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Abstract

The elastic property of cloud services relies on a dynamic mapping between

distinct virtual terminals and shared physical nodes, laying bare correlations

between the activity of concurrent tenants and the availability of microar-

chitectural resource. In this context, this thesis studies the threat posed

by microarchitectural covert channels to data confidentiality in multi-tenant

computing environments. An empirical study is conducted on the practicality

of theses attacks against public Infrastructure-as-a-Service instances, reveal-

ing that covert channels achieve a medium severity score with the Common

Vulnerability Scoring System. A new evaluation framework is then developed

so as to devise metrics for fair comparison and identify conditions for elud-

ing logical isolation on contemporary computing environments. As a result,

two new microarchitectural covert channels based on Intel’s integrated mem-

ory controllers are presented, which enable circumventing existing defense

strategies. The first attack allows a privileged adversary to leak information

between two processes within a single native environment. The second at-

tack is an extension to cross-VM scenarios for unprivileged adversaries. An

exhaustive study on state-of-the-art countermeasures is then realised, reveal-

ing a lack of perspective in their design approach. The analysis leads to a

new covert channel based on Intel and AMD memory bus implementations.

The resulting attack is tested across two AWS EC2 instances, demonstrat-

ing that an malicious individual can easily make his way around all existing

countermeasures proposed in academia.
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Chapter 1

Introduction

Contents

1.1 Setting the Scene . . . . . . . . . . . . . . . . . . 22

1.2 Motivation and Challenges . . . . . . . . . . . . . 23

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . 25

1.4 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . 27

This chapter exposes the challenges faced in cloud computing ecosystems and

presents the thesis’ rationale along with its contributions. The scope of the

thesis is then delimited. The reader will also find a discussion on the structure

of this manuscript.
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Chapter 1. Introduction

1.1 Setting the Scene

Today’s notion of cloud computing dates back from the 1950s, when large-

scale computing mainframes were introduced. The mainframe would provide

a single, powerful computing environment to multiple users. In the 1960s,

the Massachusetts Institute of Technology sought for new computers capable

of more than one simultaneous user. The stimuli lead International Business

Machines (IBM) to design the VM operating system [35], capable of dividing

storage and system resources. The technology enabled a single mainframe to

have multiple virtual machines (VMs) running concurrently, thus allowing

distinct computing environments to co-exist on a single physical node. VMs

provided better security since each user was running in its own operating

system (OS), and improved reliability as no one user could take down the

entire system. Resource usage could also be optimised and return on in-

vestment improved, thus making the technology accessible to a wider public.

This early form of cloud computing was eventually galvanised by the advent

of the Internet in the 1990s. With the costs of hardware coming down as

well as a rocketing demand, corporations needed to combine multiple phys-

ical nodes together. Single software components, known as orchestrators,

allowed managing a pool of hardware servers as if they were a single physical

node, and enabled coping with the new demand.

Cloud computing then morphed into multiple shapes, with a cloud service

for every need. Anyone who doesn’t possess its own server can now rent

an instance to a cloud provider, and access a seemingly unlimited pool of

resources instantaneously. In 2018, it is estimated that 26% of the European

Union’s enterprises were dependent on cloud services, with a 21% increase

in large corporations since 2014 [39]. Furthermore, the study reports that

out of these companies relying on cloud computing, 55% use it for financial

and accounting software applications, customer relationship management, or

business applications that require advanced computational power. The data

stored and processed on these cloud platforms can be of sensitive nature,

which raises confidentiality issues. IBM Security evaluated the average cost

of a data breach to 3.58 million USD, with 80% of the compromised data
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Chapter 1. Introduction

being customer personally identifiable information [130].

Since the 1990s, researchers investigated the security aspects of multite-

nancy [61, 62, 163]. When multiple software components (threads, processes,

or VMs) execute simultaneously, they compete with each other for processor

resources. Such conflicts can delay the execution of certain instructions, re-

sulting in timing variations to occur. These timing variations can in turn lead

to accidental disclosure of secrets, such as cryptographic keys. Despite ef-

forts to raise awareness over the risks associated with hardware optimisation

[173, 16, 145, 50], manufacturers carried on regardless of security. A security

gap grew progressively which eventually lead to unfortunate breakthroughs.

The field of microarchitectural attacks entered its apogee with the release of

the Spectre [81] and Meltdown [89] attacks in January 2018. Computer secu-

rity, which heavily relies on memory isolation, was met with vulnerabilities

that could only be addressed by modifying the microarchitecture, either in

the form of microcode updates, or new hardware designs. Hardware man-

ufacturers could no longer fall back on application developers to take the

responsibility. These new security bugs opened the way to an avalanche of

disclosures on newly found vulnerabilities, challenging the foundations on

which the security of our computers is based.

1.2 Motivation and Challenges

Microarchitectural timing-based attacks exploit the sharing of a processor

among multiple tenants, in order to compromise sensitive information. Thus

they have the potential to severely compromise the viability of the multi-

tenant computing model. In 2013, the Cloud Security Alliance rated cross-

VM leakage channels as the number one threat to cloud computing [11]. Two

colluding entities can intentionally create timing variations in order to encode

and decode binary information. Based on this principle, microarchitectural

covert channel attacks allow tunneling information out of a compromised

system when the security policy does not allow doing so. In other words, an

attacker can extract information covertly out of a victim’s cloud instance.

Significant work has been accomplished in the field of microarchitectural at-
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Chapter 1. Introduction

tacks, however it almost exclusively focuses on side channels. Also, covert

channels are often associated with the hiding of secret information in net-

work protocols. Microarchitectural covert channels have a powerful potential

which draws from both disciplines.

Microarchitectural covert channels offer a quieter means to exfiltrate data

than network protocols, although they rely on a stronger adversary model.

They assume an attacker with advanced capabilities that seeks to maintain

long-term access to the victim’s instance. This type of adversary has other

incentives than simple financial gain or notoriety. Indeed, the IBM Security

study reports that 13% of data breaches are carried out by nation state actors

[130], which have a more strategic approach to cyber-warfare. Yet, it is not

trivial to assess the severity and practicality of these attacks. Although the

latest version of the Common Vulnerability Scoring System (CVSS) provides

more flexibility, it is still not adequate to assess the severity microarchitec-

tural covert channels. Furthermore, these attacks are not well understood by

the community. Security experts tend to associate microarchitectural attacks

to side channels, which rely on a substantially different adversary model.

Microarchitectural attacks exploit hardware vulnerabilities that are spe-

cific to a processor implementation, also know as a microarchitecture, from

the software domain. An attacker that intends to modulate a microarchi-

tectural component must do so at a very low level. The inner mechanics

of the Central Processing Unit (CPU) must be well understood. There is a

significant amount of operations which are transparent to the developer, and

over which the attacker must have fine-grained control, such as memory ad-

dressing, pipeline execution, caching, out-of-order execution, dynamic RAM

(DRAM) refreshing, etc. In 2020, it is estimated that x86 processors repre-

sented 90% of the global revenue generated by the market of cloud servers

[64]. Therefore, the vulnerabilities of interest are most often specific to Intel

and AMD processors. Beyond the adversary model, the challenge to de-

ploying these attacks is to gain detailed knowledge of the microarchitecture

despite the lack of public information provided by hardware manufacturers.

For instance, Intel does not reveal its DRAM addressing functions, forcing

attackers to undertake reverse engineering studies.
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Chapter 1. Introduction

In a context where cloud consumers are facing major cyber-threats, this

thesis investigates security guarantees offered by virtualisation on data con-

fidentiality, by exploring new means of compromising logical isolation based

on x86 hardware vulnerabilities. Ultimately, it is hoped that this work will

further our understanding of complex processor architectures, expose certain

security risks oblivious to most of cloud consumers, and encourage consider-

ations for security when designing future processor generations.

1.3 Contributions

The contribution of this thesis is threefold. First, a study is conducted on

the operational constraints related to the deployment of microarchitectural

covert channels in Infrastructure-as-a-Service (IaaS), based on an analysis of

state-of-the-art attacks. The adversary model is studied under the CVSS v3.1

[113], with a resulting severity score of 5.0. In comparison, the SSLv3 POO-

DLE [110] and OpenSSL Heartbleed [109] vulnerabilities achieved respective

scores of 3.4 and 7.5. This research thread is the first illustration of the vul-

nerability of multitenant computing environments to covert channel attacks.

Furthermore, a bespoke framework is devised which includes three additional

evaluation criteria. The resulting Covert Channel Scoring System (CCSS)

is capable of outlining disparities among attacks which the CVSS does not.

Eventually, this study reveals the existence of a gap between the direction

taken by researchers, and the actual challenges faced by the industry. For

instance, the analysis shows that cache-based covert channels, although in-

creasingly popular, are the least viable attacks. The CCSS may serve as a

metric for the performance of future publications, by outlining whether the

covert channel attack can be deployed in a commercial environment. Eventu-

ally, this research thread successfully refutes the erroneous intuition over the

lack of practicality of microarchitectural covert channels, and puts forward a

new method for evaluating the practicality of these attacks.

Second, a vulnerability on Intel’s integrated memory controllers is ex-

posed. For the first time, an instantiation of a covert channel attack is

proposed, both in native and virtualised environments. The cross-VM covert
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channel is tested across three different Intel microarchitectures, namely Ivy

Bridge, Broadwell, and Skylake. The cross-core covert channel achieves a

capacity of 729 bps in a native scenario, and up to 95 bps in the cross-VM

scenario. This work outperforms other attacks which require the enabling of

page sharing, simultaneous multi-threading (SMT), or which can be thwarted

by the myriad of existing countermeasures [33, 37, 53, 62, 78, 90, 99, 152,

155, 168]. This research thread successfully demonstrates the presence of

remaining vulnerabilities on x86 processors, and that there are alternatives

to cache-based timing channels. Potential countermeasures are finally sug-

gested.

Third, a new instance of the memory bus-based covert channel is devised,

circumventing every relevant leakage channel countermeasure proposed in

academia so far. Indeed, significant efforts have been made in order to ad-

dress timing channel vulnerabilities, however new attacks tend to disregard

the relevant countermeasures, arguing that these have not yet been deployed

by OS and cloud providers. This research thread proposes a retrospective

analysis on state-of-the-art attack and defence techniques, and shows that

all existing covert channels could effectively be closed. The x86 memory bus

vulnerability is re-visited in order to discard the usage of artifacts which

are theoretically made unavailable by recently proposed countermeasures.

