring to a block

of G as a maximal nonseparable subgraph of G, see [3].

Definition 4.3.1. A set partition π of a set S is a collection B1, B2, . . . , Bk of

nonempty disjoint subsets of S such that
⋃k
i=1Bi = S. The elements of a set partition

are called blocks and the size of a block B is given by |B|, the number of elements in

B.

We will write, for example, the vertex partitions of K6 yielding k = 6 bad edges

used in Method 2 of Subsection 4.2.2 as 4/1/1 and 3/3 respectively, using the block

notation for set partitions from [15]. Since every choice of m vertices in a complete

graph G induces a complete subgraph, the block notation is equivalent to writing

K4

⋃
K1

⋃
K1 and K3

⋃
K3, where

⋃
is the disjoint union of the subgraphs induced

by the vertices in the respective blocks. Unless confusion may result, we may also

refer to each of the triangular numbers in a triangular number partition of k as a

block.

4.3.1 Eight step algorithm

S-i. Find all partitions π∆(k).

S-ii. Translate each of the partitions π∆(k) into a vertex partition, π(v), of Kn by ap-

plying v(∆i) = 1+
√

1+8∆i

2
to each ∆i ∈ π∆(k) using the one-one correspondence

stated in Theorem 3.3.2.

S-iii. Consider all π∆(k) such that π∆(k) ∈ p∆(k). Recall from Proposition 3.5.3 that

p∆(k) is the number of triangular number partitions of k with corresponding

vertex sum less than n. Then p∆(k) is the number of non-isomorphic complete

subgraphs or disjoint union of complete subgraphs of Kn with size k. Hence,

p∆(k) only counts those partitions of k that have a corresponding vertex count

less than or equal to n, where n is the order of our complete graph.
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S-iv. If the total number of vertices |π(v)| < n, add 1’s to the partition until |π(v)| =

n. This step will ensure that when we assign colours to the vertex partition

blocks we take into account all vertices and adding 1 to a vertex partition

implies adding 0 to an edge partition, since the size of K1 is 0.

S-v. Calculate the number of ways to choose the vertices of each block π(v).

S-vi. The vertices in each block of a π(v) are assigned the same colour and each

block a different colour, thus bad edges are the edges of the complete graph

corresponding to each block.

S-vii. Since blocks have different colours, the first block will be coloured with λ

colours, the second block with (λ− 1) colours, and so on. This gives a polyno-

mial in λ.

S-viii. Finally, add all the polynomials generated above to get the k-defect polynomial

since each gives a way of colouring the graph with k bad edges using different

closed set configurations.

The following example illustrates the procedure of calculating the k-defect poly-

nomial.

Example 4.3.2. Let G be the complete graph K6 and we consider k = 6. Using the

triangular numbers {0, 1, 3, 6} to partition 6 we will calculate the 6-defect polynomial

for G.

S-i. We list all π∆(6).

1. π∆(6)1 = 1 + 1 + 1 + 1 + 1 + 1,

2. π∆(6)2 = 3 + 1 + 1 + 1,

3. π∆(6)3 = 3 + 3,

4. π∆(6)4 = 6.
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S-ii. The corresponding partition of vertices and complete subgraphs looks as fol-

lows:

1. π(v)1 = 2/2/2/2/2/2, the disjoint union of six complete subgraphs, K2, of

Kn. This is only possible in a complete graph where n ≥ 12.

2. π(v)2 = 3/2/2/2, the disjoint union of one K3 and three K2 subgraphs of

Kn. This is only possible in a complete graph where n ≥ 9.

3. π(v)3 = 3/3, the disjoint union of two K3 subgraphs of Kn. This is possible

in a complete graph where n ≥ 6.

4. π(v)4 = 4, one K4 subgraph of Kn. This is possible in a complete graph

where n ≥ 4. We will take care of the remaining two vertices in S-iv.

S-iii. We are calculating the 6-defect polynomial for K6 with n = 6. Hence, only

π∆(6)3, π∆(6)4 ∈ p∆(6). Thus we will apply S-v to S-viii to these two partitions

only.

S-iv. π∆(6)4 = 6 gives a corresponding vertex partition with |π(v)| = 4 < 6. Thus

we add the remaining two vertices to the partition as disjoint copies of K1,

thereby adding no extra edges. Now we have π(v)4 = 4/1/1.

S-v. We need to look at the number of ways of choosing four of the six vertices, in-

ducing a K4 subgraph and thus the other two vertices will induce K1 subgraphs

respectively; or two sets of three vertices, inducing two disjoint K3 subgraphs,

as shown in the diagram in Figure 4.3. That is, how many ways are there to

partition the six vertices into blocks ∗∗∗∗/∗/∗ or ∗∗∗/∗∗ ∗, where ∗ represents

a vertex.

1. π∆(6)4: There are
(

6
4

)
= 15 different subgraphs of K6 isomorphic to K4.

2. π∆(6)3: There are
(

6
3

)
×
(

3
3

)
= 20 ways to choose two sets of three vertices each

from the six available in K6. But the disjoint unions of two K3 subgraphs are
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Figure 4.3: K6 with k = 1, 3, 4 and 6 bad edges solid.

not different in all 20 cases. We are counting double, since, given a vertex

set {1, 2, 3, 4, 5, 6}, for example, the partitions 123/456 and 456/123 would

give the same two subgraph partitions. So, we need to divide by two and

thus we have
(6

3)×(3
3)

2
= 10 ways to choose two disjoint K3’s.

S-vi. 1. π∆(6)4: We have three blocks. The first block has six bad edges, the re-

maining two have no edges.

2. π∆(6)3: We have two blocks. The first block has three bad edges and the

second has three bad edges.

S-vii. 1. π∆(6)4: We have three blocks so the 6-defect polynomial for this subgraph

choice would be 15λ(3) = 15λ(λ− 1)(λ− 2) = 15λ3 − 45λ2 + 30λ.

2. π∆(6)3: We have two blocks so the 6-defect polynomial for this subgraph

choice would be 10λ(2) = 10λ(λ−1) = 10λ2−10λ as our 6-defect polynomial

for this choice of subgraphs.
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S-viii. We can have six bad edges by choosing one K4 or two K3’s and thus, adding the

two polynomials we have the 6-defect polynomial for K6 as 15λ3− 35λ2 + 20λ.

This verifies our result as given in Section 4.2.

4.3.2 Expression for the k-defect polynomial in any complete

graph Kn

In order to generate the k-defect polynomial we follow steps (i) to (iv) in the algo-

rithm outlined in Subsection 4.3.1. Thereafter we generate the k-defect polynomial

as outlined in Theorem 4.3.3, one of the main results of this chapter.

For ease of reference we recall Theorem 3.4.10 here:

Let Xk be the set of k bad edges in an improper colouring of a complete graph Kn.

Then Xk partitions Kn into a disjoint union of i complete subgraphs, Ki, such that

|
⋃
E(Ki)| = k.

Theorem 3.4.10 implies that if π(v) is a vertex partition of V (Kn) generated by

Xk, where Xk is the set of k bad edges in an improper colouring of Kn, then π(v) is

a disjoint union of complete subgraphs of Kn.

Also, from Definition 4.3.1, recall that the elements of a set partition are called

blocks and the size of a block B is given by |B|, the number of elements in B.

To ease notation, we label each block in the vertex partition π(v) as ij, where i is

the number of vertices in the block and j the number of the block. We list the blocks

in decreasing size and increasing values of j. We let |ji| be the number of blocks in the

partition that have the same number of vertices i. We will denote the total number

of blocks in the partition as maxj and recall that λ(maxj) is the falling factorial in λ.

