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Abstract 

Interconnect networks employing wormhole-switching 

play a critical role in shared memory  multiprocessor 

systems-on-chip (MPSoC) designs, Multicomputer 

systems and System Area Networks.  Virtual channels 

greatly improve the performance of wormhole-switched 

networks because they reduce  blocking by acting as 

“bypass” lanes for non-blocked messages. Capturing the 

effects of virtual channel  multiplexing has always been a 

crucial issue for any analytical model proposed for 

wormhole-switched  networks. Dally [8] has developed a 

model to investigate the behaviour of this multiplexing 

which have  been widely employed in the subsequent 

analytical models of most routing algorithms suggested in 

the  literature. It is indispensable to modify Dally’s model 

in order to evaluate the performance of channel 

 multiplexing in more general networks where restrictions 

such as timing constraints of input arrivals  and finite 

buffer size of queues are common. In this paper we 

consider timing constraints of input  arrivals to investigate 

the virtual channel multiplexing problem inherent in most 

current networks.  The analysis that we propose is 

completely general and therefore can be used with any 

interconnect  networks employing virtual channels. The 

validity of the proposed equations has been verified 

through simulation experiments under different working 

conditions. 

 

1. Introduction 

It is widely known that the critical component of a 

concurrent computer is its interconnect network [9]. 

Recently, SoC (Systems-on-Chips) design methodologies 

undergo revolutionary changes.  According to recent 

publications [5], [10], [14], the emergence of SoC 

platforms consisting of a large set of embedded processors 

is imminent. A key component of these multiprocessor 

SoC (MPSoC) platforms [14] is the interconnect topology. 

Interconnect networks are composed of two types of 

recourses: buffers and channels (physical channels). 

Typically a single buffer is associated with each channel.  

To improve performance the buffer storage associated 

with each physical channel is divided to several small 

queues, virtual channels, rather than a single deep queue 

[8]. The virtual channels associated with one physical 

channel are allocated independently but compete with 

each other for physical bandwidth and thus virtual 

channels decouple buffer resources from transmission 

resources. This decoupling allows active messages to pass 

blocked messages using network bandwidth that would 

otherwise be left idle and thus greatly improves 

performance. Virtual channels have been also used in 

wormhole-switched deadlock avoidance routing 

algorithms particularly to avoid deadlock [7, 9]. Adaptive 

routing algorithms with deadlock recovery on the other 

hand do not dedicate a set of virtual channels in particular 

to avoid deadlocks. However, virtual channels are added 

to act as virtual lanes to provide “bypass” routes for non-

blocked messages to improve network performance [9]. 

 Analytical modelling is a versatile and cost-effective 

alternative to simulation for investigating system 

performance. Analytical models of routing algorithms 

with virtual channels in wormhole-switched networks 

have been widely reported in the literature [6, 11, 16, 17 

and references there in]. A Markov chain proposed by 

Dally [8] has been used by almost all the models reported 

in the literature to capture the performance behaviour of 

virtual channels in the network. This Markov chain, 

however, cannot accurately model a system when message 

arrivals have deadline constraints. This type of arrivals 

frequently happens in internet, network systems and more 

specifically in multicomputers with deadlock recovery 

routing algorithms which often rely on time-out 

mechanism to detect potential deadlocks in the network 

[9]. In this paper, we use theoretical results from queueing 

systems to capture the effects of virtual channel 

multiplexing on network performance when arriving 

messages suffers time-out if do not receive service within 

a predefined time. Throughout the paper we use the terms 

“arrivals”, “messages”, “customers” interchangeably and 

also “missing deadline”, “suffering timeout”, “leaving 
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impatiently” liberally in connection with messages who 

leave the system due to their timing constraints before 

acquiring the service. 

 A queueing situation widely studied in the literature is 

a system in which customers wait for service for a limited 

time only and leave the system if not served during this 

time [2-4, 15, 18].  These queueing situations apply to 

many real-life systems, such as telephone systems and 

inventory systems with perishable goods. More 

importantly in high speed packet switching networks and 

internet individual packets may usually have some timing 

constraints within which they are to be received at their 

destinations. There have been many studies [2-4, 15, 18] 

and references thereafter that investigate different types of 

these queueing systems and seek to propose solutions for 

different measures of performance like the fraction of 

customers who are lost and the average delay in queue of 

a customer. In addition, there have been some efforts to 

propose closed-form solutions for the probability 

distribution functions of important random variables in 

these queues [3, 15]. In previous study [11] a channel has 

been considered as a queue with deterministic impatient 

time customers and the formula suggested by Tijms [18] 

has been used in the derivation of the model’s equations. 