The new attack is then deployed on the Amazon Web Service (AWS) Elas-

tic Compute Cloud (EC2) commercial IaaS platform. The new instance of

the memory bus-based covert channel effectively demonstrates that x86 mi-

croarchitectures (Intel and AMD) still present salient vulnerabilities, and

that state-of-the-art defence strategies—even theoretical ones—remain un-

successful at hindering data leakage in multi-tenant environments.

1.4 Scope

Microarchitectural covert channels exploit vulnerabilities in the implementa-

tion of a processor’s architecture. In contrast, network covert channels abuse

network protocols [161, 145]. This thesis examines the side-effects of mul-

titenancy on the confidentiality of cloud-based data and services, therefore
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the latter case is not consistent with the thesis rationale. Also, not all covert

channels have malicious intents. For example, some will be leveraged to add

authentication features over existing industrial networks. In this thesis, the

term covert channel refers exclusively to attacks.

The term leakage channel encompasses both side and covert channels,

which differ in the attack scenario. Independently from the adversary model,

leakage channels share the underlying mechanisms. The distinction lies in

whether timing variations are generated accidentally or intentionally. In addi-

tion, some related works classify microarchitectural attacks between storage-

based and timing-based channels. A storage-based channel utilises variations

in data values as the sole mechanism to encode and interpret information.

In contrast, a timing-based channel exploits the time to access this data. In

a virtualised ecosystem, only the latter case is relevant.

Finally, a covert channel does not necessarily allow communication across

VMs. However, this thesis investigates covert channel attacks in the con-

text of multitenant environments, i.e. virtualised. Therefore, only cross-VM

covert channels are considered. This study could be applied to environments

similar to IaaS, e.g. private clouds. It is worth mentioning that the evalua-

tion of the adversary model presented in Chapter 3 is specific to IaaS, and

does not account for variations in similar environments.

1.5 Thesis Outline

Chapter 2 concentrates the background related to subsequent chapters, from

cloud computing models, through hardware architecture, to logical isolation

principles. A literature review is then provided on the field of microarchitec-

tural attacks along with a presentation of covert channel attacks.

Chapter 3 studies the adversary model of microarchitectural covert chan-

nel in a cloud environment, and demonstrates the severity of such attacks. A

bespoke evaluation framework is then proposed which outperforms the CVSS,

notably when comparing one covert channel implementation to another.

Chapter 4 presents a new covert channel attack which leverages timing

vulnerabilities in Intel memory controllers. The attack allows leaking infor-
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mation across processes with distinct address spaces, and across VMs (at

reduced performance), thus offering an alternative to similar attacks based

on the sole exploitation of cache memories. The covert channel is tested in

a laboratory environment.

Chapter 5 presents a new technique to elude timing channel countermea-

sures. It is based on a memory bus covert channel which leverages tim-

ing variations incurred by atomic accesses to cache line-crossing memory re-

gions. The attack is tested on both laboratory and commercial environments,

namely the Amazon Web Service Elastic Compute Cloud service.

Chapter 6 concludes on the contributions of this thesis and identifies

potential research threads related to this thesis.
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This chapter introduces cloud computing models with a discussion on the

current state of the market. Underlying concepts to computer architecture are

then presented. Finally, a literature review on microarchitectural transient

and timing attacks is provided, with an emphasis on covert channels.
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2.1 Cloud Ecosystem

Cloud computing is an ubiquitous and yet equivocal term. One can sum-

marise it as the delivery of different services through the Internet. This

section defines cloud services under different models, and provides insights

into the state of the cloud market.

2.1.1 Overview of Cloud Models

The NIST defines three types of cloud services [102], namely Infrastructure-

as-a-Service, Platform-as-a-Service, and Software-as-a-Service. Although not

exhaustive, this definition of cloud services is widely adopted in the commu-

nity, and will therefore be used in the remainder of this thesis. Table 2.1

provides a comparison of resource ownership among the three cloud cate-

gories.

Software-as-a-Service (SaaS) offers internet-based software applications

to end-users. A characteristic of SaaS is that all resources are managed by

the remote third-party. The end-user is not required to install any software

on its machine, and security is taken care of by the service provider. Services

are typically accessed via a web browser. Examples of SaaS include Microsoft

Office 365, Dropbox, Google Docs, etc.

Platform-as-a-Service (PaaS) consists of an internet-accessible environ-

ment for developing, maintaining, and executing software applications. End-

users (mostly developers) are provided with a dedicated runtime environ-

ment, and are responsible for managing the software application and its as-

sociated data. Examples of PaaS include Google App Engine, Amazon Web

Service Elastic Beanstalk, Red Hat OpenShift, etc.

Infrastructure-as-a-Service delivers internet-accessible storage, process-

ing, and network resources. The end-user controls every component inside the

virtual machine, while the service provider manages servers and orchestra-

tors (or containers). Examples of IaaS include Amazon Web Service Elastic

Compute Cloud, Google Compute Engine, etc.
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Table 2.1: Resource ownership comparison.

On-Site IaaS PaaS SaaS

Application    #
Data    #

Runtime   # #
Middleware   # #

OS   # #

Virtualisation  # # #
Networking  # # #

Server  # # #
Storage  # # #

*managed by  the user, # the cloud provider

2.1.2 IaaS Security Considerations

As shown in Table 2.1, IaaS users remain in control of their entire virtual

environment. Users can interact with the instance as with any other machine

(e.g. root access). They also benefit from several web-based application pro-

gramming interfaces (APIs) that enable managing instances (e.g. selecting a

hardware configuration). Therefore, IaaS minimises the trust that needs to

be extended to the cloud provider. The user is in control of the (sensitive)

data being processed in the virtual machine, including data from any other

service built upon it (e.g. platform or software). This suggests that IaaS

instances represent the most compelling targets to malicious individuals. An

attacker which gains access to an IaaS instance can potentially compromise

the entire OS-to-application stack.

Cloud models can be further classified depending on whether the base

infrastructure is managed privately or by a third-party. In a public cloud

solution, the cloud provider supplies the servers, network, and virtualisation

support. The user looses physical control over its data, and the comput-

ing environment is somewhat shared with other parties. In a private cloud

solution, the base infrastructure is managed locally (e.g. intranet) and can

be closed from the public. It implies a significant investment on behalf of
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the organisation, which might not always be justified. This solution is pre-

ferred when compliance against high security standards is required. Private

clouds will either be physically disconnected from the Internet, or put un-

der a strong firewall. These can still be targeted, however public instances

certainly represent a lower-hanging fruit for the attacker.

2.1.3 IaaS Industry Outlook

Cloud providers must deploy tremendous resources in order to cope with the

existing demand. Thus the market of public IaaS is dominated by a few

large corporations including Amazon Web Service, Microsoft Azure, Alibaba

Cloud, Google Compute Engine, Tencent Cloud, and Huawei Cloud. Table

2.2 shows that in 2019 [47], Amazon holds the largest share of the market

(45%) with a revenue of 19990 million USD. In 2020 [48], Amazon still holds

the largest share (40.8%) with a revenue of 26201 million USD. It can be

seen that most cloud providers increase their market share over time, at the

exception of Amazon which lost 7.1% between 2019 and 2020. It is also seen

that the China-based cloud provider Huawei overtook Tencent in 2020. The

most significant observation is the decrease of “other” cloud providers’ share,

indicating that it will become harder and harder to compete with the top

five IaaS vendors.

Table 2.2: Worldwide public IaaS share and revenue (million USD) [47, 48].

Cloud provider
2018 2019 2020

Revenue Share Revenue Share Revenue Share

Amazon 15495 47.9% 19990 45.0% 26201 40.8%
Microsoft 5037.8 15.6% 7946.6 17.9% 12658 19.7%
Alibaba 2499.3 7.70% 4060.0 9.10% 6117.0 9.50%
Google 1313.8 4.10% 2365.5 5.30% 3932.0 6.10%
Tencent 611.80 1.90% 1232.9 2.80% - -
Huawei - - 882.00 1.90% 2672.0 4.20%
Others 7425.0 22.8% 8858.0 19.9% 12706 19.8%

Total 32382 100% 44453 100% 64286 100%
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In a separate study [46], the forecast global revenue is expected to reach

50393 million USD by the end of 2020, 64294 million USD by the end 2021,

and 80980 million USD by the end of 2022. Between 2019 and 2022, this rep-

resents a 82% increase, which confirms the growing interest of organisations

for cloud solutions.

2.1.4 IaaS Orchestration

Cloud orchestration consists of automating the dynamic management of

workloads such as assigning storage and processing resource, and instanti-

ating VMs. Orchestration also enables enforcing information flow policies

such that permissions to connect and execute workloads are securely han-

dled. Orchestration thus enables the provider to cope with an elastic demand

while maintaining logical isolation among tenants. However, the isolation is

not necessarily physical. Instances may be mapped to resource within the

same processor, same rack, or same cluster of servers [124, 60, 167]. This is

referred to as co-tenancy and is transparent to the cloud service user. A ten-

ant is unaware of the activity of co-resident workloads and vice versa. This

can cause undesirable effects such as “noise” generated by resource-intensive

workloads on neighbour instances. A more serious consequence is the ab-

sence of barriers that would prevent a malicious cloud user from spying on

its neighbours through the monitoring of the availability of shared hardware

resource, i.e. microarchitectural states. Co-tenancy, or co-residency, is a

core assumption to the adversary model of every microarchitectural covert

and side channel attacks designed for multi-tenant computing environments.