Thus, for example, we will label the blocks in the vertex partition π(v) = 4/1/1 of

K6, encountered in Section 4.3, as 41/12/13 with |j1| = 2 and the partition π(v) = 3/3

as 31/32 with |j3| = 2.
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Theorem 4.3.3. Let Xk be the set of k bad edges in an improper colouring of a

complete graph Kn and let π(v) be a vertex partition of V (Kn) generated by Xk. We

label each block in the partition and set it equal to the number of vertices it contains,

that is, we let ij = i.

Then the k-defect polynomial of Kn is

φk(Kn;λ) =
∑
π(v)

[ ∏
all j s.t. i>1

(
n−

∑j−1
r=1 ir

ij

)
/
∏
|ji|!

]
λ(maxj).

Proof. The proof is simply by construction as outlined in steps i – viii in Subsection

4.3.1.

Example 4.3.4. We illustrate the use of the notation by applying Theorem 4.3.3

to the two partitions π(v) = 4/1/1 = 41/12/13 and π(v) = 3/3 = 31/32 of K6 and

verifying the 6-defect polynomial as calculated in Subsection 4.3.1.

φ6(K6;λ) =
∑

π(v)4,π(v)3

[ ∏
all j s.t. i>1

(
6−

∑j−1
r=1 ir

ij

)
/
∏
|ji|!

]
λ(maxj)

=

[(
6−

∑0
r=1 4r

41

)
/
∏
|j4|!

]
λ(3)

+

[(
6−

∑0
r=1 3r

31

)(
6−

∑1
r=1 3r

32

)
/
∏
|j3|!

]
λ(2)

=

(
6
4

)
1!
λ(3) +

(
6−0

3

)(
6−3

3

)
2!

λ(2)

= 15λ(λ− 1)(λ− 2) + 10λ(λ− 1).

In the following example we use Theorem 4.3.3 to calculate the k-defect polynomial

of a complete graph much larger than we have done thus far and for a relatively large

value of k. We show that it is possible to calculate φk(Kn) without first having to

calculate the Tutte or bad colouring polynomials as in Method 1 in Subsection 4.2.1

and that we are certain that we have included all the minors corresponding to Xk, as

we would need in Method 2 of Subsection 4.2.2.
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Example 4.3.5. We apply Theorem 4.3.3 to calculate the 10-defect polynomial of

K18.

Table 4.1 shows the triangular number partitions of 10, the minimum number

of vertices required to have a corresponding closed set partition, the corresponding

vertex partitions and the number of blocks in the partition. Note that the exponent

used in the notation refers to addition as the repeated operation, not multiplication.

For example, we write 14 to mean 1 + 1 + 1 + 1.

π∆(10) min(v) π(v) number of blocks

10 5 5/1/1/1/1/1/1/1/1/1/1/1/1/1 14

6 + 3 + 1 9 4/3/2/1/1/1/1/1/1/1/1/1 12

6 + 14 12 4/2/2/2/2/1/1/1/1/1/1 11

33 + 1 11 3/3/3/2/1/1/1/1/1/1/1 11

32 + 14 14 3/3/2/2/2/2/1/1/1/1 10

3 + 17 17 3/2/2/2/2/2/2/2/1 9

110 20 2/2/2/2/2/2/2/2/2/2 10

Table 4.1: Triangular number partitions of 10 and corresponding vertex partitions of

closed sets.

The last partition requires more than 18 vertices so we will ignore it. Then the

first six partitions give us the following 10-defect polynomial for K18:

φ10(K18;λ) =

(
18

5

)
λ(14) +

(
18

4

)(
14

3

)(
11

2

)
λ(12) +

(
18
4

)(
14
2

)(
12
2

)(
10
2

)(
8
2

)
4!

λ(11)

+

(
18
3

)(
15
3

)(
12
3

)(
9
2

)
3!

λ(11) +

(
18
3

)(
15
3

)(
12
2

)(
10
2

)(
8
2

)(
8
2

)
2!4!

λ(10)

+

(
18
3

)(
15
2

)(
13
2

)(
11
2

)(
9
2

)(
7
2

)(
5
2

)(
3
2

)
7!

λ(9).
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Simplifying the expression gives the 10-defect polynomial for K18:

φ10(K18;λ) = −653575649126400λ+ 1813956914085120λ2 − 2037012613953408λ3

+ 1258088633566128λ4 − 493084834049808λ5 + 136327261618548λ6

− 29080916468604λ7 + 4980518406864λ8 − 656225073504λ9

+ 60187291164λ10 − 3368753388λ11 + 93228408λ12 − 779688λ13

+ 8568λ14.

4.4 Conclusion

In this chapter, after looking at some known methods for calculating k-defect poly-

nomials of graphs, we showed, using the results from Chapter 3 and by means of an

algorithm, that it is possible to find the k-defect polynomial of a complete graph by

using only the triangular number partitions of k.

We then used the algorithm to find an expression for any k-defect polynomial of

a complete graph Kn. Although this is not a closed form expression, it is the only

such expression that we are aware of at the time of writing.

In Chapter 5 we build on the algorithm set out in this chapter in conjunction

with the ideas formulated in Chapter 3, to determine which k-defect polynomials of a

complete graph are equal to zero and we also calculate a lower bound for the number

of such k-defect polynomials.
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Chapter 5

Zero k-defect polynomials of

complete graphs

5.1 Introduction

In this chapter we identify the values of k such that the k-defect polynomial of a

graph G is equal to zero. We use known methods and formulae to find some of the

values of such k for any graph G. Then we apply the theory of triangular number

partitions to find the values of such k for complete graphs. In addition we determine

a lower bound on the number of k-defect polynomials that are equal to zero in a

complete graph.

We note from the literature that the bad colouring polynomial is equivalent to

the Potts Partition function. Since it forms the denominator in Pr(σ), that gives

the Boltzmann entropy distribution of a system, the zeros of B(G, λ, S) are very

important. Although we do not touch on the zeros of B(G;λ, S) in this dissertation,

the intervals of k and the number of k where the Sk terms of this polynomial are zero

may cast a different perspective on the structure of the Partition function.
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5.2 Known facts about k-defect polynomials equal

to zero.

In this section we state some results on the k-defect polynomials of graphs that are

equal to zero. We also give some classes of graphs in which there exist an integer k

such that the k-defect polynomial is equal to zero.

Definition 5.2.1. A cut-set, or edge-cut, of a connected graph G, is a minimal edge

subset, X ⊂ E(G), such that G\X has at least two different components. We call

|X| the cut-set number of G.

The following proposition was proved in [17] for matroids. We state it here,

without proof, in terms of graphs.

Proposition 5.2.2. Let G be a graph with edge set E and h be the cut set number

of G. Then for all k such that

|E| − h < k < |E|,

φk(G;λ) = 0.

Proposition 5.2.3. Let G be a tree (or forest), then there is no integer value for

0 ≤ k ≤ (n − 1) such that the coefficient of Sk in B(G;λ, S) is zero. That is, for

every 0 ≤ k ≤ (n− 1) we have a non-zero k-defect polynomial.

Proof. Let Tn be a tree on n vertices, then |E(Tn)| = n− 1. The cut-set number, h,

of Tn is 1, since we only have to delete one edge to disconnect a leaf from the tree

to give a disconnected graph. Since n and k are both integers, there is no integer on

the interval |E| − h < k < |E| and hence there is no value for k corresponding to

Proposition 5.2.2.

