814 research outputs found

    The impacts of timing constraints on virtual channels multiplexing in interconnect networks

    Get PDF
    Interconnect networks employing wormhole-switching play a critical role in shared memory multiprocessor systems-on-chip (MPSoC) designs, multicomputer systems and system area networks. Virtual channels greatly improve the performance of wormhole-switched networks because they reduce blocking by acting as "bypass" lanes for non-blocked messages. Capturing the effects of virtual channel multiplexing has always been a crucial issue for any analytical model proposed for wormhole-switched networks. Dally has developed a model to investigate the behaviour of this multiplexing which have been widely employed in the subsequent analytical models of most routing algorithms suggested in the literature. It is indispensable to modify Dally's model in order to evaluate the performance of channel multiplexing in more general networks where restrictions such as timing constraints of input arrivals and finite buffer size of queues are common. In this paper we consider timing constraints of input arrivals to investigate the virtual channel multiplexing problem inherent in most current networks. The analysis that we propose is completely general and therefore can be used with any interconnect networks employing virtual channels. The validity of the proposed equations has been verified through simulation experiments under different working conditions

    Experimental Evaluation and Comparison of Time-Multiplexed Multi-FPGA Routing Architectures

    Get PDF
    Emulating large complex designs require multi-FPGA systems (MFS). However, inter-FPGA communication is confronted by the challenge of lack of interconnect capacity due to limited number of FPGA input/output (I/O) pins. Serializing parallel signals onto a single trace effectively addresses the limited I/O pin obstacle. Besides the multiplexing scheme and multiplexing ratio (number of inter-FPGA signals per trace), the choice of the MFS routing architecture also affect the critical path latency. The routing architecture of an MFS is the interconnection pattern of FPGAs, fixed wires and/or programmable interconnect chips. Performance of existing MFS routing architectures is also limited by off-chip interface selection. In this dissertation we proposed novel 2D and 3D latency-optimized time-multiplexed MFS routing architectures. We used rigorous experimental approach and real sequential benchmark circuits to evaluate and compare the proposed and existing MFS routing architectures. This research provides a new insight into the encouraging effects of using off-chip optical interface and three dimensional MFS routing architectures. The vertical stacking results in shorter off-chip links improving the overall system frequency with the additional advantage of smaller footprint area. The proposed 3D architectures employed serialized interconnect between intra-plane and inter-plane FPGAs to address the pin limitation problem. Additionally, all off-chip links are replaced by optical fibers that exhibited latency improvement and resulted in faster MFS. Results indicated that exploiting third dimension provided latency and area improvements as compared to 2D MFS. We also proposed latency-optimized planar 2D MFS architectures in which electrical interconnections are replaced by optical interface in same spatial distribution. Performance evaluation and comparison showed that the proposed architectures have reduced critical path delay and system frequency improvement as compared to conventional MFS. We also experimentally evaluated and compared the system performance of three inter-FPGA communication schemes i.e. Logic Multiplexing, SERDES and MGT in conjunction with two routing architectures i.e. Completely Connected Graph (CCG) and TORUS. Experimental results showed that SERDES attained maximum frequency than the other two schemes. However, for very high multiplexing ratios, the performance of SERDES & MGT became comparable

    Adaptive code division multiple access protocol for wireless network-on-chip architectures

    Get PDF
    Massive levels of integration following Moore\u27s Law ushered in a paradigm shift in the way on-chip interconnections were designed. With higher and higher number of cores on the same die traditional bus based interconnections are no longer a scalable communication infrastructure. On-chip networks were proposed enabled a scalable plug-and-play mechanism for interconnecting hundreds of cores on the same chip. Wired interconnects between the cores in a traditional Network-on-Chip (NoC) system, becomes a bottleneck with increase in the number of cores thereby increasing the latency and energy to transmit signals over them. Hence, there has been many alternative emerging interconnect technologies proposed, namely, 3D, photonic and multi-band RF interconnects. Although they provide better connectivity, higher speed and higher bandwidth compared to wired interconnects; they also face challenges with heat dissipation and manufacturing difficulties. On-chip wireless interconnects is one other alternative proposed which doesn\u27t need physical interconnection layout as data travels over the wireless medium. They are integrated into a hybrid NOC architecture consisting of both wired and wireless links, which provides higher bandwidth, lower latency, lesser area overhead and reduced energy dissipation in communication. However, as the bandwidth of the wireless channels is limited, an efficient media access control (MAC) scheme is required to enhance the utilization of the available bandwidth. This thesis proposes using a multiple access mechanism such as Code Division Multiple Access (CDMA) to enable multiple transmitter-receiver pairs to send data over the wireless channel simultaneously. It will be shown that such a hybrid wireless NoC with an efficient CDMA based MAC protocol can significantly increase the performance of the system while lowering the energy dissipation in data transfer. In this work it is shown that the wireless NoC with the proposed CDMA based MAC protocol outperformed the wired counterparts and several other wireless architectures proposed in literature in terms of bandwidth and packet energy dissipation. Significant gains were observed in packet energy dissipation and bandwidth even with scaling the system to higher number of cores. Non-uniform traffic simulations showed that the proposed CDMA-WiNoC was consistent in bandwidth across all traffic patterns. It is also shown that the CDMA based MAC scheme does not introduce additional reliability concerns in data transfer over the on-chip wireless interconnects