We note that cloud service providers propose products known as dedicated

instances [32, 134], where the cloud user is guaranteed to be the sole tenant

of a hardware platform. It is not known though at which level the physical

separation is made (core, processor, NUMA node, etc.). Furthermore, this

type of instance is significantly more expensive than non-dedicated instances,

e.g. an on-demand EC2 a1.2xlarge instance costs 0.204 USD per hour while

a dedicated EC2 a1.2xlarge instance costs 2.2162 USD per hour (at the time

of writing).
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Depending on the locality between a spy and a trojan, three scenar-

ios exist for establishing microarchitectural covert channels. Let us define

a communicating entity (i.e. either trojan or spy) as a process. First, if

both processes are executed within the same processor core, these will share

core-level microarchitectural resource including level 1 instruction and data

caches, execution units, and CPU-level buffers. In fact, the two processes

will share every possible components, both inside and outside of the pro-

cessor core. This scenario is only plausible if SMT is enabled which allows

multiple processes to share a single physical processor core. The first gen-

eration of microarchitectural covert and side channel attacks made such as-

sumptions [2, 116, 142], which led industry and academia to devise core-level

countermeasures such as RPcache [82], hardware cache partitions [37], noise

injection [158], or even advocate the disabling of SMT [98]. Second, if both

processes execute on separate processor cores but within the same processor

die, these will no longer share core-level resource but only processor-level

components including the last-level cache. This has been the target of the

second generation of microarchitectural timing channels [171, 56, 92], lead-

ing to a new set of countermeasures being proposed including cache colouring

[33], noise injection on timers [99], and recommending the disabling of mem-

ory de-duplication (which only deters the Flush+Reload class of attacks).

Finally, if processes are executed on separate processors within a NUMA

configuration (i.e. connected by a bus interconnect), core-level resource can

still be manipulated although the non-uniform nature of memory requests

may prevent accurate resolution of the leaked information. Other resource

located beyond processors, such as the interconnect and DRAM row-buffers

have been exploited to demonstrate new attack vectors [122, 133, 132]. Po-

tential countermeasures include the partitioning of the memory controller

[154], auditing [176], and forcing privileges on flushing instructions [56].

Achieving co-residency is further discussed in Chapter 3. The remainder

of the thesis consists in identifying means of exposing that activity of co-

tenants, and using it to craft rogue communication channels that circumvent

logical barriers.
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2.2 Computer Architecture

This section presents microarchitectural elements involved in routine proces-

sor operations and which can be exploited for timing-based covert channels.

2.2.1 Processor Core

The term processor refers here to the entire die. The processor comprises a

last-level cache (LLC) shared among one or more cores, an integrated mem-

ory controller, buses, and additional analog components. Each core contains

individual instruction (L1-I) and data (L1-D) level 1 caches, and potentially

a level 2 (L2) cache depending on the microarchitecture. Cores also contain

one or two physical CPU(s) each. The CPU is the set of execution units

and other logic required for instruction execution, e.g. arithmetic logic unit

(ALU), floating point unit (FPU), load-store unit (LSU), translation looka-

side buffer (TLB), return-stack buffer (RSB), branch target buffer (BTB),

etc. The execution pipeline involves resources of the CPU as well as L1

and L2 caches. A generic RISC pipeline can be decomposed in five stages,

namely instruction fetch, instruction decode, execution, memory access, and

write back. In microarchitectures that rely on a x86 instruction set archi-

tecture (ISA), execution stages can be different due the varying length of

CISC instructions, although the overall principle remains similar. ISA imple-

mentations vary significantly from one another, however the reader will find

that the above-described components are commonly encountered on modern

processors (i.e. found in commercial workstations or servers). ISAs then

feature many extensions to provide support for specific operations, includ-

ing advanced vector extension (AVX), streaming single instruction multiple

data (SIMD) extensions (SSE), instructions for optimising AES operations,

or transactional synchronization extensions (TSX).

A program is a sequence of instructions which are stored into memory

upon execution. The cache is there to decrease the latency of loading re-

peated instructions and data structures. A dedicated register, known as

the program counter (PC), holds the address of the next instruction to be

fetched. Unless the program encounters branches, instructions are fetched
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sequentially by simple increment of the PC, e.g. plus 4 bytes on a 32-bit

ISA. Instructions contain several fields, namely its opcode and operand(s).

After being fetched, the instruction’s opcode is decoded, thus informing the

CPU on how to read the remaining of the instruction and what resources

must be allocated, e.g. ALU, LSU, etc. Then, the instruction operands are

propagated through the execution units. For instance, the ALU will perform

arithmetic or bitwise operations on integer binary numbers, the FPU will

compute more complex operations (e.g. square root) on floating-point num-

bers, etc. Not all instructions are of arithmetic nature. The LSU queues and

executes load/store operations occurring between registers and other mem-

ory subsystems (e.g. caches). Finally, the result of the execution is written

back to registers.

2.2.2 Caches

A cache is a static RAM (SRAM) type of memory. SRAM cells are made of

multiple transistors, and are characterised by their ability to perform very

fast read and write operations. They act as buffers for frequently requested

data structures, thus improving the overall throughput. Caches are organised

in several levels, with the lower levels being the closest from execution units

(e.g. L1). The L1 cache is further split into an instruction cache (L1-I) and a

data cache (L1-D). Other cache levels are unified, meaning they can contain

both data and instruction. Other small caches may serve specific roles, such

as storing page-table entries for the memory management unit (MMU), i.e.

the TLB.

Caches can be directly-mapped, set-associative, or fully-associative. In a

directly-mapped cache, a cache line index is used to determine the cache line

of interest, and a tag determines whether the cache line contains the mem-

ory address. The index is a n-bit portion of the address and is therefore not

unique. In other words, directly-mapped caches might contain many cache

lines with the same index, also known as congruent, resulting in frequent

cache line evictions. Set-associative caches somewhat mitigate the congru-

ency issue by mapping the index to a cache set rather than a cache line. The
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cache set itself contains multiple cache ways which can be differentiated with

the tag. On contemporary processors, most of data and instruction caches

are set-associative. Finally, fully-associative caches use the tag to directly

resolve the cache way of interest, much like if a set-associative cache had

only one large cache set. The TLB is often a fully-associative cache.

Caches also vary depending on their addressing mode. Modern processors

allow multiple processes to execute concurrently, with each process having

its own (virtualised) address space. As mentioned earlier, set-associative

caches rely on a tag and an index in order to address memory. Therefore,

the question is whether these two elements are calculated from the virtual

(contiguous) or the physical (non-contiguous) address. The virtually-indexed

virtually-tagged addressing mode has the benefit that it is faster since it does

not require virtual-to-physical address translation. However, it requires the

entire process’ set of cache lines to be invalidated upon context switches (i.e.

when another process takes over the execution pipeline). This is particularly

expensive for large caches. The physically-indexed physically-tagged address-

ing mode suffers from the opposite pros and cons. A sensible approach is to

rely on a virtually-indexed physically-tagged addressing mode which uses the

virtual address to compute the index, and the physical address to calculate

the tag. It enables retrieving the cache set immediately, thus masking the

latency of translating the virtual address.

2.2.3 Memory Bus

Up until the release of the AMD Opteron and Intel Nehalem microarchi-

tectures, memory accesses to non-cache memory were handled by a chipset

composed of a Northbridge and a Southbridge. The Northbridge contained

the memory controller and was linked to processors by the front side bus

(FSB) (see Figure 2.1a). The Southbridge contained the I/O controller and

was connected to other peripherals via dedicated buses, e.g. PCIe, SATA,

etc. With the advent of parallel computing, the FSB quickly became a bottle-

neck for parallel program execution. An optimisation strategy has consisted

in placing memory controllers directly onto processor dies. As a result, each

37



Chapter 2. Background

(a) Front-side bus model.

(b) Non-uniform memory access model.
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CPU has been given fast access to a segment of DRAM, without relying on a

shared memory bus. An interconnect between processors has also been intro-

duced, in order to provide access to non-local regions of the DRAM. Accesses

to local and non-local segments vary in latency, hence this architecture was

named non-uniform memory access (NUMA) (see Figure 2.1b). The inter-

connect technology varies across microarchitectures and manufacturers. It is

known as Quick Path Interconnect on Intel processors and HyperTransport

on AMD processors. The Southbridge, also known as I/O hub, remains on

NUMA architecture.

2.2.4 DRAM Organisation

Because cache memories are limited in size due to SRAM cells’ higher foot-

print, memory accesses will often be served from the dynamic RAM (DRAM).

A DRAM cell consists of one transistor and one capacitor. In order to read a

bit, the word line is raised, enabling the capacitor to discharge in the bit line.

In order to write a bit, the bit line is set accordingly to the bit value and

the word line is raised long enough to either drain or charge the capacitor.

Reading a bit effectively discharges the cell, and the capacitor naturally loses

its charge over time. Consequently, cells need to be recharged at regular in-

tervals. The memory controller automatically performs this operation, which

can cause the read/write bandwidth to drop occasionally. Furthermore, the

time required to charge or discharge the capacitor causes usual read and

write operations to take longer than with SRAM cells.

DRAM cells are organised in rows, columns, banks, ranks, and dual-inline

memory modules (DIMMs). Typically, a DDR3 DIMM contains two ranks,

each one containing four to eight banks. Figure 2.2 represents several banks

within a rank. Each bank contains a row-buffer, and a 2-D array, i.e. rows

and columns. When the requested data is contained in the row-buffer, it

is a row-hit, otherwise it is a row-miss. Upon row-misses, the row-buffer

is updated with the row containing the requested data, before serving the

request. As a result, a row-miss has a significantly higher latency than a

row-hit.
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Figure 2.2: DRAM architecture.

2.2.5 Memory Controller

The integrated memory controller, also known as DRAM controller, contains

storage and scheduling resources to arbitrate memory accesses. The request

is first stored in the buffer matching the DRAM bank that it targets. Then,

the bank scheduler prioritises requests according to a scheduling algorithm.

Once a request wins bank arbitration, it is rescheduled by a channel scheduler.

Again, the scheduling algorithm determines priorities. Usually, requests that

target open-pages are served first, so as to mitigate the latency incurred

by updating a row-buffer. Before serving the memory access, the memory

controller must translate the requested data’s physical address into a DRAM

map (i.e. channel, rank, bank, row, and column). The physical-to-DRAM

address translation is performed according to DRAM addressing functions.

The memory controller’s page policy dictates the aliveness of data in the

row-buffer. If a close-page policy is enforced, the row-buffer will systemat-

ically be cleared after serving a request. Thus, each memory access results

in a row-miss, preventing timing variations, but globally slowing down the

execution of programs. If an open-page policy is enforced, the row-buffer will

retain data until it must be updated with a new row. Thus, it allows the

occurrence of row-hits, reducing the global execution time of programs, but

introducing exploitable timing variations.
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2.3 Operating Systems

This section introduces the concept of memory virtualisation and presents

the effects of memory operations on microarchitectural elements.