Now start with a proper colouring of Tn and choose an arbitrary vertex u ∈ V (Tn)

with colour a. Choosing any neighbour v of u and colouring it the same gives one
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bad edge. We can continue to add bad edges in this fashion without restriction, since

there are no cycles in Tn. That is, we can add one bad edge at a time by colouring

any neighbour of a vertex already coloured a with the same colour. We continue until

we have coloured all n vertices the same colour. Hence, we can choose k bad edges for

every value of 0 ≤ k ≤ (n − 1), which implies that none of the k-defect polynomials

generated by B(G;λ, S) will be zero.

Proposition 5.2.4. Let G be a cycle, Cn, on n vertices and m = n edges, then the

only value for k where the k-defect polynomial is equal to zero is k = n− 1.

Proof. The cut-set number, h, for any cycle, Cn, is two. That is, we have to delete

at least two edges to disconnect the graph. Then |E| − h = n− 2 and, since n and k

are both integers, there is only one integer on the interval |E| − h < k < |E|, that is,

k = n− 1.

Now start with a proper colouring of Cn. We label an arbitrary vertex u1. Label

either neighbour of u1 as u2 and the unlabeled neighbour of u2 as u3, and so on. We

end up with a labeling of the vertices of Cn, {u1, u2, . . . , un}, where we can choose

successive vertices on the cycle by simply counting along their index number. We

start by colouring u2 the same as u1, giving one bad edge. Clearly we can continue

along the circuit, adding one bad edge at a time, until we have coloured un−1 the

same colour. This gives a colouring of Cn where only un is a different colour and the

two edges connecting it to u1 and un−1 are not bad. Thus we will have k bad edges

for all values 0 ≤ k ≤ n − 2, which implies that the k-defect polynomials for these

values of k are non-zero. We know from Proposition 5.2.2 that φn−1(Cn;λ) = 0. We

also know that we can choose all edges to be bad by colouring all n vertices the same

colour, that is φn(Cn;λ) 6= 0.

Proposition 5.2.5. Let G be a graph where at least one edge is a loop. Then χ(G;λ),

the chromatic or 0-defect polynomial of G is zero.

Proof. Let C be a proper colouring of G, then no two adjacent vertices are the same
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colour. But, if e is a loop on vertex v, then v is always adjacent to a vertex of the

same colour, that is, itself, since e has v as both end points. Hence there can be no

value of λ that will give a value χ(G;λ) > 0 and hence the chromatic polynomial of

G is zero.

Analogous to the methods of computing the k-defect polynomial by first generat-

ing the Tutte and the bad colouring polynomial, shown in Section 4.2, we can find

values for k where Sk does not appear in the polynomial, implying that the k defect

polynomial is equal to zero. Alternatively, using the method of contracting closed

sets of size k and summing the chromatic polynomials of these minors, we find that

the k-defect polynomials for those values of k where it is not possible to have a closed

set of size k, Xk, are equal to zero.

We recall in this regard the closed sets of K3 as illustrated in the diagrams in

Figure 1.6. It was noted at the time that it is not possible to colour the vertices in

such a way as to yield 2 bad edges. That is, for K3, there is no closed set of edges

X2 ⊂ E(K3) with |X2| = 2. Thus, the k-defect polynomials of K3 are:

φ3 = λ

φ2 = 0

φ1 = 3λ2 − 3λ

φ0 = λ3 − 3λ2 + 2λ

The 2-defect polynomial of K3 is equal to 0.

It is interesting to note from Propositions 5.2.3 and 5.2.4 that when there are no

cycles in a graph, there is no k-defect polynomial equal to zero. On the other hand,

with a cycle there is one k-defect polynomial equal to zero. An obvious question to

ask at this point is whether the number of k-defect polynomials that are equal to zero

is related to the number of cycles in the graph. In the next section we will look at

those k-defect polynomials of complete graphs that are equal to zero. Note that in a

complete graph every choice of three vertices induces a cycle.
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5.3 Some k-defect polynomials of complete graphs

that are equal to zero

In this section we will characterize the k-defect polynomials of complete graphs that

are equal to zero. Applying the relationship between closed sets of complete graphs

and partitions of integers into triangular numbers, we derive some exact integer values

of k such that the k-defect polynomial is equal to zero.

The following two propositions follow trivially from the work done in Chapters 3

and 4.

Proposition 5.3.1. Let Kn be a complete graph of order n and k ≤
(
n
2

)
be a triangular

number. Then the k-defect polynomial of Kn is non-zero.

Proof. There is a one-to-one correspondence between triangular numbers and com-

plete graphs. Thus, if k ≤
(
n
2

)
is a triangular number, it maps to a complete subgraph,

Ki say, of Kn, which is a closed set by Proposition 3.4.9. Thus we can colour Kn with

k bad edges corresponding to Ki ⊆ Kn where
(
i
2

)
= k.

Proposition 5.3.2. Let G be a complete graph of order at least 2k. Then the k-defect

polynomial of G is non-zero.

Proof. If we have 2k vertices, we can partition the graph into k disjoint copies of K2,

which are closed sets. Thus we can colour each pair of vertices of the respective K2

subgraphs with a distinct colour, giving k bad edges. Hence, the k-defect polynomial

is non-zero.

We need the following Proposition 5.3.3 and Lemmas 5.3.5 and 5.3.6 to state and

prove Theorem 5.3.7, the main result of this chapter.
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Proposition 5.3.3. The k-defect polynomials of Kn for
(
n−1

2

)
< k <

(
n
2

)
and

(
n−2

2

)
+

1 < k <
(
n−1

2

)
are all equal to zero.

Proof. Without loss of generality, we illustrate the proof using the diagrams in Figure

5.1, where bad edges are represented by the solid edges and n = 6.

Figure 5.1: Illustrating the process of adding good edges using n = 6.

Choose all
(
n
2

)
edges to be bad, that is, all vertices are the same colour as shown

in the diagram represented by ∆n. Now make one edge “good”. In order to do this

we need to change the colour of one vertex u, as in the diagram represented by ∆n−1.

But this means that all (n− 1) edges incident with u will be good, so the next most

bad edges possible after choosing all to be bad is(
n

2

)
− (n− 1) =

n!

2!(n− 2)!
− (n− 1) =

n!− 2(n− 1)(n− 2)!

2!(n− 2)!

=
n!− 2(n− 1)!

2!(n− 2)!
=

(n− 1)!(n− 2)

2!(n− 2)!

=
(n− 1)!

2!(n− 3)!
=

(
n− 1

2

)
.

That is, it is not possible to have k bad edges for
(
n−1

2

)
< k <

(
n
2

)
and hence the

k-defect polynomials for these integers are zero. We note that this is the interval from

Proposition 5.2.2 applied to complete graphs, since the cut-set number of a complete

graph, Kn, is (n− 1).
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We continue and add another good edge to those from the previous step, see the

diagram represented by ∆n−2. We need to choose another vertex v to be a different

colour. But this implies that all edges incident with v must be good, which adds

(n− 2) good edges, since uv is already good. Thus we have(
n

2

)
− (n− 1)− (n− 2) =

(
n− 1

2

)
− (n− 2) =

(n− 1)!− 2!(n− 2)(n− 3)!

2!(n− 3)!

=
(n− 1)!− 2!(n− 2)!

2!(n− 3)!
=

(n− 2)!(n− 3)

2!(n− 3)!

=
(n− 2)!