Using Tijms [18] formula greatly simplifies the derivation 

of the equations by ignoring the dependency of the events 

of time-out and the message blocking. These events are 

related to the number of messages in the system.  

 This paper presents an accurate model of virtual 

channel multiplexing in networks with messages having 

deadline constraints. A very important feature that we 

address in the paper is taking into considerations the 

dependency of the events of time-out and blocking in each 

channel which was assumed independent in the previous 

study [11]. To deal with this dependency firstly, Dally’s 

Markov chain has been scrutinized and then modified to 

incorporate message arrivals with timing constraints. The 

modified Markov chain in particular reduces to Dally’s 

model by setting the deadline of the arrivals to infinity. 

Secondly, we investigate the event of missing deadline by 

capturing the dependency of the events of timeout and 

blocking. In previous study [11] we have simply assumed 

that these events are independent and have used Tijms 

[18] equation to calculate the probability of the event of 

time-out and Dally’s equation [8] to compute the 

probability of the event of blocking in order to determine 

the probability of the event of message missing deadline.  

It is worth mentioning that the probability of timeout 

proposed in [18] has been derived as a special case of our 

general solution. Thirdly, we calculate the average waiting 

time of customers in the system which again reduces to 

the equation of Tijms [18] as a particular case. The results 

obtained for deterministic impatience time has then been 

extended to capture the exponential impatience time as 

well.  

The remainder of the paper is organised as follows. 

Section 2 describes the analysis and derivations of the 

equations. Section 3 validates the model through 

simulation. Finally, Section 4 concludes this study. 

 

2. Analysis 
 

This section describes first the assumptions used in the 

analysis, and then presents the analytical model. 

Calculation of the average degree of virtual 

Channels multiplexing (V ) 

In virtual channel flow control, multiple virtual channels 

share the bandwidth of a physical channel in a time-

multiplexed manner. To capture the effects of virtual 

channel multiplexing a Markov model have been 

proposed by Dally [8].  The model is based on 

assumptions that have been used in the literature [2-4, 6, 

8, 15]. 

a) Messages inter-arrival time is exponentially distributed 

with average arrival time cλ .  

b) The message service time are exponentially distributed 

with average service time S .  

c) V )1( ≥V  virtual channels are used per physical 

channel; V=1 corresponds to the case where no virtual 

channels are used. An arrival chooses randomly one of the 

available virtual channels at one of the physical channels. 

In Dally’s model [8] the probability, vP that v virtual 

channels at a given physical channel are busy, determined 

by a Markovian model shown in Fig. 1. State vℜ  

corresponds to v virtual channels being busy. The 

transition rate out of state vℜ  to 1+ℜv  is cλ , where cλ  is 

the traffic rate on a given channel, while the rate out of 

vℜ  to 1−ℜv  is S/1 . The transition rate out of the last 

state vℜ  is reduced by cλ  to account for the arrival of 

messages while a channel is in this state. In the steady 

state, the model yields the following probabilities. 
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It is perceptible that this Markov chain is actually an 

M/M/1 chain [12] which calculates the number of requests 

in the system with the following condition.  In M/M/1 

chain shown in Fig. 2 State nπ  corresponds to n virtual 

channels being requested and the probability that v virtual 

channels are busy, when ]1,0[; −∈ Vnnπ , is the probability 

of being in state vπ , i.e. ]Pr[ vvP π= . However, the 

probability that all virtual channels (i.e. V virtual 

channels) are busy is the summation of the probabilities of 

being in states ),[; ∞∈ Vnnπ i.e. ∑
∞

=
=

vn nVP ]Pr[π  which 

is the tail of the queue. The steady-state solution of the 

M/M/1 chain yields the probability vP  to be 
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Rewriting equation (1) yields the following equations 
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which exactly corresponds to the results obtained in 

equation (2) and shows that state vℜ = vπ   when 

]1,0[ −∈ Vv  and the last state of Dally’s model 

is ∑
∞

=
=ℜ

vn nV ]Pr[π ),[; ∞∈ Vnnπ . 