2.3.1 Logical Boundaries

Virtualisation of the address space allows the operating system to set access

rights and privileges to memory regions, such that two processes cannot

have contiguous physical memory. Virtualisation is thus a basic principle of

computer security as it enables memory isolation. When a memory operation

is performed by one process, the MMU ensures that the targeted region

belongs to this process. In other words, a process can never access the address

space of other processes running concurrently. In a virtual machine, it is

the entire guest’s address space that is virtualised. This guarantees logical

isolation between the address space of each VM, making possible the sharing

of a computing environment while maintaining separate memory spaces. It is

worth mentioning that operating systems can feature shared memory which

occasionally allows a region of physical memory to be shared. This is used

to limit redundancies and reduce the global memory footprint, e.g. shared

libraries.

An orthogonal concept is the segregation between the user space and the

kernel space. A process running in user mode can never be able to access

a region of kernel memory. In contrast, a process running in kernel mode

(e.g. driver, kernel module, etc.) has unrestricted access to physical mem-

ory, including that of user processes. When a user process attempts to access

kernel memory, it is an illegal memory access. Kernel privileges should not

be mistaken with superuser or administrative privileges. A process running

with superuser permissions only has access to the kernel mode features that

the kernel exposes to it (e.g. accessing system files). However, it is still a

user process, and as such it does not have unrestricted access to peripher-

als and physical memory. Further modes of operation exist depending on

the processor ISA. Seeking to obtain kernel privileges from an unprivileged

program is referred to as a privilege escalation attack.
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Figure 2.3: Virtual-to-physical address translation.

2.3.2 Virtual-to-Physical Address Translation

A process running on a processor that employs an addressing mode with

virtual indices manipulates data structures using virtual addresses. When a

data structure must be read or written to, a memory access occurs. This re-

quires the virtual address of the data to be translated into a physical address.

The MMU features its own cache, known as the TLB. The TLB contains the

virtual-to-physical map of recently accessed addresses. If the TLB already

contains the required entry, it is known as a TLB-hit, otherwise it is a TLB-

miss. Upon TLB-misses, the MMU performs a page table-walk to recover the

translation map. Once the physical address has been retrieved, the MMU

computes the index and the tag of the cache line that contains the requested

data. The index is used to point to a set of cache lines, and the tag is used

to point to a specific cache line within this set. Finally, an offset computed

from the variable’s physical address is used to point to a specific portion of

the cache line. Figure 2.3 shows how virtual-to-physical address translation

is performed. The virtual page number is mapped to a physical page number

via the TLB, while the 12-bit page offset is unmodified. Furthermore, the

6-bit cache line offset indicates a cache line size of 26 = 64 B, and the cache

line index indicates a way size of 26 = 64 entries.
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2.3.3 Memory Access and Latency

Once that the physical address has been recovered, the access to memory can

proceed. If the requested cache line is not present at any cache level, known

as a cache miss, a request is issued to the memory controller in order to fetch

the data from DRAM. The data is then stored into the cache, known as a

cache line fill, and is sent back to the CPU. The next access to the cached

data will result in a cache hit. A store operation consists of modifying a

cache line, and storing it back to memory (depending on the write-policy)

via the store buffer. Prior to modifying data, the cache line must be loaded.

If it is not present at any cache level, it is called a write miss, which triggers

a cache line fill (except for Pentium processors). Otherwise it is a write hit.

In terms of latency, a TLB-miss will cause a longer access than a TLB-

hit. Similarly, a cache-miss will serve the requested data more slowly than a

cache-hit. Finally, if the data is served from DRAM (i.e. upon cache-miss),

the row-buffer will also influence the latency, i.e. a row-miss causes a row-

buffer update to occur before serving the memory access and is therefore

slower than a row-miss. If the requested data is still not present in DRAM,

it will be fetched from persistent memory, e.g. the disk. Accesses to the disk

tend to have a dramatic effect on performance.

2.4 Related Work

This section presents the related in the field of microarchitectural attacks,

from transient attacks to timing-based covert channels.

2.4.1 Microarchitectural Attacks

The field of microarchitectural attacks encompasses many sub-categories.

Due to the large amount of publications, researchers attempted to classify

and occasionally draw taxonomies of attack techniques [7, 13, 20, 21, 50,

75, 82, 173, 95, 141]. Certain surveys focus exclusively on vulnerabilities in

cryptographic algorithm implementations [15, 38, 42, 43, 94], while others
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examine the effects on trusted execution environments [28, 103, 127]. In the

following sections, an overview of the different sub-categories is presented.

Transient attacks

Transient-execution attacks are those that exploit hardware optimisation fea-

tures such as out-of-order, speculative execution, etc. Rather than executing

instruction sequentially, modern processors have the ability to re-order micro-

operations (µOPs) so as to optimise resource utilisation. For example, if an

µOP requires an execution unit that is not available, it may be postponed

such that other µOPs can be treated. Once the unit becomes available, this

first µOP is executed, and the results are committed in-order. Occasionally,

it is the evaluation of a condition for branching that is executed out-of-order.

In such cases, the CPU can bet on the outcome of the condition evaluation,

and speculatively execute a set of instructions. Whenever the condition is

actually evaluated, if the bet was incorrect, than the CPU rolls back into its

previous state.

The Meltdown class of attacks [26, 89, 126, 146, 147] abuses out-of-order

execution in order to access kernel memory from a userspace program. The

attacker performs an access to a virtual address that maps to kernel memory,

causing the OS to raise an exception. To prevent program termination,

Lipp et al. [89] suggested to either implement the illegal access into a child

process, or use Intel TSX [66] to roll back into a previous state. The transient

instruction, i.e. the one executed out-of-order but whose results were never

committed, loaded the content of the virtual address into cache memory. The

attacker then launches a cache-based covert channel in order to recover the

contents of the kernel memory.

The Spectre class of attacks [30, 81, 83, 97] instead leverages speculative

execution, in order to access concurrent programs’ memory. The attacker

mistrains the BTB by repeatedly executing a conditional branch with a valid

condition. Once that the BTB is biased, the attacker can trick the CPU into

executing speculatively a set of instructions which have a dependency on

the targeted secret. To do so, the evaluation of the conditional branch must
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depend on resources that are not immediately available, while the secret shall

depend on resources that are already available (e.g. if secret = array[x],

then array and x must be cached). Finally, the attacker launches a covert

channel to recover the secret located in cache memory. Other variants of the

Spectre attack have later been developed with different means of extracting

the secret data, e.g. through a gadget that can be executed by mistraining

the BTB (SpectreV2), using the Meltdown attack principle (SpectreV3), or

re-using other covert channel primitives (SpectreV4).

Timing-based attacks

Timing-based microarchitectural attacks leverage the sharing of hardware

resources in order to steal and/or transmit information illegitimately. For

instance, several works showed that a hardware thread may spy on the ac-

tivity of another thread by monitoring the availability of execution units

and their associated buffers [3, 4, 12, 25, 40, 157]. Similarly, it was also

demonstrated that the TLB [63] and core-level caches (e.g. L1-I) can leak

information at runtime [1, 2, 151, 160, 179]. A trivial countermeasure to

these attacks consist in segregating threads belonging to different security

domains onto separate cores. As a result, attackers moved towards hard-

ware resources that are shared among all processor cores. The LLC is one

of such resources, and has enabled a plethora of new cache attacks on both

x86 [10, 27, 56, 180, 76, 169] and ARM [88, 174, 177] platforms.

Among these cache attacks, the most eminent one is the Prime+Probe

[116] technique: the attacker fills one or more sets of a set-associative cache

with its own cache lines (i.e. priming), lets the victim execute, and mea-

sures the access time to the data stored in these cache lines (i.e. prob-

ing). Whenever an access to a cache line is slow (i.e. cache-miss), it indi-

cates that the victim evicted the data due to its own operation, revealing

the presence of a shared cache set. Another prominent cache attack is the

Flush+Reload [171] technique: the attacker flushes a cache line of shared

memory with victim, lets the victim execute, and reloads the same cache

line. If the reload is fast (i.e. cache-hit), then it indicates that the shared
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cache line has been loaded by the victim. While Flush+Reload relies on

the availability of shared memory, it does benefit from a higher resolution

than Prime+Probe, i.e. the size of a cache line rather than the size of a

cache set.

Osvik et al. [116] also presented the Evict+Time technique: the at-

tacker lets the victim execute, causing the cache to fill up, and performs

eviction with its own cache lines. Then again, the attacker lets the victim

execute, and probes access to its own cache lines. If the latter is slower than

normal, then indicates that the victim accessed the cache line of interest.

Evict+Time is less encountered in the literature, as it does not provide

any benefit over its counterpart. Gruss et al. developed the Flush+Flush

technique where the attacker measures the elapsed time of each flushing in-

struction. If the second one has the same latency as the first one, it indicates

that the victim performed a cache line fill in between, revealing the victim’s

data structures at the cache line granularity.

Timing attacks have found multiple applications. For instance, a large

body of research has focused on finding vulnerabilities in Intel’s Software

Guard Extension (SGX). SGX is a proprietary TEE which enables an appli-

cation running securely within a non-trusted environment. While Intel spec-

ifies that its TEE is not designed to safeguard against timing-based attacks,

it does present salient flaws related to its caching [36, 54, 103, 104, 129, 153],

page-table [59, 148, 153, 165], branch prediction [41, 86], and DRAM address-

ing [153] mechanisms. Naturally, most of timing-based side channels have

also been applied against cryptographic implementations. The amount of re-

lated attacks does demonstrate how approved algorithms remain vulnerable

under flawed implementations: (T)DES [143, 144], ECC [18, 24, 149, 170],

RSA [5, 65, 172], and AES [6, 19, 22, 57, 72, 73, 111, 142, 159]. Nowadays,

the literature focuses more on complex mechanisms such as TEEs rather than

cryptographic libraries.
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Focus on timing-based covert channel attacks

Microarchitectural cross-VM covert channels are software-launched attacks

which exploit multi-tenant environments’ shared hardware. In a timing-based

covert channel, variations in the latency of a program execution are used to

encode binary information. The receiver probes its own execution, which is

directly influenced by the state of a hardware resource shared with the sender.

An entire stream of bits is reconstructed in this way, enabling an attacker

to transmit information from a compromised VM to another co-located VM.