2!(n− 4)!
=

(
n− 2

2

)
bad edges. On the other hand, we can colour u and v the same colour as in the

diagram represented by ∆n−2 + 1. This gives
(
n−2

2

)
+ 1 bad edges. That is, it is not

possible to choose k bad edges for
(
n−2

2

)
+ 1 < k <

(
n−1

2

)
and hence the k-defect

polynomials for these values of k are equal to zero.

Example 5.3.4. We look at the k-defect polynomials of K6.

Applying Proposition 5.3.3, n = 6 and, hence,
(
n−2

2

)
+ 1 =

(
4
2

)
+ 1 = 6 + 1 = 7,(

n−1
2

)
=
(

5
2

)
= 10 and

(
n
2

)
=
(

6
2

)
= 15. This gives the intervals for k on which the

k-defect polynomials are equal to zero as 7 < k < 10 and 10 < k < 15.

The bad colouring polynomial of K6, calculated using Mathematica, is

B(K6;λ, S) = (−120λ+ 274λ2 − 225λ3 + 85λ4 − 15λ5 + λ6)

+ (360λ− 750λ2 + 525λ3 − 150λ4 + 15λ5)S

+ (−270λ+ 495λ2 − 270λ3 + 45λ4)S2

+ (−90λ+ 175λ2 − 105λ3 + 20λ4)S3 + (120λ− 180λ2 + 60λ3)S4

+ (20λ− 35λ2 + 15λ3)S6 + (−15λ+ 15λ2)S7

+ (−6λ+ 6λ2)S10 + λS15.

Note that the k-defect polynomials for k = 8, 9 and 11, . . . , 14 are equal to zero,

thus verifying our result. This can also be confirmed from the diagrams in Figure 5.1.
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We note that the 5-defect polynomial is equal to zero. However, 5 does not fall

in the intervals identified in Proposition 5.3.3. This is an indication that there are

other values of k, for which the k-defect polynomial is equal to zero, that we have not

identified. That is, there are values of such k that do not fall in the intervals identified

in Proposition 5.3.3, nor in the intervals identified in the more general Theorem 5.3.7.

We will have more to say on this in Subsection 5.3.1 and 5.3.2.

Lemma 5.3.5. For integers n and p, if

p2 + p+ 4

2
≤ n

then there is at least one integer between
(
n−p

2

)
+
(
p
2

)
and

(
n−p+1

2

)
.

Proof. If p2+p+4
2
≤ n, then

p2 + p+ 4 ≤ 2n

n2 − 2np− p+ p2 + p2 + p+ 4− n ≤ n+ n2 − 2np− p+ p2

n2 − 2np− n+ p+ p2 + p2 − p+ 4 ≤ n2 − 2np+ n− p+ p2

(n− p)(n− p− 1) + p(p− 1) + 4 ≤ (n− p+ 1)(n− p)
(n− p)!

(n− p− 2)!
+

p!

(p− 2)!
+ 4 ≤ (n− p+ 1)!

(n− p− 1)!

(n− p)!
2!(n− p− 2)!

+
p!

2!(p− 2)!
+ 2 ≤ (n− p+ 1)!

2!(n− p− 1)!(
n− p

2

)
+

(
p

2

)
+ 2 ≤

(
n− p+ 1

2

)
.

The left hand side of the last line is an integer as is the right hand side. Fur-

thermore,
(
n−p

2

)
is a triangular number and

(
n−p+1

2

)
is the next triangular number, so(

n−p+1
2

)
>
(
n−p

2

)
.

If the difference between
(
n−p

2

)
+
(
p
2

)
and

(
n−p+1

2

)
is 1, then

(
n−p+1

2

)
is the integer

after
(
n−p

2

)
+
(
p
2

)
. Thus, since the difference is greater than or equal to 2, we must

have at least one integer between the two integers
(
n−p

2

)
+
(
p
2

)
and

(
n−p+1

2

)
.
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From the inequality on p and n in Lemma 5.3.5, given n, we can calculate the

values of p as

p ≤ b−1 +
√

8n− 15

2
c.

The following Lemma 5.3.6, listed in [21], is straight forward to prove from the

formula of a triangular number. Since the usual definition of a triangular number

does not include zero and our definition of a triangular number does include zero as

the first triangular number, we include a proof.

Lemma 5.3.6.

∆n−i = ∆n + ∆i − i(n− 1).

Proof.

∆n + ∆i − i(n− 1) =

(
n

2

)
+

(
i

2

)
− i(n− 1) =

n!

2!(n− 2)!
+

i!

2!(i− 2)!
− i(n− 1)

=
n(n− 1)

2
+
i(i− 1)

2
− i(n− 1)

=
n(n− 1) + i(i− 1)− 2i(n− 1)

2

=
n2 − n+ i2 − i− 2ni+ 2i

2

=
(n− i)2 − n+ i

2
=

(n− i)2 − (n− i)
2

=
(n− i)(n− i− 1)

2

=
(n− i)!

2!(n− i− 2)!
=

(
n− i

2

)
= ∆n−i

We are now in a position to state and prove the main result of this chapter. Recall

that, by definition,
(
n
r

)
= 0 for n < r. Thus the statement in Theorem 5.3.7 is the

same as Proposition 5.3.3 for p = 1 and 2.
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Theorem 5.3.7. Let Kn be a complete graph of order n. For integers p and k, p ≥ 1

and p2+p+4
2
≤ n, let

(
n− p

2

)
+

(
p

2

)
< k <

(
n− p+ 1

2

)
.

Then the k-defect polynomial of Kn is equal to zero.

Proof. Recall from Theorem 3.4.10 that a set Xk of k bad edges in an improper

colouring of a complete graph Kn partitions Kn into a disjoint union of i complete

subgraphs, Ki, such that |
⋃
E(Ki)| = k.

Thus, we need to show that there is no disjoint union of complete subgraphs of

Kn with size k and order n. In other words, we need to show that once we have

partitioned Kn into two subgraphs Kn−p and Kp, it is not possible to get more than(
n−p

2

)
+
(
p
2

)
bad edges from any other partition until we choose Kn−p+1 as a subgraph,

thus giving us
(
n−p+1

2

)
bad edges. The proof is in two parts. For ease of reference we

will write the two parts as separate propositions. Theorem 5.3.7 follows directly from

Propositions 5.3.8 and 5.3.9.

We recall that our use of block as per Definition 4.3.1 refers to the elements of a

set partition and the size of a block B is given by |B|, the number of elements in B.

Proposition 5.3.8. Let Kn be a complete graph and p an integer such that p ≥ 1

and p2+p+4
2
≤ n. Then there is no partition of Kn into two complete subgraphs such

that there will be more than
(
n−p

2

)
+
(
p
2

)
and less than

(
n−p+1

2

)
bad edges.

Proof. We have p ≥ 1 and p2+p+4
2
≤ n. The latter inequality guarantees by Lemma

5.3.5 that the interval
(
n−p

2

)
+
(
p
2

)
< k <

(
n−p+1

2

)
is not empty.

Suppose there are two subgraphs Kn−r and Kr such that k =
(
n−r

2

)
+
(
r
2

)
and r 6= p

such that
(
n−r

2

)
+
(
r
2

)
>
(
n−p

2

)
+
(
p
2

)
. We use all n vertices in the supposed partition in

order to maximise the number of bad edges. We must have (n−r) < (n−p), otherwise(
n−r

2

)
≥
(
n−p+1

2

)
, giving a value for k outside our proposition statement. Hence we

have r > p. Also, r, p ≤ bn
2
c otherwise the two parts in each partition simply reverse
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their places and our proof is the same by symmetry. We use the identified inequalities

and Lemma 5.3.6 to prove that
(
n−p

2

)
+
(
p
2

)
>
(
n−r

2

)
+
(
r
2

)
. Using the correspondence

between complete graphs and triangular numbers

(
n− p

2

)
+

(
p

2

)
>

(
n− r

2

)
+

(
r

2

)
⇒ ∆n−p + ∆p > ∆n−r + ∆r.