 Now, let consider a situation that arriving messages 

have deadline constraints and experience timeout and 

become “lost” messages if do not acquire for service 

before expiration of their deadline. Only those messages, 

who acquired for service before their deadline, remain in 

the queue until served irrespective of whether or not their 

total waiting exceeds their timeout.  The Markov chain in 

Fig. 3 illustrates the behaviour of virtual channel 

occupancy of messages taking into account the timing 

constraint of these messages. It is worth to mention that 

when number of messages ]1,0[ −∈ Vn , all arriving 

messages acquire a free virtual channel immediately. On 

the other hand, when ),[ ∞∈ Vn , an arriving message finds 

all virtual channels busy and has to wait in the queue to 

acquire for service. In this case as virtual channels 

becomes free (by completing the servicing of a message), 

the queued message enters service with the provision that 

any message in the queue who has not been acquired 

service  by its deadline time after entering the queue will 

leave the system impatiently. The balance equations of the 

length of the queue at time t, )(tvπ  are given by 
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Where )(' t
n

π  is the first derivative of )(t
n

π   and 

)()(1 hohtn +θ + is the probability that a customer becomes 

lost during the time interval ),( htt +  under the hypothesis 

that the queue length is n at time t. Under the assumption 

of statistical equilibrium, the system (1) becomes 
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In which 
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System (4) has the general solution 
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Fig. 2: Number of customers (requests) in an M/M/1 chain 
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Deterministic Impatience 

In this section, important performance measures for the 

model which are the fraction of customers who lost and 

the average waiting time in queue when impatience time 

of the customer is deterministic and is equal to fixed 

value τ are calculated. Using a similar technique as in [4] 

iV +θ can be determined by 

dtete
t

SiSi
iV ∫

−
−

−
−

+ =
ττ

τθ
0

1

1

1

1  (6) 

Substituting equation (6) into (5) and using normalization 

condition of probabilities yields 
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The equilibrium fraction of lost customers which is the 

probability of time-out is given by 
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To calculate steady-state mean waiting time of customers 

in the system with respect to both served and lost 

customers it is necessary first to compute average number 

of customers in the system and queue. Average number of 

customers in the system sn can be determined as 
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Similarly, the average number in queue qn is  
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Using Little’s formula [13] the steady-state average 

waiting in queue of a customer with respect to both served 

and lost customers, qW can be stated  
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For the special case and by setting the number of virtual 

channels in equations (8) and (11) to 1 give rise the 

following results that have been previously reported in 

Tijms [18]. 
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By setting timeout to infinity
0

π given by equation (7) 

becomes )1( Scλ−   and the Markov chain in Fig. 3 reduces 

to M/M/1 chain depicted in Fig. 2 and Dally’s model is 

derived in a manner that mentioned in the equation (2). 

Finally, as an extreme case by setting timeout to infinity 

and number of virtual channels to 1 the performance 

measures of an M/M/1 queue is obtained, which agrees 

with the results already reported in the literature [12]. 
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Negative Exponential Impatience 

In this section, expressions for the average number of 

customers in queue and system; the probabilities of 

waiting, acquiring service and the customer lost rate 

(timeout) are obtained. After joining the queue each 

customer will wait a certain length of time for service to 

begin. If it has not begin by then, he departs and becomes 

a lost customer. The impatience time is a random variable 

whose density function is given by a negative exponential 

density with parameter θ .  

With V virtual channels and )( iV +  customers in the 

system  any of i customers in the queue may renege and 

due to memory-less property of the exponential random 

variable, the minimum of ),1[: ∞∈ii independent 

exponential random variable with parameter θ−   is 

exponential with parameter θi− . By substitution in 

equation (5) we have 
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where ∫
−−θ

λc

dtte ut

0

1 is the Incomplete Gamma function 

[1]. 

Analogous to the deterministic timeout case, the mean 

number of customers in system ( sn ) and queue ( qn ) and 

probability of timeout ( tP ) for the negative exponential 

timeout are summarized below: 
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Using a method similar to the deterministic case discussed 

in equation (11), mean waiting in the queue is calculated 

by 
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Again, for the special case with one virtual channel 

equations (14) and (16) correspondingly reduce to 
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which agrees with the results that have been derived in 

[2]. 

3. Validation 
 

The proposed equations have been validated by means of 

a discrete-event simulation. Each simulation experiment 

was run until the system reached its steady state,   that is 

until a further increase in simulated system does not 

change the collected  statistics appreciably.   Numerous 

validation experiments have been performed to validate 

the key measures of system performance such as mean 

waiting time in queue, probability of timeout and 

probability of blocking, and mean number of customers in 

queue for both deterministic and exponential impatience 

time.  In all appropriate cases Dally’s model and M/M/1 

queue have been derived as particular cases of our general 

solution. However, for the sake of specific illustration, 

results are presented for some important cases. In what 

follows the horizontal axis in the figures represents the 

traffic generation rate.  