    Doctor of Philosophy

    Get PDF
    dissertationRecent breakthroughs in silicon photonics technology are enabling the integration of optical devices into silicon-based semiconductor processes. Photonics technology enables high-speed, high-bandwidth, and high-fidelity communications on the chip-scale-an important development in an increasingly communications-oriented semiconductor world. Significant developments in silicon photonic manufacturing and integration are also enabling investigations into applications beyond that of traditional telecom: sensing, filtering, signal processing, quantum technology-and even optical computing. In effect, we are now seeing a convergence of communications and computation, where the traditional roles of optics and microelectronics are becoming blurred. As the applications for opto-electronic integrated circuits (OEICs) are developed, and manufacturing capabilities expand, design support is necessary to fully exploit the potential of this optics technology. Such design support for moving beyond custom-design to automated synthesis and optimization is not well developed. Scalability requires abstractions, which in turn enables and requires the use of optimization algorithms and design methodology flows. Design automation represents an opportunity to take OEIC design to a larger scale, facilitating design-space exploration, and laying the foundation for current and future optical applications-thus fully realizing the potential of this technology. This dissertation proposes design automation for integrated optic system design. Using a buildingblock model for optical devices, we provide an EDA-inspired design flow and methodologies for optical design automation. Underlying these flows and methodologies are new supporting techniques in behavioral and physical synthesis, as well as device-resynthesis techniques for thermal-aware system integration. We also provide modeling for optical devices and determine optimization and constraint parameters that guide the automation techniques. Our techniques and methodologies are then applied to the design and optimization of optical circuits and devices. Experimental results are analyzed to evaluate their efficacy. We conclude with discussions on the contributions and limitations of the approaches in the context of optical design automation, and describe the tremendous opportunities for future research in design automation for integrated optics

    System data communication structures for active-control transport aircraft, volume 2

    Get PDF
    The application of communication structures to advanced transport aircraft are addressed. First, a set of avionic functional requirements is established, and a baseline set of avionics equipment is defined that will meet the requirements. Three alternative configurations for this equipment are then identified that represent the evolution toward more dispersed systems. Candidate communication structures are proposed for each system configuration, and these are compared using trade off analyses; these analyses emphasize reliability but also address complexity. Multiplex buses are recognized as the likely near term choice with mesh networks being desirable for advanced, highly dispersed systems

    Space Shuttle/TDRSS communication and tracking systems analysis

    Get PDF
    In order to evaluate the technical and operational problem areas and provide a recommendation, the enhancements to the Tracking and Data Delay Satellite System (TDRSS) and Shuttle must be evaluated through simulation and analysis. These enhancement techniques must first be characterized, then modeled mathematically, and finally updated into LinCsim (analytical simulation package). The LinCsim package can then be used as an evaluation tool. Three areas of potential enhancements were identified: shuttle payload accommodations, TDRSS SSA and KSA services, and shuttle tracking system and navigation sensors. Recommendations for each area were discussed