Ristenpart et al. [124] first studied the problem of VM co-location on the

AWS EC2 service. They used the LLC to assert of the co-residency between

two communicating VMs. Similarly, Xu et al. [166] explored the vulnerability

of L2 caches for covert channel attacks on an EC2 instance. Wu et al. [164]

proposed exploiting the memory bus as an alternative to cache-based covert

channels, thus overcoming the addressing uncertainty. Later, the memory

bus attack was revisited by Liu et al. [93] to use non-temporal instructions

on the receiving-end, so as to mitigate the effect of cache pollution. This

technique was previously suggested by Guri et al. [58] in their air-gapped

covert channel. Pessl et al. [122] suggested using the DRAM row-buffer as

a communication medium between two VMs. Their attack also allows cross-

processor information leakage. Liu et al. [92] re-used a Prime+Probe

primitive in order to build a cross-VM covert channel as a vector for side

channel attacks against GnuPG libraries. Maurice et al. [101] designed

a robust LLC-based covert channel attack. Their work demonstrated the

feasibility of implementing a network protocol on top of a covert channel

across AWS EC2 instances. Sullivan et al. [140] revisited the exploitation of

SMT using the memory order buffer for cross-VM leakage in the AWS EC2

and Google Cloud Engine (GCE) services. Their experiment highlights the

consequence of enabling hyperthreads on public cloud platforms. Schwarz et

al. [128] suggested exploiting the latency of powering up the upper-half of

the AVX2 unit in order to build a new covert channel, subsequently used in

their remote Spectre attack [81].
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2.4.2 Countermeasures

This section surveys and analyses relevant mitigation techniques against mi-

croarchitectural leakage channels, namely noise injection, software partition-

ing, and hardware partitioning. Whether a timing variation is created ac-

cidentally or intentionally, the mechanisms to modulate microarchitectural

states remains similar. Therefore relevant countermeasures against timing-

based side channels are also considered. Other countermeasures which are not

relevant include constant-time execution, symbolic execution, state flushing,

and noise injection within cryptographic implementations.

Noise injection on timers

This approach consists of jittering the timestamps of high-resolution timers

[62, 152, 99, 93]. Being able to measure the latency of a single memory op-

eration is crucial in timing channel attacks, as it leads to the interpretation

of the activity of the victim (or sender). The x86 ISA features the rdtsc

and rdtscp instructions which capture a time-stamp from the time-stamp

counter (TSC), allowing timing measurements with a sub-nanosecond reso-

lution. These are accessible from any non-privileged user program. Other

timing sources, such as the wall clock provided by the operating system, are

usually not accurate enough to measure a timing variation of a few clock

cycles. For example, in [133], the sender’s activity generates an overhead of

only 6.5 CPU clock cycles. At a frequency of 2.4 GHz, this amounts to a

time span of 2.7 ns. The attacker can neither rely on high-resolution timers,

nor on operating system wall-clocks

Noise injection on caches

This approach aims at preventing an attacker from learning about the vic-

tim’s working cache set. Wang and Lee [158] suggested integrating per-

mutations in the cache index computation, while Qureshi et al. [123] used

randomised mappings based on the encryption of the cache line’s physical

address. These will result in the victim’s accesses to stop conflicting with

the attacker’s cache sets. Alternatively, Fang et al. [44] suggested having
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the prefetch controller issuing requests to the L1 cache in order to tamper

the timing observations of the receiving-end. For instance, in an m-way set

associative cache, if m cache misses are observed when sending a 1, and

none are observed when sending a 0. the prefetch controller will bring this

number to m/2 all the time, such that the receiver is no longer capable of

distinguishing a 1 from a 0. If generalised, these strategies can hinder cache-

based covert channels that depend on the ability to find congruent addresses.

Other proposals [91, 45, 168] studied bespoke cache replacement policies as

an alternative to the vulnerable on-demand policy. Taking the example of

the random-fill approach [91], if a cache miss occurs, the requested cache line

is sent to the CPU but it is not necessarily stored in the cache. Instead,

a “neighbour” cache line is randomly selected within a fixed address range

around the requested cache line. If the same cache line is requested there-

after, it might result in a cache hit. The uncertainty contributes to inhibiting

the leakage of information as to whether the victim accessed a specific cache

line or not. This countermeasure is also relevant to cache covert channels

such as Flush+Reload [171].

Software partitioning

Software cache partitioning, also known as cache colouring, consists of iso-

lating sensitive data by means of isolating a set of cache lines for a given

security domain [158, 155, 78]. Recall that in order to address data in (set-

associative) caches, the MMU computes an index and an offset from the

physical address. The bits that belong to both the physical page number

and the cache line index are the colour bits. Figure 2.4 is an example of

virtual-to-physical translation of a 64-bit address, with 6 bits of offset (i.e.

cache line size is 26 = 64 bytes), 9 bits of index (i.e. way size is 29 = 512

entries), and 3 colour bits. Cache colouring states that physical pages which

differ in any of the colour bits can never be mapped in the same cache set.

That is, if the physical memory pages of two processes have at least one dif-

ferent colour bit, these can never exploit congruency to launch cache attacks

such as Prime+Probe or Evict+Reload [116]. In a sense, cache colour-
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Figure 2.4: Virtual-to-physical translation of a 64-bit address on an Intel
E6550 processor [33]. The cache line offset is determined by bits 0 to 5,
the cache line index is determined by bits 6 to 14, and the page offset is
determined by bits 0 to 12. Colour bits range from bit 12 to bit 14.

ing behaves like a dynamic clustering technique which guarantees that two

clusters can never share a cache set. Liu et al. [90] suggested another form of

software cache partitioning by leveraging Intel’s Cache Allocation Technol-

ogy (CAT) [69], in order to lock down portions of the LLC during execution.

As for Flush+Reload, Zhou et al. [181] proposed a state machine which

prevents a shared memory page being accessed by two security domains at

the same time.

Beyond cache colouring, other forms of software partitioning have been

proposed. Disabling page sharing [98] hinders attacks which depend on the

availability of shared memory such as Flush+Reload and Flush+Flush

[56]. Disabling SMT [17] prevents two hardware threads from exploiting

contention among CPU-level resources such as execution units [12], the BTB

[4], the RSB [25], or the MOB [140].
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Hardware partitioning

Hardware cache partitioning consists in providing physical isolation among

the working cache sets of each tenant [158, 118, 37]. For example, Wang

and Lee [158] suggested a cache line locking mechanism, by means of an ISA

extension, which prevents another process from evicting the cache line. An

L tag indicates whether the cache line is locked, and an ID tag indicates

the process to whom the cache line belongs. Fundamentally, hardware cache

partitioning results in the same effects as software cache partitioning. The

main difference lies in the deployment of the countermeasure. Therefore,

hardware cache partitioning does not result in additional requirements. As

for other components than caches, Wang et al. [154] proposed a time-division

multiplexing technique in order to prevent the exploitation of the shared

integrated memory controller. Similarly, Wang et al. [156] devised a priority-

based mechanism for the shared on-chip network. These approaches consist

in scheduling accesses to the memory controller and the interconnect such

that different security domains cannot conflict with each other. The effect

of this countermeasure on DRAM-based covert channels that target external

NUMA nodes remains an open-question.

Additionally, Gruss et al. [56] advocated making the rdtsc and clflush

instructions privileged. While it would not completely close the covert chan-

nels which rely on these instructions, it would severely question the prac-

ticality of the attack. The adversary model (see Section 5.3.2) requires for

the environment of the victim to be compromised with a malicious colluding

software. The above-mentioned countermeasure would force this malware to

be executing with privileges.
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A question that systematically arises from the audience when presenting a

new leakage channel is “How practical is this attack?”. Microarchitectural

covert channels allegedly rely on a strong adversary model. As a result, secu-

rity experts from industry tend to overlook malicious covert channels. This

chapter intends to clarify the operational constraints associated to the deploy-

ment of such attacks in IaaS environments. Furthermore, a dedicated scoring

framework that integrates operational constraints in the covert channel’s per-

formance score is devised.
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3.1 Introduction

Cross-VM microarchitectural covert channel attacks always consider two pro-

cesses, a trojan and a spy, who want to share information illegitimately. The

trojan possesses sensitive information and intends to transmit this informa-

tion to the spy. The two processes run in separate virtual machines and thus

have dissociated address spaces. The security policy forbids these two entities

from communicating directly, as it would be the case in any IaaS environ-

ment (see Figure 3.1). The threat model assumes that the instance of the

victim has been compromised with the trojan. This is anything but an un-

realistic scenario. Indeed, software supply chain attacks such as SolarWinds

[120] have been increasingly observed in the wild [114]. These are deployed

through corrupted package managers and tend to remain undetected for long

periods of time. The threat model also assumes that the attacker achieved

VM co-location between the two VMs, i.e. they are running on the same

bare-metal hardware. Several research efforts have demonstrated that this

can be achieved on public cloud infrastructures [60, 117, 124, 167], as dis-

cussed in Section 3.3.2. The remaining of the threat model (i.e. privilege

level, hardware locality, dual communication, shared memory, etc.) is spe-

cific to the attack.

In this chapter, a measurement study on the practicality and severity of

deploying microarchitectural covert channels in IaaS is conducted, based on

the latest version of the CVSS (v3.1) [113]. The CVSS is an open industry

standard that is widely used in the security community in order to assist

responses to threats. Other evaluation frameworks exist [74, 139, 138, 77],

however the CVSS remains the established industry standard for rating an

attack’s severity. Its evaluation criteria are discussed in the context of mi-

croarchitectural attacks, and state-of-the-art covert channels previously sur-

veyed (see Section 3.2) are analysed.

Although comprehensive and well-established, the CVSS is designed to

evaluate a large range of vulnerabilities. As such, it may struggle to outline

disparities among different attacks in an area as specific as microarchitec-

tural covert channels. In order to provide a fair and realistic point of com-
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Figure 3.1: Attack setting.

parison, a new dedicated evaluation framework is proposed, i.e. the Covert

Channel Scoring System. The CCSS outlines the effect of operational con-

straints on the severity score by accounting for requirements over privilege

levels, hardware locality, initialisation, existing countermeasures, and effec-

tive communication speed. Among other findings, it shows that cache-based

covert channels achieve the lowest severity scores, despite being increasingly

popular. The work presented in this chapter is based on the publication

[131].