 The probability of timeout, mean waiting in the system 

and average number of customers in queue are shown in 

Fig. 4. In the figure average service times are set to 32=S , 

64=S  and 128=S . Moreover, timeout values are 

deterministic and are equal to fixed values 0=τ , ∞=τ and 

S=τ and the number of virtual channels per physical 

channel are set to V= 4. The above scenarios have been 

repeated for exponential timeout and some partial results 

have been illustrated in Fig. 5. As it is illustrated in 

figures the results obtained through simulations matches 

with mathematical equations with a high degree of 

precision which is less than 0.1 percent in almost all cases.   

The equations presented in this paper are applicable in 

many practical cases that arriving customers have timing 

constraints. For instance, recently many routing 

algorithms proposed in the literature known as deadlock 

recovery routing algorithms employ a variation of timeout 
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mechanism to recover from deadlock [9]. These routing 

algorithms use the concept of virtual channels to achieve 

better performance.  In order to compare the performance 

merits of these routing algorithms through analytical 

model and due to the lack of the necessary equations it 

was required to make the crude assumption of the 

independency of the probabilities of timeout and blocking 

[11]. This assumption was a major source of errors in the 

analytical models. Fig. 6 compares the important measures 

of performance in a virtual channel multiplexer using the 

crude independence assumption (depicted in the figure as 

“independent”) and the equations proposed in this paper 

(shown as “new_equation”). As it is evident from the 

figure the discrepancies between the independent case and 

reality is near 40 percent in some traffic regions. 

4. Conclusions 
 

The performance of contemporary concurrent systems 

such as MPSoC, Multicomputers and System Area 

Networks are not only determined by the capacity of the 

node processors (e.g. CPU speed,  cache size, etc.), but it 

is also limited by the interconnect network that connects 

the processors and  memories in MPSoC and processors to 

processors in multicomputers. Design and optimization of 

such interconnect network are critical for these system 

performance.  By introducing virtual channels in the input 

and output ports, we can increase channel utility of 

interconnect network considerably. Dealing with virtual 

channel multiplexing has always been a crucial issue for 

any analytical model proposed for wormhole-switched 

networks. Most existing analytical models proposed for 

evaluating the performance merits of different routing 

algorithms in multicomputers have used a method 

proposed by Dally [8] to investigate the effect of virtual 

channel multiplexing in the network. This method, 

however, loses accuracy as traffic increases especially for 

more complex networks.  

In an effort to gain deep understanding of the issue of 

modelling virtual channel multiplexing, this paper is first 

to address a general solution for virtual channel 

multiplexing when arrival messages have timing 

constraints. Important measures of system performance 

such as mean number of messages in system and queue, 

probability of timeout and mean message latency has been 

derived for both deterministic an exponential impatience 

time for unbounded queues. Moreover, Dally’s model [8], 

probability of timeout and mean waiting time given by 

Tijms [18] has been derived as particular case of our 

general solution. Finally, our boundary results agree with 

the results attained by Barrer [4] and Ancker [2] as well. 

Moreover, simulation experiments also have been 

conducted as a double confirmation. The results have 

revealed that important measures of performance obtained 

by developed equations are in agreement with those 

provided by the simulation with a high degree of 

accuracy. The next step of this work is to extend the above 

modelling approach to bounded queueing system and 

obtaining measures when service time of messages are 

generally distributed. 
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(c) 

Fig. 4: The probability of timeout, mean message waiting in the queue and average number of messages in the queue versus traffic 

generation rate. The number of virtual channels 4=V and mean service time 128,64,32=S , timeout period is deterministic and 

equals (a) ( ττττ =0), (b) ( ττττ = ∞ ) and (c) ( ττττ = S ). 
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Fig. 5: The probability of timeout, mean message waiting in the queue and average number of messages in the queue versus traffic 

generation rate. The number of virtual channels 4=V and service time 128,64,32=S , timeout period is exponentially distributed 

with mean ( ττττ = S ). 
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Fig. 6: comparing the important measures of performance in a virtual channel multiplexer using the crude independence 

assumption (depicted as “independent”) and the equations proposed in this paper (illustrated as “new_equation”). 
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