Hence, we need to show that

(∆n−p + ∆p)− (∆n−r + ∆r) > 0.

By Lemma 5.3.6

(∆n−p + ∆p)− (∆n−r + ∆r) = (∆n + ∆p − p(n− 1) + ∆p)

−(∆n + ∆r − r(n− 1) + ∆r)

= ∆n + 2∆p − p(n− 1)− (∆n + 2∆r − r(n− 1))

= 2∆p − p(n− 1)− (2∆r − r(n− 1))

= 2

(
p

2

)
− pn+ p− (2

(
r

2

)
− rn+ r)

= 2
p(p− 1)

2
− pn+ p− (2

r(r − 1)

2
− rn+ r)

= p2 − p− pn+ p− (r2 − r − rn+ r)

= p2 − pn− r2 + rn = p2 − r2 + rn− pn

= (p− r)(p+ r) + n(r − p) = (p− r)(p+ r)− n(p− r)

= (p− r)(p+ r − n).

Since r > p, (p− r) < 0. Also, r, p ≤ bn
2
c. But p < r, so p ≤ bn

2
c − 1.

Hence,

r + p ≤ bn
2
c+ bn

2
c − 1

≤ n

2
+
n

2
− 1 ≤ n− 1

< n.
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Thus, (r + p− n) < 0 and (p− r)(p+ r − n) > 0.

We conclude that there is no partition of k into two triangular numbers such

that
(
n−p

2

)
+
(
p
2

)
< k <

(
n−p+1

2

)
, given the bounds identified, and therefore there is

no partition of Kn into two complete subgraphs such that there will be more than(
n−p

2

)
+
(
p
2

)
and less than

(
n−p+1

2

)
bad edges.

Proposition 5.3.9. Let Kn be a complete graph and p an integer such that p ≥ 1 and

p2+p+4
2
≤ n. Then there is no partition of Kn into three or more complete subgraphs

such that there will be more than
(
n−p

2

)
+
(
p
2

)
and less than

(
n−p+1

2

)
bad edges.

Proof. We proceed to prove that there is no disjoint union of three or more complete

subgraphs that will give us more bad edges on n vertices than we get from the partition

{Kn−p, Kp} and fewer bad edges than when we choose Kn−p+1 as the induced closed

subgraph with
(
n−p+1

2

)
edges.

There is a total of
(
n
2

)
edges in Kn. Choosing a closed set of edges as bad edges

partitions the edge set, one part of the total set of edges will be bad and the remainder

will be “good”. Hence, in order to prove
(
n−p

2

)
+
(
p
2

)
yields more bad edges than any

partition of Kn into three (or more) complete subgraphs, it is sufficient to show that

the number of “good” edges in the partition with larger number of blocks is greater

than the number of good edges in the partition {Kn−p, Kp}, given certain bounds

which arise naturally from the proposition statement.

We start with two complete subgraphs Kn−p and Kp. We have (n − p)p good

edges, call these red edges. We partition Kn−p into two complete subgraphs Kn−r

and Kn−q. This gives the partition I in Figure 5.2. There are (n− q)p and (n− r)p

good edges between Kp and Kn−q and Kn−r respectively and (n − q)(n − r) good

edges between Kn−q and Kn−r. Call the good edges between the latter two graphs

green edges. Clearly we have more good edges in our partition {Kn−r, Kn−q, Kp}

than in our partition {Kn−p, Kp}. Also (n− q)p+ (n− r)p = (n− p)p since the good

edges between Kp and the other two graphs remain constant no matter how we split

the vertices in Kn−p (recall that these are red edges). Similarly we partition Kp into
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two subgraphs Kq and Kp−q as in partition II in Figure 5.2. What should be clear

is that the “red” edges remain the same as in the original {Kn−p, Kp} partition and

the “green” edges resulting from our partitions I and II are extra. So we have

(n− q)(n− r) + (n− q)p+ (n− r)p > (n− p)p in Partition I

and

(p− q)q + (n− p)(p− q) + (n− p)q > (n− p)p in Partition II.

Figure 5.2: We divide Kn−p into two subgraphs (I) and Kp into two subgraphs (II).

Now partition Kn into three complete subgraphs. We use all the n vertices in the

partition in order to get as many bad edges as possible. Then we proceed to maximise

the number of bad edges by minimising the number of good edges. We show that the

result is either a partition like I or II in Figure 5.2, in which case the proposition
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holds, or a partition of Kn into two complete subgraphs and we have the same case

as Proposition 5.3.8.

Label the vertex partitions A, B and C. The induced subgraphs are all complete

graphs and the edges in each of the partitions are bad edges and the vertices all the

same colour. The edges between the partitions are good edges. If |A|, |B| or |C| =

n−p or p then we have partition I or II and the proposition holds, so we will assume

that |A|, |B| or |C| 6= n−p nor p. We must have |A|, |B| and |C| ≤ n−p otherwise we

have at least
(
n−p+1

2

)
bad edges and this falls outside the proposition statement. Since

we are assuming |A|, |B| or |C| 6= n− p, this implies that |A|, |B| and |C| < n− p.

We minimise the good edges by moving vertices from one block to another. Move

a vertex by changing its colour to that of another block. Without loss of generality,

we move a vertex u, say, from A to B. The bad edges incident on u in A now become

good edges, and the good edges incident on u from B become bad edges. The good

edges incident on u from C remain good edges since the vertices in C do not change

colour and remain the same in number. Hence, in order to reduce the number of good

edges we should always move a vertex from a smaller block to a larger or equal block.

It should be clear that reducing good edges in this manner leads to three possible

outcomes.

1. |A|, |B| and |C| < n− p, so it is possible to move vertices between blocks until

one of them has (n−p) vertices, in which case we are either back at our original

partition, {Kn−p, Kp}, or we have a partition as in II with relabeling of the

blocks and the inequality holds.

2. It may be that |A|, |B| or |C| < p, so it is possible to move vertices between

blocks until one of them has p vertices in which case we are either back at our

original partition, {Kn−p, Kp}, or we have a partition as in I with relabeling

of the blocks and the inequality holds. It is possible to move on from this

configuration to get the configuration as in case 1.
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3. We move vertices between blocks until one of the blocks is completely empty

and the remaining two blocks each has less than (n− p) vertices. But here we

have the same case as in Proposition 5.3.8 and we know that we have more good

edges than in the partition {Kn−p, Kp}, so the inequality holds.

We use a similar argument to show that the proposition holds even if we are using

a larger number of blocks in our partitions.

5.3.1 An algorithm for finding the k-defect polynomials equal

to zero in Kn using the triangular numbers.

In this section we use triangular number partitions of an integer k in order to de-

termine for which complete graphs the k-defect polynomial is equal to zero. We set

out the method as an algorithm and use the algorithm to generate a table of ordered

pairs, (k, n), with n the order of the smallest complete graph in which the k-defect

polynomial will be non-zero, implying that for all Ki such that i < n, the k-defect

polynomial will be equal to zero.

