38,464 research outputs found

    Interoperable services based on activity monitoring in ambient assisted living environments

    Get PDF
    Ambient Assisted Living (AAL) is considered as the main technological solution that will enable the aged and people in recovery to maintain their independence and a consequent high quality of life for a longer period of time than would otherwise be the case. This goal is achieved by monitoring human’s activities and deploying the appropriate collection of services to set environmental features and satisfy user preferences in a given context. However, both human monitoring and services deployment are particularly hard to accomplish due to the uncertainty and ambiguity characterising human actions, and heterogeneity of hardware devices composed in an AAL system. This research addresses both the aforementioned challenges by introducing 1) an innovative system, based on Self Organising Feature Map (SOFM), for automatically classifying the resting location of a moving object in an indoor environment and 2) a strategy able to generate context-aware based Fuzzy Markup Language (FML) services in order to maximize the users’ comfort and hardware interoperability level. The overall system runs on a distributed embedded platform with a specialised ceiling- mounted video sensor for intelligent activity monitoring. The system has the ability to learn resting locations, to measure overall activity levels, to detect specific events such as potential falls and to deploy the right sequence of fuzzy services modelled through FML for supporting people in that particular context. Experimental results show less than 20% classification error in monitoring human activities and providing the right set of services, showing the robustness of our approach over others in literature with minimal power consumption

    A Surface-based In-House Network Medium for Power, Communication and Interaction

    Get PDF
    Recent advances in communication and signal processing methodologies have paved the way for a high speed home network Power Line Communication (PLC) system. The development of powerline communications and powerline control as a cost effective and rapid mechanism for delivering communication and control services are becoming attractive in PLC application, to determine the best mix of hard and software to support infrastructure development for particular applications using power line communication. Integrating appliances in the home through a wired network often proves to be impractical: routing cables is usually difficult, changing the network structure afterwards even more so, and portable devices can only be connected at fixed connection points. Wireless networks aren’t the answer either: batteries have to be regularly replaced or changed, and what they add to the device’s size and weight might be disproportionate for smaller appliances. In Pin&Play, we explore a design space in between typical wired and wireless networks, investigating the use of surfaces to network objects that are attached to it. This article gives an overview of the network model, and describes functioning prototypes that were built as a proof of concept. The first phase of the development is already demonstrated both in appropriate conferences and publications. [1] The intention of researchers is to introduce this work to powerline community; as this research enters phase II of the Pin&Play architecture to investigate, develop prototype systems, and conduct studies in two concrete application areas. The first area is user-centric and concerned with support for collaborative work on large surfaces. The second area is focused on exhibition spaces and trade fairs, and concerned with combination of physical media such as movable walls and digital infrastructure for fast deployment of engaging installations. In this paper we have described the functionality of the Pin&Play architecture and introduced the second phase together with future plans. Figure 1 shows technical approach, using a surface with simple layered structure Pushpin connectors, dual pin or coaxial

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    Intelligent Energy Optimization for User Intelligible Goals in Smart Home Environments

    Get PDF
    Intelligent management of energy consumption is one of the key issues for future energy distribution systems, smart buildings, and consumer appliances. The problem can be tackled both from the point of view of the utility provider, with the intelligence embedded in the smart grid, or from the point of view of the consumer, thanks to suitable local energy management systems (EMS). Conserving energy, however, should respect the user requirements regarding the desired state of the environment, therefore an EMS should constantly and intelligently find the balance between user requirements and energy saving. The paper proposes a solution to this problem, based on explicit high-level modeling of user intentions and automatic control of device states through the solution and optimization of a constrained Boolean satisfiability problem. The proposed approach has been integrated into a smart environment framework, and promising preliminary results are reporte

    MAKING THE GOOD EASY: THE SMART CODE ALTERNATIVE

    Get PDF
    This article advocates for a new, fundamentally different plan for how cities should be coded, the Smart Code. It links urbanism and environmentalism and is strongly aligned with smart growth and sustainability. The Smart Code is offered as an alternative to the current anti-urban, conventional codes which are rigid and focus on single-use zones that separate human living space from the natural environment, as illustrated by the sprawl

    iCapture: Facilitating Spontaneous User-Interaction with Pervasive Displays using Smart Devices

    Get PDF
    Abstract. The eCampus project at Lancaster University is an inter-disciplinary project aiming to deploy a wide range of situated displays across the University campus in order to create a large per-vasive communications infrastructure. At present, we are conducting a series of parallel research activities in order to investigate how the pervasive communications infrastructure can support the daily needs of staff, students and visitors to the University. This paper introduces one of our current research investigations into how one is able to mediate spontaneous interaction with the pervasive display infrastructure through camera equipped mobile phones (i.e. smart devices).

    MiniCPS: A toolkit for security research on CPS Networks

    Full text link
    In recent years, tremendous effort has been spent to modernizing communication infrastructure in Cyber-Physical Systems (CPS) such as Industrial Control Systems (ICS) and related Supervisory Control and Data Acquisition (SCADA) systems. While a great amount of research has been conducted on network security of office and home networks, recently the security of CPS and related systems has gained a lot of attention. Unfortunately, real-world CPS are often not open to security researchers, and as a result very few reference systems and topologies are available. In this work, we present MiniCPS, a CPS simulation toolbox intended to alleviate this problem. The goal of MiniCPS is to create an extensible, reproducible research environment targeted to communications and physical-layer interactions in CPS. MiniCPS builds on Mininet to provide lightweight real-time network emulation, and extends Mininet with tools to simulate typical CPS components such as programmable logic controllers, which use industrial protocols (Ethernet/IP, Modbus/TCP). In addition, MiniCPS defines a simple API to enable physical-layer interaction simulation. In this work, we demonstrate applications of MiniCPS in two example scenarios, and show how MiniCPS can be used to develop attacks and defenses that are directly applicable to real systems.Comment: 8 pages, 6 figures, 1 code listin

    Mobile Interface for a Smart Wheelchair

    Get PDF
    Smart wheelchairs are designed for severely motor impaired people that have difficulties to drive standard -manual or electric poweredwheelchairs. Their goal is to automate driving tasks as much as possible in order to minimize user intervention. Nevertheless, human involvement is still necessary to maintain high level task control. Therefore in the interface design it is necessary to take into account the restrictions imposed by the system (mobile and small), by the type of users (people with severe motor restrictions) and by the task (to select a destination among a number of choices in a structured environment). This paper describes the structure of an adaptive mobile interface for smart wheelchairs that is driven by the context.Comisión Interministerial de Ciencia y Tecnología TER96-2056-C02-0
    corecore