    Conflict-Free Networks on Chip for Real Time Systems

    Full text link
    [ES] La constante necesidad de un mayor rendimiento para cumplir con la gran demanda de potencia de cómputo de las nuevas aplicaciones, (ej. sistemas de conducción autónoma), obliga a la industria a apostar por la tecnología basada en Sistemas en Chip con Procesadores Multinúcleo (MPSoCs) en sus sistemas embebidos de seguridad-crítica. Los sistemas MPSoCs generalmente incluyen una red en el chip (NoC) para interconectar los núcleos de procesamiento entre ellos, con la memoria y con el resto de recursos compartidos. Desafortunadamente, el uso de las NoCs dificulta alcanzar la predecibilidad en el tiempo, ya que pueden aparecer conflictos en muchos puntos y de forma distribuida a nivel de red. Para afrontar este problema, en esta tesis se propone un nuevo paradigma de diseño para NoCs de tiempo real donde los conflictos en la red son eliminados por diseño. Este nuevo paradigma parte del Grafo de Dependencia de Canales (CDG) para evitar los conflictos de red de forma determinista. Nuestra solución es capaz de inyectar mensajes de forma natural usando un periodo TDM igual al límite teórico óptimo sin la necesidad de usar un proceso offline exigente computacionalmente. La red se ha integrado en un sistema multinúcleo basado en tiles y adaptado a su jerarquía de memoria. Como segunda contribución principal, proponemos un nuevo planificador dinámico y distribuido capaz de alcanzar un rendimiento pico muy cercanos a las NoC basadas en un diseño wormhole sin comprometer sus garantías de tiempo real. El planificador se basa en nuestro diseño de red para explotar sus propiedades clave. Los resultados de nuestra NoC muestran que nuestro diseño garantiza la predecibilidad en el tiempo evitando interferencias en la red entre múltiples aplicaciones ejecutándose concurrentemente. La red siempre garantiza el rendimiento y también mejora el rendimiento respecto al de las redes wormhole en una red 4 x 4 en un factor de 3,7x cuando se inyecta trafico para generar interferencias. En una red 8 x 8 las diferencias son incluso mayores. Además, la red obtiene un ahorro de área total del 10,79% frente a una implementación básica de una red wormhole. El planificador propuesto alcanza una mejora de rendimiento de 6,9x y 14,4x frente la versión básica de la red DCFNoC para redes en forma de malla de 16 y 64 nodos, respectivamente. Cuando lo comparamos frente a un conmutador estándar wormhole se preserva un rendimiento de red del 95% al mismo tiempo que preserva la estricta predecibilidad en el tiempo. Este logro abre la puerta a nuevos diseños de NoCs de alto rendimiento con predecibilidad en el tiempo. Como contribución final, construimos una taxonomía de NoCs basadas en TDM con propiedades de tiempo real. Con esta taxonomía realizamos un análisis exhaustivo para estudiar y comparar desde tiempos de respuesta, a implementaciones con bajo coste, pasando por soluciones de compromiso para diseños de NoCs de tiempo real. Como resultado, obtenemos nuevos diseños de NoCs basadas en TDM.[CA] La constant necessitat d'un major rendiment per a complir amb la gran demanda de potència de còmput de les noves aplicacions, (ex. sistemes de conducció autònoma), obliga la indústria a apostar per la tecnologia basada en Sistemes en Xip amb Processadors Multinucli (MPSoCs) en els seus sistemes embeguts de seguretat-crítica. Els sistemes MPSoCs generalment inclouen una xarxa en el xip (NoC) per a interconnectar els nuclis de processament entre ells, amb la memòria i amb la resta de recursos compartits. Desafortunadament, l'ús de les NoCs dificulta aconseguir la predictibilitat en el temps, ja que poden aparéixer conflictes en molts punts i de forma distribuïda a nivell de xarxa. Per a afrontar aquest problema, en aquesta tesi es proposa un nou paradigma de disseny per a NoCs de temps real on els conflictes en la xarxa són eliminats per disseny. Aquest nou paradigma parteix del Graf de Dependència de Canals (CDG) per a evitar els conflictes de xarxa de manera determinista. La nostra solució és capaç d'injectar missatges de mra natural fent ús d'un període TDM igual al límit teòric òptim sense la necessitat de fer ús d'un procés offline exigent computacionalment. La xarxa s'ha integrat en un sistema multinucli basat en tiles i adaptat a la seua jerarquia de memòria. Com a segona contribució principal, proposem un nou planificador dinàmic i distribuït capaç d'aconseguir un rendiment pic molt pròxims a les NoC basades en un disseny wormhole sense comprometre les seues garanties de temps real. El planificador es basa en el nostre disseny de xarxa per a explotar les seues propietats clau. Els resultats de la nostra NoC mostren que el nostre disseny garanteix la predictibilitat en el temps evitant interferències en la xarxa entre múltiples aplicacions executant-se concurrentment. La xarxa sempre garanteix el rendiment i també millora el rendiment respecte al de les xarxes wormhole en una xarxa 4 x 4 en un factor de 3,7x quan s'injecta trafic per a generar interferències. En una xarxa 8 x 8 les diferències són fins i tot majors. A més, la xarxa obté un estalvi d'àrea total del 10,79% front una implementació bàsica d'una xarxa wormhole. El planificador proposat aconsegueix una millora de rendiment de 6,9x i 14,4x front la versió bàsica de la xarxa DCFNoC per a xarxes en forma de malla de 16 i 64 nodes, respectivament. Quan ho comparem amb un commutador estàndard wormhole es preserva un rendiment de xarxa del 95% al mateix temps que preserva la estricta predictibilitat en el temps. Aquest assoliment obri la porta a nous dissenys de NoCs d'alt rendiment amb predictibilitat en el temps. Com a contribució final, construïm una taxonomia de NoCs basades en TDM amb propietats de temps real. Amb aquesta taxonomia realitzem una anàlisi exhaustiu per a estudiar i comparar des de temps de resposta, a implementacions amb baix cost, passant per solucions de compromís per a dissenys de NoCs de temps real. Com a resultat, obtenim nous dissenys de NoCs basades en TDM.[EN] The ever need for higher performance to cope with the high computational power demands of new applications (e.g autonomous driving systems), forces industry to support technology based on multi-processors system on chip (MPSoCs) in their safety-critical embedded systems. MPSoCs usually include a network-on-chip (NoC) to interconnect the cores between them and, with memory and the rest of shared resources. Unfortunately, the inclusion of NoCs difficults achieving time predictability as network-level conflicts may occur in many points in a distributed manner. To overcome this problem, this thesis proposes a new time-predictable NoC design paradigm where conflicts within the network are eliminated by design. This new paradigm builds on top of the Channel Dependency Graph (CDG) in order to deterministically avoid network conflicts. Our solution is able to naturally inject messages using a TDM period equal to the optimal theoretical bound without the need of using a computationally demanding offline process. The network is integrated in a tile-based manycore system and adapted to its memory hierarchy. As a second main contribution, we propose a novel distributed dynamic scheduler that is able to achieve peak performance close to a wormhole-based NoC design without compromising its real-time guarantees. The scheduler builds on top of our NoC design to exploit its key properties. The results of our NoC show that our design guarantees time predictability avoiding network interference among multiple running applications. The network always guarantees performance and also improves wormhole performance in a 4 x 4 setting by a factor of 3.7x when interference traffic is injected. For a 8 x 8 network differences are even larger. In addition, the network obtains a total area saving of 10.79% over a standard wormhole implementation. The proposed scheduler achieves an overall throughput improvement of 6.9x and 14.4x over a baseline conflict-free NoC for 16 and 64-node meshes, respectively. When compared against a standard wormhole router 95% of its network throughput is preserved while strict timing predictability is kept. This achievement opens the door to new high performance time predictable NoC designs. As a final contribution, we build a taxonomy of TDM-based NoCs with real-time properties. With this taxonomy we perform a comprehensive analysis to study and compare from response time specific, to low resource implementation cost, through trade-off solutions for real-time NoCs designs. As a result, we derive new TDM-based NoC designs.Picornell Sanjuan, T. (2021). Conflict-Free Networks on Chip for Real Time Systems [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/177347TESI