In Sections 3.3 and 3.4 we set up a correspondence between the triangular number

partitions of an integer k and the closed sets in a complete graph that will give k

bad edges in a bad colouring. For each triangular number in a given partition we can

determine the corresponding number of vertices of the complete subgraph, using the

formula n = 1+
√

1+8∆i

2
from Theorem 3.3.2. In this case n is the number of vertices of

the complete subgraph corresponding to the triangular number in the partition block.

Thus, given a triangular number partition of an integer k, we can determine the

number of vertices of the complete subgraphs making up a partition of a complete

graph such that there will be k bad edges. By comparing the number of vertices from

different partitions of k, we can find a minimum number of vertices. The minimum

number of vertices translates to the smallest complete graph in which there will be k
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bad edges. Call this minimum the minimum vertex number associated with k. Thus,

given a complete graph Kn, if the minimum vertex number for a particular integer k

is greater than n, then the k-defect polynomial for Kn will be zero.

Example 5.3.10. We recall the bad colouring of K3 from Section 1.6.

Since K3 has three edges we can have 0, 1, 2, or 3 bad edges. The triangular

number partition for 2 is 1 + 1. This corresponds to a vertex partition 2/2, that is,

two disjoint copies of K2. In other words, we would need a complete graph with a

minimum of four vertices in order to have two bad edges. Since there are only three

vertices in K3 the 2-defect polynomial for K3 is zero.

To sum up, determining the number of vertices corresponding to each partition of

an integer k enables us to find a minimum number of vertices for a complete graph to

have k bad edges. If the minimum number of vertices is greater than n, the k-defect

polynomial will be equal to zero in Kn.

Alternatively, we can write out an algorithm to determine for which complete

graphs a certain k-defect polynomial will be equal zero.

S-i. Find all triangular number partitions of k using triangular numbers less than

or equal to k.

S-ii. For each block in the number partition, determine the corresponding number

of vertices using the formula i = 1+
√

1+8∆i

2
. This is the number of vertices of a

complete subgraph, Ki of some larger complete graph Kn.

S-iii. Sum the vertices over the blocks for each partition.

S-iv. If the minimum number of vertices corresponding to the partitions of k is

greater than n, then that k-defect polynomial will be zero in Kn.

Example 5.3.11. We illustrate the use of this algorithm to find the smallest complete

graph in order to have the 18-defect polynomial non-zero. The Mathematica code

showing the calculation for k = 18 can be found in Appendix A.
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S-i. Partition 18 using the triangular numbers {1, 3, 6, 10, 15}. We use the expo-

nent as a shorthand for repeated addition as we did in Table 4.1.

18 = 15 + 3; 15 + 13; 10 + 6 + 12; 10 + 32 + 12; 10 + 3 + 15; 10 + 18;

63; 62 + 32; 62 + 3 + 13; 62 + 16; 6 + 34; 6 + 33 + 13; 6 + 32 + 16;

6 + 3 + 19; 6 + 112; 36; 35 + 13; 34 + 16; 33 + 19; 32 + 112;

3 + 115; 118

S-ii. The corresponding number of vertices per block in each partition.

π(v) = 6/3; 6/2/2/2;

5/4/2/2; 5/3/3/2/2; 5/3/2/2/2/2/2;

5/2/2/2/2/2/2/2/2;

4/4/4; 4/4/3/3; 4/4/3/2/2/2; 4/4/2/2/2/2/2/2;

4/3/3/3/3; 4/3/3/3/2/2/2;

4/3/3/2/2/2/2/2/2; 4/3/2/2/2/2/2/2/2/2/2;

4/2/2/2/2/2/2/2/2/2/2/2/2;

3/3/3/3/3/3; 3/3/3/3/3/2/2/2;

3/3/3/3/2/2/2/2/2/2;

3/3/3/2/2/2/2/2/2/2/2/2;

3/3/2/2/2/2/2/2/2/2/2/2/2/2;

3/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2;

2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2

S-iii. The corresponding vertex sums are:

{9, 12, 13, 15, 18, 21, 12, 14, 17, 20, 16, 19, 22, 25, 28, 18, 21, 24, 27, 30, 33, 36}

S-iv. The minimum number of vertices is 9 and we can confirm that the 18-defect

polynomial for K8 is 0, but that it does appear in the bad colouring polynomial
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for K9. This of course implies that the 18-defect polynomial is also equal to

zero for all Kn where n ≤ 8 and non-zero for all Kn such that n ≥ 9, since K9

is a subgraph of all complete graphs Kn where n ≥ 9.

Table 5.1 shows ordered pairs (k, n) for integers k and their associated minimum

vertex number as calculated in Example 5.3.11. We used Mathematica to generate

the first 153 such ordered pairs. The code is included in Appendix B.

We can use Table 5.1 to find k-defect polynomials equal to zero for all complete

graphs Kn where n ≤ 18, since |E(K18)| =
(

18
2

)
= 153.

Example 5.3.12. We identify the k-defect polynomials of K6 that are equal to zero.

Since K6 has
(

6
2

)
= 15 edges, we look at the first fifteen order pairs. We note that

for k = {5, 8, 9, 11, 12, 13, 14} we have n > 6 and hence the k-defect polynomials

for these values of k are equal to zero, as shown in Section 5.3.

For interest, we display the information from Table 5.1 graphically in Appendix

C. The chart shows all values of k for which the k-defect polynomials are equal to

zero for a particular Kn, 1 ≤ n ≤ 18.
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(1,2), (2,4), (3,3), (4,5), (5,7), (6,4), (7,6), (8,8),

(9,7), (10,5), (11,7), (12,8), (13,8), (14,10), (15,6), (16,8),

(17,10), (18,9), (19,11), (20,10), (21,7), (22,9), (23,11), (24,10),

(25,11), (26,13), (27,11), (28,8), (29,10), (30,12), (31,11), (32,13),

(33,15), (34,12), (35,14), (36,9), (37,11), (38,13), (39,12), (40,14),

(41,16), (42,13), (43,14), (44,16), (45,10), (46,12), (47,14), (48,13),

(49,15), (50,17), (51,14), (52,16), (53,18), (54,17), 55,11), (56,13),

(57,15), (58,14), (59,16), (60,16), (61,15), (62,17), (63,19), (64,17),

(65,16), (66,12), (67,14), (68,16), (69,15), (70,17), (71,19), (72,16),

(73,18), (74,20), (75,19), (76,17), (77,19), (78,13), (79,15), (80,17),

(81,16), (82,18), (83,19), (84,17), (85,19), (86,21), (87,19), (88,18),

(89,20), (90,20), (91,14), (92,16), (93,18), (94,17), (95,19), (96,21),

(97,18), (98,20), (99,20), (100,21), (101,19), (102,21), (103,22), (104,22),

(105,15), (106,17), (107,19), (108,18), (109,20), (110,22), (111,19), (112,21),

(113,23), (114,22), (115,20), (116,22), (117,23), (118,23), (119,22), (120,16),

(121,18), (122,20), (123,19), (124,21), (125,23), (126,20), (127,22), (128,24),

(129,23), (130,21), (131,23), (132,24), (133,23), (134,25), (135,22), (136,17),

(137,19), (138,21), (139,20), (140,22), (141,23), (142,21), (143,23), (144,25),

(145,24), (146,22), (147,24), (148,24), (149,25), (150,25), (151,23), (152,25),

(153,18)

Table 5.1: Ordered pairs of integers (k, n).

Example 5.3.13. We use Table 5.1 to verify Theorem 5.3.7 for K18.