3.1.1 Scope of the Study

In addition to the definitions provided in Section 1.4, the scope of this study

is further defined here. A covert channel does not necessarily allow commu-

nication across VMs. However, this research thread focuses on the threat

against public clouds, therefore only cross-VM covert channels are consid-

ered. The same methodology could be applied to similar environments, e.g.

private clouds. This evaluation is specific to IaaS, and does not account for
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variations in similar environments.

3.1.2 Structure of this Chapter

Section 3.2 provides an analysis of state-of-the-art cross-VM covert channels.

The inner mechanics of each attack are summarised, and an overview of the

associated operational constraints is presented.

Section 3.3 defines every criteria used in this study. Metrics listed from

Section 3.3.1 to Section 3.3.10 are taken from the CVSS v3.1 [113]. These

serve as input for the CVSS evaluation. Metrics listed from Section 3.3.11

to Section 3.3.13 are bespoke criteria which serve as input for the CCSS

evaluation.

Section 3.4 presents the scoring equation of the CCSS. The CCSS consists

of a new methodology for assessing the practicality of covert channels. Its

output is discussed in Section 3.5.

Section 3.5 provides the results of both the CVSS and CCSS evaluations.

It also discusses the pros and cons of each scoring system. Finally, Section

3.6 summarises the contributions of this chapter.

3.2 Analysis of State-of-the-Art Attacks

In order to evaluate microarchitectural covert channels against the CVSS

criteria, it is first required to understand the inner mechanics of each attack,

and how they can be mitigated by potential countermeasures. These are

listed in Table 3.1.

3.2.1 Memory Order Buffer

The memory order buffer (MOB) attack [140] exploits a side-effect of write-

after-read hazards named 4k-aliasing. This effect occurs whenever the lower

twelve bits of the addresses contained in the load and store registers match.

This causes the load operation to be re-issued, resulting in the load/store

bandwidth to drop. Sullivan et al. [140] leverage 4k-aliasing in order to
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create a covert communication between two hyperthreads. The sender either

fills the store buffer with page-aligned addresses to transmit a one, or empties

the store buffer to transmit a zero. Concurrently, the receiver probes load

operations on every page-aligned addresses. When the load/store bandwidth

drops, the receiver will observe a higher latency.

This effect is exploitable only at the thread-level, as it is linked to the

load and store buffers located within the CPU. In other words, the commu-

nicating entities must be executed by the same physical core. To the best of

our knowledge, root privileges are not required. With regard to countermea-

sures, authors acknowledge that disabling SMT is a straightforward way of

mitigating the vulnerability. However, they also argue that “hyperthreading

is expected to become more popular on IaaS platforms in the near future in

order to keep them affordable”. Indeed, SMT remains available on dedicated

instances or for general-purpose workloads.

3.2.2 Last-Level Cache

LLC-based covert channels [124, 166, 92, 100, 101] derive from the Prime+

Probe attack [116]. The receiver fills up a cache set, waits for the sender

to execute, and probes its accesses to the same cache set. If the sender

chose to modify the cache lines of the receiver, the latter will experience a

Table 3.1: Cross-VM covert channel attacks.

Attack Exploited resource Bitrate Error Capacity

[124] Last-level cache 0.2 bps - -
[166] Last-level cache 3.2 bps 9.28% 1.77 bps
[164] Memory bus 343 bps 0.39% 330 bps
[92] Last-level cache 1.2 Mbps 22% 287 kbps
[100] Last-level cache 751 bps 5.7% 514 bps
[122] DRAM row-buffer 596 kbps 0.4% 573 kbps
[101] Last-level cache 45.25 kbps 0% 45.25 kbps
[140] Memory order buffer 1.49 Mbps ∼5% 1.06 Mbps
[133] Memory controller 150 bps 7.8% 90.7 bps
[132] Memory bus 480 bps 5.4% 333 bps
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slower access. Prime+Probe relies on the existence of congruent addresses

between the sender and receiver, i.e. virtual addresses that map to the same

cache set.

Identifying congruent addresses requires performing virtual-to-physical

address translation using privileged page tables. Alternatively, entities can

use the page offset of huge pages (i.e. 2 MB) as it is not translated, and it is

long enough to include index bits. The communicating entities need to agree

on a set of congruent addresses, which cannot be performed in the absence of

an existing communication channel. In order to cope with this issue, Maurice

et al. [101] suggested using a jamming agreement. Independently of the cho-

sen strategy, LLC-based attacks are not functional without an initialisation

phase, and are limited to cross-core communication. Several cloud-oriented

mitigation techniques were proposed to tackle LLC-based timing channels,

such as cache partitioning or noise injection [90, 53, 78, 152].

3.2.3 DRAM Row-Buffer

The DRAM addressing covert channel [122] exploits the DRAM bank row-

buffer to create timing variations on uncached memory accesses. The sender

allocates memory, and performs memory accesses either in the cache or in the

DRAM. When the sender accesses the DRAM, it causes the bank’s row-buffer

to be updated with the sender’s row. Concurrently, the receiver accesses the

same DRAM bank as the sender. If the sender evicted the receiver’s row

from the row-buffer, a row-miss occurs resulting in a higher latency.

It is trivial to extend the original author’s threat model to remote and

unprivileged adversaries. One entity can simply write zeroes and ones on

a random memory location, and the other entity scans its memory address

space to detect the bit pattern, i.e. consecutive row-hits and row-misses.

This approach also enables implementing a covert channel without knowl-

edge of the DRAM addressing function, at the cost of an initialisation phase.

This covert channel has the advantage that the communicating entities do

not necessarily need to be scheduled on the same processor, as the DRAM

memory is shared at a system-level via the interconnect. Auditing can be
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used as a mitigation strategy. The constant probing to DRAM will result in

a significant amount of cache-misses, observable by hardware counters. Al-

ternatively, the clflush instruction can be restricted to privileged programs,

thus rendering the attack harder to implement.

3.2.4 Memory Controller

The memory controller covert channel [133], which is further described in

Chapter 4, consists in modulating the load on the DRAM controller’s chan-

nel scheduler in order to induce timing variations in the receiver’s memory

accesses to DRAM. In the cross-VM version, the sender allocates three mem-

ory pages, and then reads one byte either in each of the three pages, or in

a single page. The receiver observes a higher latency when the sender is

increasing the load on the channel scheduler.

This attack is feasible both with and without privileges. Communicating

entities need to agree on a memory channel. As in the row-buffer attack, this

can be achieved by having the sender broadcasting his position. Because

the memory controller is accessible at a system level, this attack could be

extended to multi-processor configurations. The memory controller covert

channel can be addressed with the same countermeasures as the row-buffer

one. Alternatively, the controller could be redesigned in order to enforce

temporal [154] or spatial isolation.

3.2.5 Memory Bus

The memory bus covert channel, first suggested by Wu et al. [164] and

later studied in Chapter 5 of this thesis, uses atomic operations on exotic

memory operations, i.e. operations on cache line-crossing memory regions,

in order to trigger a bus lock emulation. The sender either performs an exotic

access, or remains idle. Meanwhile the receiver probes its uncached memory

accesses. A high latency is observed whenever the sender accesses exotic

memory regions.

This attack enables cross-core communication on NUMA architectures,

and cross-processor communication on front side bus architectures. It does
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not require root privileges, and remains functional in the absence of an ini-

tialisation phase. With regards to countermeasures, Chapter 5 provides an

exhaustive list of potential countermeasures, however it is shown that none

of them are efficient at closing the covert channel. Wu et al. [164] suggested

an auditing approach where the cache-miss memory bus lock counters are

monitored in order to detect performance anomalies.

3.3 Evaluation of Attacks

This section lists the criteria used to assess the impact of malicious covert

channels in IaaS environments. The Common Vulnerability Scoring System

is used as a base for evaluation metrics. Other frameworks could have been

used. The Exploit Prediction Scoring System (EPSS) [74] is a threat-oriented

approach used to estimate the probability that a vulnerability will effectively

be exploited, based on reports of vulnerability disclosures and exploitation

data. This framework depends heavily on the availability of datasets from

intrusion detection systems, honeypots, network observatories, malware anal-

ysis, and other sensor networks. Exploitation data is currently not available

for cloud-based microarchitectural covert channels. However, future devel-

opments of the CCSS shall take into account such reports in order to better

understand the threat. Another alternative to the CVSS is the Stakeholder-

Specific Vulnerability Categorization (SSVC) framework [139], which pro-

vides a different scoring depending on whether the stakeholder is the patch

developer or the patch applier (i.e. distribution). The SSVC is motivated

by the existence of diverging priorities among vendors and deployers. The

former would prioritize the technical impact, while the latter would focus

on mission impact. The SSVC offers a very interesting perspective to vul-

nerability management, and this approach could significantly contribute to

enhance the CCSS (e.g. in order to assist both hardware manufacturers and

cloud service providers adequatly). However, because the SSVC is in itself

a refinement of the CVSS, it is currently not answering the needs of this

thesis item which primarily aims at integrating evaluation metrics specific to

microarchitectural covert channel attacks. Finally, there exist several legacy
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frameworks such as DREAD [138] or STRIDE [77]. DREAD was found to

provide inconsistent ratings and was eventually discarded by the industry

in the 2000s. STRIDE is rather used to identify vulnerabilities in a system

and help addressing corresponding gaps. In comparison to above-mentioned

frameworks, the CVSS offers the most relevant and set of evaluation metrics

for this work. The associated severity scores are presented in Section 3.5.

The list of criteria is then augmented with covert channel-specific consider-

ations, such as the hardware locality, the initialisation phase, and the covert

channel capacity. A dedicated scoring framework is devised in Section 3.4,

and its results are also presented in Section 3.5.

3.3.1 Attack Vector

Attack vector evaluates the proximity between the attacker and its target.

It can be rated as “network” for remote interaction, “adjacent” when the

attacker needs physical or logical proximity with the target (e.g. Bluetooth),

“local” if it relies on user interaction (e.g. social engineering), or “physical”

when physical manipulation is required.

The attack vector is rated as “local”. The sending-end consists of a mali-

cious program running inside the instance of the victim. This trojan must be

inserted either using social engineering, or by corrupting the machine image.