    Doctor of Philosophy in Computing

    Get PDF
    dissertatio

    Driving the Network-on-Chip Revolution to Remove the Interconnect Bottleneck in Nanoscale Multi-Processor Systems-on-Chip

    Get PDF
    The sustained demand for faster, more powerful chips has been met by the availability of chip manufacturing processes allowing for the integration of increasing numbers of computation units onto a single die. The resulting outcome, especially in the embedded domain, has often been called SYSTEM-ON-CHIP (SoC) or MULTI-PROCESSOR SYSTEM-ON-CHIP (MP-SoC). MPSoC design brings to the foreground a large number of challenges, one of the most prominent of which is the design of the chip interconnection. With a number of on-chip blocks presently ranging in the tens, and quickly approaching the hundreds, the novel issue of how to best provide on-chip communication resources is clearly felt. NETWORKS-ON-CHIPS (NoCs) are the most comprehensive and scalable answer to this design concern. By bringing large-scale networking concepts to the on-chip domain, they guarantee a structured answer to present and future communication requirements. The point-to-point connection and packet switching paradigms they involve are also of great help in minimizing wiring overhead and physical routing issues. However, as with any technology of recent inception, NoC design is still an evolving discipline. Several main areas of interest require deep investigation for NoCs to become viable solutions: • The design of the NoC architecture needs to strike the best tradeoff among performance, features and the tight area and power constraints of the onchip domain. • Simulation and verification infrastructure must be put in place to explore, validate and optimize the NoC performance. • NoCs offer a huge design space, thanks to their extreme customizability in terms of topology and architectural parameters. Design tools are needed to prune this space and pick the best solutions. • Even more so given their global, distributed nature, it is essential to evaluate the physical implementation of NoCs to evaluate their suitability for next-generation designs and their area and power costs. This dissertation performs a design space exploration of network-on-chip architectures, in order to point-out the trade-offs associated with the design of each individual network building blocks and with the design of network topology overall. The design space exploration is preceded by a comparative analysis of state-of-the-art interconnect fabrics with themselves and with early networkon- chip prototypes. The ultimate objective is to point out the key advantages that NoC realizations provide with respect to state-of-the-art communication infrastructures and to point out the challenges that lie ahead in order to make this new interconnect technology come true. Among these latter, technologyrelated challenges are emerging that call for dedicated design techniques at all levels of the design hierarchy. In particular, leakage power dissipation, containment of process variations and of their effects. The achievement of the above objectives was enabled by means of a NoC simulation environment for cycleaccurate modelling and simulation and by means of a back-end facility for the study of NoC physical implementation effects. Overall, all the results provided by this work have been validated on actual silicon layout
    corecore