According to Theorem 5.3.7 the k-defect polynomials of a complete graph, Kn,

are all equal to zero if (
n− p

2

)
+

(
p

2

)
< k <

(
n− p+ 1

2

)
,

where p ≥ 1 and p2+p+4
2
≤ n.
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Recall the inequality following Lemma 5.3.5 that p2+p+4
2
≤ n implies that

p ≤ b
−1 +

√
8(18)− 15

2
c = b−1 +

√
129

2
c = b−1 + 11, 35 . . .

2
c = 5.

For ease of reference we include Table 5.2, listing the intervals for the values of

1 ≤ p ≤ 5 on which the k-defect polynomials are equal to zero for K18.

p
(
n−p

2

)
+
(
p
2

) (
n−p+1

2

)
1 136 153

2 121 136

3 108 120

4 97 105

5 88 91

Table 5.2: Values of p and intervals on which the k-defect polynomials are equal to

zero.

The endpoints of the intervals from Table 5.2 are in bold in Table 5.1 and the

ordered pairs for which the minimum vertex number is greater than 18, that is where

the k-defect polynomials are zero on these intervals, are italicised. Note that we have

not italicised those pairs for values of k that fall outside the intervals determined in

Theorem 5.3.7, but for which the k-defect polynomials are equal to zero for K18.

Thus, for 88 < k < 91, the associated minimum vertex numbers in the ordered

pairs, (89, 20), (90, 20), are both greater than 18. For 97 < k < 105 the ordered

pairs are (98, 20), (99, 20), (100, 21), (101, 19), (102, 21), (103, 22), and (104, 22), all

with minimum vertex numbers greater than 18. Continuing in this manner we can

confirm that the k-defect polynomials for

(
n− p

2

)
+

(
p

2

)
< k <

(
n− p+ 1

2

)
,

p2 + p+ 4

2
≤ n

are all zero, where 1 ≤ p ≤ 5 and n = 18.
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Similarly, we can use Table 5.1 to verify Theorem 5.3.7 for all Kn where n ≤ 18.

5.3.2 A lower bound on the number of k-defect polynomials

that are equal to zero.

Finally, we state and prove a lower bound for the number of k-defect polynomials

which are equal to zero. We need the following two identities on triangular numbers

which we state as lemmas. We note that Lemma 5.3.14 has been known since at

least 1261, see [5], and Lemma 5.3.6, listed in [21], was proved in Section 5.3. As

mentioned before, the identities in the cited sources are slightly different, since the

usual definition of a triangular number does not include zero. Since our definition of

a triangular number does include zero as the first triangular number, we include here

a proof of Lemma 5.3.14 as well.

Lemma 5.3.14.
p∑
i=1

∆i =
(p− 1)p(p+ 1)

6

Proof.

p∑
i=1

∆i =

p∑
i=1

(
i

2

)
=

p∑
i=1

i!

2!(i− 2)!
=

p∑
i=1

i(i− 1)

2
=

p∑
i=1

i2 − i
2

=
1

2

[
p∑
i=1

i2 −
p∑
i=1

i

]
=

1

2

[
p(p+ 1)(2p+ 1)

6
− p(p+ 1)

2

]
=

1

2

[
p(p+ 1)(2p+ 1)− 3p(p+ 1)

6

]
=

1

2

[
p(p+ 1)(2p+ 1− 3)

6

]
=

1

2

[
p(p+ 1)(2p− 2)

6

]
=

(p− 1)p(p+ 1)

6

For ease of reference we restate Lemma 5.3.6.

∆n−i = ∆n + ∆i − i(n− 1).
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Theorem 5.3.15. The number of k-defect polynomials of Kn that are equal to zero

is at least p(n− 1)− p(p+1)(p+2)
6

, where p = max{1 ≤ p ≤ b−1+
√

8n−15
2

c}.

Proof. We know from Theorem 5.3.7 that the k-defect polynomials for all integers(
n−p

2

)
+
(
p
2

)
< k <

(
n−p+1

2

)
for 1 ≤ p ≤ b−1+

√
8n−15
2

c are equal to zero, so we will count

this number of integers over all p on the interval.

There are
(
n−p+1

2

)
−
((
n−p

2

)
+
(
p
2

))
− 1 integers between

(
n−p+1

2

)
and

(
n−p

2

)
+
(
p
2

)
so

the total number of integers is given by

p∑
i=1

((
n− i+ 1

2

)
−
(
n− i

2

)
−
(
i

2

)
− 1

)
.

By our definition of triangular numbers this is equivalent to

p∑
i=1

(∆n+1−i −∆n−i −∆i − 1),

where ∆i is the i-th triangular number.

We recall from Definition 3.2.1 that ∆n+1 = ∆n + n and use the identities from

Lemmas 5.3.14 and 5.3.6 to evaluate the sum.

p∑
i=1

(∆n+1−i −∆n−i −∆i − 1)

=

p∑
i=1

(∆n+1 + ∆i − in− (∆n + ∆i − i(n− 1))−∆i − 1)

=

p∑
i=1

(∆n+1 −∆n −∆i − i− 1)

=

p∑
i=1

(n−∆i − i− 1)

=pn− (p− 1)p(p+ 1)

6
− p(p+ 1)

2
− p

=p(n− 1)− (p)(p+ 1)(p+ 2)

6
.
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In addition, we know that there are some k-defect polynomials outside the intervals

identified in Theorem 5.3.7 that are equal to zero. Without loss of generality, let n = 6

then p = 2. By Theorem 5.3.7 this means that all the k-defect polynomials for 7 <

k < 10 as well as 10 < k < 15 are equal to zero. Evaluating p(n− 1)− p(p+1)(p+2)
6

this

gives 6 k-defect polynomials that are equal to zero. However, the 5-defect polynomial

in K6 is also 0, as shown in Example 5.3.12, but 5 falls outside the intervals determined

by Theorem 5.3.7. Thus p(n− 1)− p(p+1)(p+2)
6

gives a lower bound on the number of

k-defect polynomials that are equal to zero in Kn.

Example 5.3.16. We look at the number of k-defect polynomials of K18 that are

equal to zero.

Since n = 18,

p = b
−1 +

√
8(18)− 15

2
c = b−1 +

√
129

2
c = b−1 + 11, 35 . . .

2
c = 5.

Theorem 5.3.15 states that at least 5(18 − 1) − 5(5+1)(5+2)
6

= 50 of the k-defect

polynomials are equal to zero. Recall that the italicised ordered pairs in Table

5.1 correspond to the k-defect polynomials equal to zero for all k on the inter-

vals identified in Theorem 5.3.7. We can verify by counting that there are indeed

50 italicised ordered pairs in the table. We also note from the table that there

are a further twelve k-defect polynomials that are equal to zero, namely those for

k = {63, 71, 74, 75, 77, 83, 85, 86, 87, 95, 96, 107}.

5.4 Conclusion

In this chapter we identified some values of k such that the k-defect polynomial of a

graph G is equal to zero. By applying the relationship between closed sets of complete

graphs and partitions of integers into triangular numbers, we identified intervals of

integers on which the k-defect polynomials are equal to zero for complete graphs, one
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of the main results of this chapter. We then developed an algorithm to calculate the

minimum order for a complete graph to have a k-defect polynomial not equal to zero

for a given value of k. In addition, using known summation formulae for triangular

numbers, we determined a lower bound on the number of k-defect polynomials that

are equal to zero in a complete graph.
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Chapter 6

Conclusion

In this dissertation we set out to look at improper colourings of graphs and noted that

the much studied chromatic polynomial, giving the number of proper λ colourings of

a graph, is generalised by the bad colouring or k-defect polynomials. That is, if φk(λ)

is the polynomial that gives us the λ colouring of a graph with k bad edges, then

φ0(λ) is the chromatic polynomial. This is not just generalisation for generalisation’s

sake, however, since the k-defect polynomials of a graph generate the bad colouring

polynomial which is equivalent to the Tutte polynomial. The Tutte polynomial is

a very important graph invariant that encodes a large amount of information about

a graph. Furthermore, the Potts Partition function, a very important function in

statistical mechanics, is an evaluation of the Tutte polynomial equivalent to the bad

colouring polynomial. Thus we looked specifically at the definitions of the dichro-

matic, Tutte (dichromate), bad colouring and k-defect polynomials of a graph G. We

looked at different ways in the literature of calculating these polynomials and pointed

out their equivalent evaluations.