Independently of the chosen attack vector, user interaction is required.

3.3.2 Attack Complexity

Attack complexity assesses the difficulty of exploiting a vulnerability once

access to the targeted platform is gained, ranked either as “low” when no

specialised access condition exists, or “high” when the attack requires a sig-

nificant amount of preparation such that it cannot be performed at will. The

VM co-location problem is discussed under this criterion.

Attack complexity is rated as “high”. Prior to launching the attack, the

adversary must achieve VM co-location, independently of the covert chan-

nel considered. Cloud services’ APIs do not allow an attacker to place an
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instance at will on a chosen physical machine. One solution consists in us-

ing networking utilities to map the internal network topology of the data

center. Ristenpart et al. [124] suggested mapping the instances’ internal

IP addresses to their external ones. The obtained topology allowed them to

place two instances on the same processor. Herzberg et al. [60] proposed a

network-based side-channel technique to deanonymise instances internal IP

addresses on AWS EC2 and Rackspace Cloud services, thus improving on

the previous proposal. Xu et al. [167] further studied the AWS AC2 topol-

ogy, and found out that although it is has become harder to co-locate two

instances (e.g. time locality vulnerability is significantly reduced), a residual

threat remains. Authors were capable of achieving co-residency despite isola-

tion countermeasures taken by the cloud provider, i.e. virtual private clouds

(VPCs). Concurrently, Varadarajan et al. [150] analyzed the efficiency of

VPCs against co-location attacks on AWS EC2, Google GCE, and Microsoft

Azure services. They concluded that “achieving co-location is surprisingly

simple and cheap”. Microarchitectural covert channels can later be used to

find out whether co-residency is achieved at the core-level, package-level, or

system-level.

While these approaches require some knowledge of the network topology,

an adversary can also choose to directly apply microarchitectural covert chan-

nels to detect co-residency. Indeed, contention generated by the sharing of

hardware resource among VMs cannot be mitigated by network (i.e. logical)

isolation technologies. In a purely microarchitectural co-residency attack,

the sending-end can “broadcast” messages repeatedly on a covert channel,

until a receiving-end picks up. Thus targeted co-residency is still possible

without access to a reliable network topology of the data centre, although

this methodology is more hazardous. Recently, Atya et al. [14] successfully

demonstrated this approach on AWS EC2, using the memory bus and the

cache as communication mediums.
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3.3.3 User Interaction

User interaction indicates whether human interaction other than the adver-

sary is required. As such, this criteria can be rated as either “none” or

“required”. The trojan insertion problem is discussed under this criterion.

User interaction is rated as “required”. The AWS EC2 service is a prac-

tical example of means to compromise a victim’s instance before its deploy-

ment. Amazon Machine Images (AMIs) are the basic unit of the EC2 service.

An AMI contains the OS along with libraries, applications, and other compo-

nents which personalise the instance. AMI selection presents a unique oppor-

tunity for an attacker: anyone with an AWS account can customise and share

an AMI. As a result, an attacker can conceal and distribute a trojan across

a large pool of users. Also, because the AMI contains a tremendous amount

of code, it is extremely difficult (if not impossible) to uncover malicious code

once it is embedded into the image.

Even trusted machine images, whether they belong to AWS or other cloud

providers, contain software components (e.g. OS, middleware, applications,

etc.) which involve a complex software supply chain. An application is rarely

designed by a single company, but instead includes multiple parties. There-

fore, the end-user is provided with a software application which is the result

of an extremely complex supply chain. It is very difficult (if not impossible)

for the user to control whether every party has applied proper security prac-

tices. The recent SolarWinds cyberattack [112] is a compelling demonstration

on the exposure of the software supply chain. Whether trojan insertion is

performed using social-engineering, or via machine image corruption, specific

actions must be performed by the victim, hence the “required” quotation.

3.3.4 Scope

Scope assesses the impact that a vulnerability might have on components

other than the one affected by the vulnerability. This metric accounts for

the overall system damage caused by the exploitation of the reported vul-

nerability. Scope can be rated as “changed” when a scope change occurs, or

“unchanged” otherwise.
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Scope is rated as “unchanged”. The mechanism responsible for enforcing

access control over the vulnerable component, also known as the security

authority, depends on the form of the trojan. For example, if the sending-

end is part of a user application (e.g. plugin), the vulnerable component

is the affected application (e.g. web-browser) and the security authority is

the guest operating system, responsible for enforcing isolation between user

applications. However, the covert channel attack does not allow accessing

the data of other applications running in the same guest operating system.

The same reasoning holds if the sending-end takes the form of a malicious

kernel module. The affected component becomes the guest operating system,

and the security authority becomes the hypervisor. The sending-end would

be able to leak all the information of the guest operating system, but it

would not allow accessing the data of other guests under the same hypervisor.

Therefore, the fact that data is exfiltrated across virtual machines does not

constitute a change of scope. The sole purpose of a covert channel attack

is to exfiltrate information, or carry out modifications as instructed by the

other communicating entity. Any exploit built on top of the covert channel

attack (e.g. privilege escalation) is beyond the scope of this study.

3.3.5 Confidentiality Impact

Confidentiality impact assesses the severity of a disclosure of information, as

well as the quantity of information that can be leaked. This criterion can be

rated as “none”, “low” when the attacker can only access a small amount of

data and loss of this data does not result in serious consequences, or “high”

otherwise.

Confidentiality impact is rated as “high”. Covert channels intend to leak

a selected amount of information rather than the entire set of system files.

However, a successful attack against a public cloud instance can have a signif-

icant impact on a victim, such as theft of proprietary information, leakage of

personal data, or theft of cryptographic keys. Microarchitectural covert chan-

nels are particularly interesting when there is no alternative means of leaking

information in a non-conspicuous manner, e.g. to avoid generating network
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traffic and associated logs [135]. They are relevant with advanced persis-

tent threats, where the attacker employs cutting-edge techniques in order to

maintain long-term intrusion and data exfiltration capabilities. Therefore,

they are ideal candidates for stealthy leakage on high-profile targets, from

attackers having other incentives than simple financial gain [85].

3.3.6 Integrity Impact

Integrity impact measures the attacker’s capability to tamper with the vic-

tim’s data. It can be rated as “none”, “low” when the amount of data that

can be modified is limited and modification of this data does not result in

serious consequences, or “high” otherwise.

Integrity impact is rated as “low”. The attacker can issue modifications to

be applied to the victim’s environment, although this requires bi-directional

communication, as well as the ability to instruct data tampering operations.

Such a covert channel was demonstrated by Maurice et al. [101], who man-

aged to establish a rogue Secure Shell (SSH) connection between two AWS

EC2 instances. Data modification is therefore possible, however it remains a

specific case, the primarily objective being data exfiltration.

3.3.7 Exploit Code Maturity

Exploit code maturity evaluates the state of an attack, from a conceptual

exploit to a fully autonomous malware. Exploitability can be rated as “un-

proven”, “proof-of-concept” when the attack has been demonstrated but is

not practical, “functional” when the exploit works in most systems where the

vulnerability is present but is still not widely accessible, or “high” otherwise.

Exploit code maturity is rated as “proof-of-concept”. The state-of-the-art

covert channels surveyed in this paper all demonstrate a functional attack

in a virtualised environment. However, researchers rarely disclose their full

source-code. Therefore, current microarchitectural covert channels are not

directly applicable without a skilled attacker.
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3.3.8 Report Confidence

Report confidence assesses the credibility of the source which reported the

vulnerability. This criterion is rated as “confirmed” when originating from

a publication, “reasonable” when multiple non-official sources reported the

vulnerability, or “unknown” when a single non-official source is involved.

Report confidence is rated as “confirmed”. A research publication is

considered an official source which is corroborated by multiple experts. As

per the CVSS specification [113], disclosure of an exploit in external events

such as scientific conferences automatically grants this criterion the selected

rating.

3.3.9 Privilege Required

Privilege required evaluates the level of privileges that the adversary must

acquire before launching the attack. This criterion can be rated as “none”,

“low” if privileges that allow performing basic user operations are required

(e.g. changing settings), or “high” for administrative privileges. This crite-

rion is relative to the covert channel’s sending-end concealed in the victim’s

environment.

Exploits which rely on social engineering are rated as “none” [113]. How-

ever, the works of Ristenpart et al. [124] and Xu et al. [166] require accessing

privileged page tables in order to find congruent addresses, and are thus rated

as “high”. All remaining covert channels can be carried out by non-privileged

users.

3.3.10 Remediation Level

Remediation level accounts for potential countermeasures. This criterion can

be rated as “unavailable”, “workaround” for non-official mitigation, “tempo-

rary fix” for official but not permanent countermeasures, or “official fix”

otherwise.

Defense techniques may rely on an ISA extension, a modification of

hardware-enforced algorithms ans policies, or an entirely new hardware de-
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sign. This type of countermeasure cannot be deployed as easily as a software

update, and the performance cost can become too significant. For instance,

Wang et al. [154] suggested a new design of the memory controller which en-

forces temporal isolation among different security domains. While effective,

this technique results in a 150% overhead. As a result, hardware-enforced

countermeasures are rated as “unavailable”.

Other remediation strategies may be enforced by the cloud provider,

which owns the processing, storage, network, and virtualisation components

(see Table 2.1). The AWS EC2 and GCE services propose a type of in-

stance where the user runs on a platform that is isolated from other users

[134, 32]. Dedicated instances have a significant cost, e.g. an on-demand

EC2 a1.2xlarge instance costs 0.204 USD per hour while a dedicated EC2

a1.2xlarge instance costs 2.2162 USD per hour. Therefore, this approach

is only valid for specific, sensitive workloads. Alternatively, cloud providers

have reportedly encouraged the disabling of SMT in order to prevent core-

level timing channels [98]. Nevertheless, it is observed that SMT remains

available on dedicated instances or for general-purpose workloads. This type

of remediation strategy is rated as “temporary fix”.

3.3.11 Hardware Configuration

Hardware configuration specifies the attacker’s proximity with regard to the

victim’s VM. Covert channels can require both VMs to be scheduled on the

same core, on the same processor, or on the same system. Accordingly,

hardware configuration can be rated as “core”, “processor”, or “system”. A

“system” rating makes for a higher severity score, as it is easier to achieve

system-level co-residency.