In Chapter 3 we showed that sets of bad edges are closed sets of a graph and

specifically that closed sets of a complete graph are complete subgraphs or disjoint

unions of complete subgraphs. By setting up a one-to-one correspondence between
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complete graphs and triangular numbers, we were able to state and prove one of the

main results of this dissertation on the relationship between sizes of closed sets of

complete graphs and triangular number partitions of an integer k. We note in pass-

ing that the underlying complete graph has a specific meaning with respect to the

mean field in the Potts model mentioned before.

The relationship between triangular number partitions and complete graphs en-

abled us in Chapter 4 to develop an algorithm for calculating a k-defect polynomial

of a complete graph, using triangular number partitions of k. We used this algorithm

to generate an expression for any k defect polynomial of a complete graph.

Finally, in Chapter 5, we identified some intervals on which the k-defect poly-

nomial of a complete graph is equal to zero, using the theory of triangular number

partitions developed in the previous two chapters. In addition we determined a lower

bound on the number of k for the k-defect polynomials that are equal to zero using

well known summation formulae for the triangular numbers.

From this study has also emerged some further problems that may be interesting

to look at and merit further investigation.

The intervals identified in Chapter 5 are not all the intervals on which the k-defect

polynomials of a complete graph are equal to zero. Hence, the formula developed gives

only a lower bound. An interesting next step would be to try to determine where all

the k-defect polynomials equal to zero of a complete graph lie and to find an exact

number. Looking at the distribution of these values of k for the first 20 complete

graphs we can see a further pattern of zero’s emerging as n increases, but that there

are also still zero’s that do not fit even this pattern.
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We also noted that in a tree none of the k-defect polynomials are equal to zero,

while in a cycle we have exactly one such value for k. The matter seems to become

more and more complex as we add cycles on three vertices, until we maximise this

situation in complete graphs where every subset of three vertices induces a cycle. An

interesting problem would be to determine whether there is a correspondence between

the number of such cycles in a graph and the number k-defect polynomials that are

equal to zero, or whether there are other structural properties of a graph that influence

the number of zero k-defects. Do the intervals on which these k occur in complete

graphs give an indication where they might occur in other classes of graphs? Also,

since the Tutte and bad colouring polynomials are equivalent, do the zero k-defects

of a graph give any information as to the coefficients of the Tutte polynomial?

Lastly, there are classes of graphs for which we have closed form expressions for

the chromatic polynomial, such as trees, cycles, wheels and complete graphs, to name

but four. For trees and cycles a closed form expression for the k-defect polynomial

has been found, but these are the only classes of graphs. For complete graphs we can

generate such an expression for k = 1, but after that it becomes complicated. The

nearest we have come in this dissertation is the expression developed in Chapter 4.

A closed form expression for the k-defect polynomials of different classes of graphs

may lead us to new insights on the zero’s of the bad colouring polynomial and hence

the Potts Partition function.
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Appendix A

Mathematica code: calculating

minimum vertices for 18 bad edges

Below is the Mathematica code showing the calculation of the minimum number of

vertices, that is, the smallest order of a complete graph, necessary for k = 18 bad

edges.

In[15]:= f[n] := (1 + Sqrt[1 + 8 n])/2

In[16]:= a = Range[2, 18]

Out[16]= {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}

In[17]:= b = Binomial[a, 2]

Out[17]= {1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153}

In[18]:= e = 18

Out[18]= 18

In[19]:= c = IntegerPartitions[e, All, b]

Out[19]= {{15, 3}, {15, 1, 1, 1}, {10, 6, 1, 1}, {10, 3, 3, 1, 1}, {10, 3, 1, 1, 1, 1,

1}, {10, 1, 1, 1, 1, 1, 1, 1, 1}, {6, 6, 6}, {6, 6, 3, 3}, {6, 6, 3, 1, 1, 1}, {6, 6, 1, 1, 1,

1, 1, 1}, {6, 3, 3, 3, 3}, {6, 3, 3, 3, 1, 1, 1}, {6, 3, 3, 1, 1, 1, 1, 1, 1}, {6, 3, 1, 1, 1, 1,

1, 1, 1, 1, 1}, {6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, {3, 3, 3, 3, 3, 3}, {3, 3, 3, 3, 3, 1, 1,
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1}, {3, 3, 3, 3, 1, 1, 1, 1, 1, 1}, {3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1}, {3, 3, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1}, {3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1}}

In[20]:= f[c]

Out[20]= {{6, 3}, {6, 2, 2, 2}, {5, 4, 2, 2}, {5, 3, 3, 2, 2}, {5, 3, 2, 2, 2, 2, 2}, {5,

2, 2, 2, 2, 2, 2, 2, 2}, {4, 4, 4}, {4, 4, 3, 3}, {4, 4, 3, 2, 2, 2}, {4, 4, 2, 2, 2, 2, 2, 2},

{4, 3, 3, 3, 3}, {4, 3, 3, 3, 2, 2, 2}, {4, 3, 3, 2, 2, 2, 2, 2, 2}, {4, 3, 2, 2, 2, 2, 2, 2, 2,

2, 2}, {4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2}, {3, 3, 3, 3, 3, 3}, {3, 3, 3, 3, 3, 2, 2, 2}, {3,

3, 3, 3, 2, 2, 2, 2, 2, 2}, {3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2}, {3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2}, {3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2}, {2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2}}

In[21]:= Total /@ f[c]

Out[21]= {9, 12, 13, 15, 18, 21, 12, 14, 17, 20, 16, 19, 22, 25, 28, 18, 21, 24, 27,

30, 33, 36}

In[22]:= d = Min[%]

Out[22]= 9
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Appendix B

Mathematica code: Ordered pairs

for k and n

Below is the Mathematica code showing the calculation of ordered pairs (k, n) where

n is the minimum number of vertices necessary for a complete graph to have the

k-defect polynomial non-zero.

In[4]:= f[n ] := (1 + Sqrt[1 + 8 n])/2

In[5]:= a = Range[2, 18]

Out[5]= {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}

In[6]:= b = Binomial[a, 2]

Out[6]= {1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153}

In[7]:= g[n ] := IntegerPartitions[n, All, b]

In[8]:= h[n ] := f[g[n]]

In[9]:= j[n ] := Total /@ h[n]

In[10]:= k[n ] := Min[j[n]]

In[11]:= Do[Print[”(”, n, ”,”, k[n], ”)”], {n, 1, 153}]
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Appendix C

k-defect polynomials of Kn equal to

zero for 1 ≤ n ≤ 18

The chart on the next page shows all integer values for 0 ≤ k ≤ 153 and complete

graphs Kn for 1 ≤ n ≤ 18. The values for k where the k-defect polynomial for a

particular complete graph is equal to zero is marked with a dot.
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