Ristenpart et al. [124] and Xu et al. [166] used a busy-loop mechanism

to synchronise receiver and sender, implying that a CPU-level resource was

shared. Therefore, these attacks cannot be considered cross-core. Similarly,

the memory order buffer attack [140] requires both entities to share CPU

resources. These attacks are set to “core”.

Other LLC-based covert channels are set to “processor”. A LLC cannot
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be shared across processor dies. The memory controller attack [133] exploits

a system-level component, however it was not demonstrated on a multi-

processor system. These covert channels are also rated as “processor”.

Finally, the DRAM row-buffer [122] attack can transmit data across pro-

cessors as DRAM memory is shared at system-level. Similarly, the memory

bus covert channels [164, 132] exploit the bus lock vulnerability which has

system-wide effects. As such, these attacks are rated as “system”.

3.3.12 Initialisation

Initialisation evaluates whether a covert channel attack requires the sender

and receiver to perform an initialisation phase before leaking the victim’s

data. This criterion can be rated as “mandatory” or “optional”. In the latter

case, the covert channel remains functional in the absence of an initialisation

phase, which increases the severity score. The absence of initialisation eases

the deployment of the attack and decreases visible side-effects (e.g. large

memory footprint), hence a greater score.

Only the memory bus [164, 132] and the memory order buffer [140] covert

channels can be rated as “optional”. Every other covert channel requires an

initialisation phase, and are thus rated as “mandatory” for this criterion.

3.3.13 Covert Channel Capacity

A communication channel can be subject to noise. In order measure the

quantity of information that can effectively be transmitted, covert channels

are modelled as binary symmetric channels. Under the binary symmetric

model [34], the amount of information that can be reliably transmitted is

given by the channel capacity C. It is a function of the entropy binary H2

and the raw bit rate r,

C = r(1−H2) (3.1)

68



Chapter 3. On the Severity of Covert Channel Attacks in IaaS

The binary entropy H2 is a function of the bit error probability p, and is

defined as follows,

H2 = −p log2p− (1− p) log2(1− p) (3.2)

Under the binary symmetric model, a channel behaves as follows,

• If p = 0, then the probability of a bit being correct is 1 − p = 1, the

binary entropy is H2 = 0, and the channel capacity is C = r.

• If p = 0.5, then the probability of a bit being correct is 1−p = 0.5, the

binary entropy is H2 = 1, and the capacity is C = 0.

The error probability is determined by counting the number of bit flips in

comparison to the original bit stream, divided by the number of bits transmit-

ted. For instance, if there are 128 erroneous bits in a 256-bit long message,

then p = 128/256 = 0.5. At this point and under the binary symmetric

model, the channel capacity becomes null. For any p ≥ 0.5, the covert chan-

nel is considered to be completely unreliable.

3.4 Covert Channel Scoring System

In order to provide a classification of covert channels, a new scheme must be

devised, which accounts for required privileges (Section 3.3.9), remediation

level (Section 3.3.10), hardware configuration (Section 3.3.11), initialisation

(Section 3.3.12), and the channel capacity. These criteria are specific to

the covert channel considered, and provide a point of comparison for the

adversary model. The CCSS is by no means a representation of the severity

of the attack. Instead, it should be taken as a complement to the CVSS

which cannot solely be used to classify cross-VM covert channels.

Criteria scores have been selected such that the scoring equation is as

uniform as possible. That is, the five criteria all have the same weight. The

motivation behind this decision is that the importance of one factor over

another is subjective. For example, one could give a higher weight to the

channel capacity, arguing that communication speed and robustness is the
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most important. From one perspective, this is true. A set of log, data, and

application files of a password manager (∼1 GB) would take 99 days 10 hours

and 5 minutes at a bitrate of 1 Kb/s to be transmitted, and 2 hours and 23

minutes at a bitrate of 1Mb/s. Cloud instances are rescheduled onto dif-

ferent platforms depending on resource availability and demand. Therefore,

the communication speed is critical. However, from another perspective, this

may be false. Faster communication rates are usually achieved by covert

channels that exploit microarchitectural components closer from the execu-

tion units, which can easily be addressed by existing countermeasures (i.e.

disabling SMT), or that have been extensively studied and resulted in multi-

ple countermeasure proposals [33, 53, 78, 90, 152, 155, 158, 181]. Thus faster

covert channels may not even be practical.

Furthermore, improving an evaluation scheme is usually performed over

time by comparing the scores with the reality. For instance, the HeartBleed

vulnerability was given a medium severity score of 5.0 in CVSS v2. Yet, it

could easily be exploited and had a significant impact on industry. It now has

a high severity score of 7.5 in the CVSS v3.1 To the best of our knowledge,

no covert channel exploit has been reported so far. Therefore, we consider

that starting with an impartial scoring equation for the CCSS is the best

approach. The scoring equation is,

Score = 2× (PR +RL+HC + IN + CS) (3.3)

Where the PR, RL, HC, and IN criteria are given a score between 0 and 1,

• PR (Privilege Required): 0 for “Privileged”, 1 for “Unprivileged”

• RL (Remediation Level): 0 for “Temporary fix”, 0.5 for “Workaround”,

1 for “Unavailable”

• HC (Hardware Configuration): 0 for “Core”, 0.5 for “Processor”, 1 for

“System”

• IN (Initialisation): 0 for “Mandatory”, 1 for ‘Optional”
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And the channel capacity score CS is modelled as an affine function between

the highest and lowest channel capacity observed in this study, such that it

outputs a score between 0 and 1,

CS =
1

1.06e06− 1.77
× Capacity (3.4)

The resulting CCSS score varies between 0 and 10.

3.5 Evaluation Results

Figure 3.2 represents the score of each covert channel under the CCSS and

the CVSS. Results are also reported in Table 3.2. Due to missing information,

Ristenpart et al.’s attack [124] was assigned an error rate of 22%, i.e. the

maximum error rate observed in this study. Highest scores are achieved

by the memory bus [164, 132] and DRAM row-buffer [122] covert channels.

These were able to reach high-speed effective communication rates while

minimising operational constraints. Meanwhile, LLC-based covert channels

tend to achieve lower severity scores, due to the necessity of finding congruent

addresses as well as the LLC locality.

The CVSS scores were computed with the CVSS v3.1 equations [113].

According to this study, microarchitectural covert channels achieve a medium

severity score ranging from 4.2 to 5.0. It shows that covert channels in

Figure 3.2: Scoring of cross-VM covert channel attacks under the CVSS and
CCSS: a = LLC [124], b = LLC [166], c = Memory bus [164], d = LLC [92],
e = LLC [100], f = Row-buffer [122], g = LLC [101], h = Memory order
buffer [140], i = Memory controller [133], j = Memory bus [132]
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Table 3.2: Scoring of cross-VM covert channel attacks under the CVSS and
CCSS.

Attack Exploited resource Error Capacity CVSS CCSS

[124] Last-level cache - 0.2 bps 4.2/10 1.6/10
[166] Last-level cache 9.28% 1.77 bps 4.2/10 1.6/10
[164] Memory bus 0.39% 330 bps 5.0/10 6.7/10
[92] Last-level cache 22% 287 kbps 4.9/10 4.3/10
[100] Last-level cache 5.7% 514 bps 4.9/10 3.7/10
[122] DRAM row-buffer 0.4% 573 kbps 5.0/10 6.8/10
[101] Last-level cache 0% 45.2 kbps 4.9/10 3.8/10
[140] Memory order buffer ∼5% 1.06 Mbps 4.8/10 5.7/10
[133] Memory controller 7.8% 90.7 bps 4.9/10 4.7/10
[132] Memory bus 5.4% 333 bps 5.0/10 8.0/10

IaaS are practical, that they should not be overlooked, and that suitable

countermeasures should be devised in the short term in order to tackle timing

channel vulnerabilities. More specifically, addressing the DRAM row-buffer

and memory bus covert channels should be prioritised, as cache-based covert

and side channel attacks have already been extensively studied.

When comparing the two evaluation frameworks, the CCSS outlines dis-

parities among covert channel attacks which the CVSS does not. This is

demonstrated through the difference in variance among the different scores.

Table 3.3 shows that the CVSS and CCSS achieve respectively 4.77 and 4.69

score averages, yet the variance is significantly more important for the CCSS

(4.60 against 0.09 for the CVSS). The variance is a measure of dispersion,

representing how far samples are spread out from the average. The CCSS

effectively shows that all microarchitectural covert channels do not follow the

same adversary model and have heterogeneous operational constraints.

Table 3.3: Average (µ) and variance (σ2).

CVSS score CCSS score

µ 4.77 4.69
σ2 0.09 4.60
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For example, the works proposed by Ristenpart el al. [124] and Wu et al.

[164] would both be rated as medium severity vulnerabilities under the CVSS.

Yet, the former attack has significant shortcomings including obtaining privi-

leges, achieving core-level co-location, finding congruent addresses, and a low

communication speed. Thus the resulting CVSS scoring of the covert channel

proposed by Ristenpart et al. [124] as a medium severity vulnerability is not

adequate. In comparison, the proposed evaluation framework successfully

highlights the benefit of one covert channel over another, with respective

scores of 1.6 and 6.7. This shows that the evaluation of microarchitectural

covert channels cannot be performed entirely based on the current industry

standard, and that the criteria studied in the CCSS should be accounted for

when devising new cross-VM covert channel attacks.

3.6 Summary

In this chapter, state-of-the-art cross-VM microarchitectural covert channels

were evaluated against the CVSS3.1 scoring framework, revealing medium

severity scores ranging from 4.2 to 5.0. In comparison, the SSLv3 POODLE

[110] and OpenSSL Heartbleed [109] vulnerabilities respectively achieved

scores of 3.4 and 7.5. These were patched shortly after their disclosure.

Services built on cloud computing continue offering guarantees on the confi-

dentiality and integrity of their customers’ data and there are still no practical

countermeasures against microarchitectural covert channel attacks released

several years ago [122, 164]. The loss of data, e.g. under General Data Protec-

tion Regulation (GDPR) requirement, could result in dramatic consequences

for the cloud provider, the software provider, and their customers.

A new evaluation framework was then developed, named Covert Channel

Scoring System, with the intent to devise metrics for fair comparison and un-

cover potential research gaps. It is the first scoring system that accounts for

both operational constraints and performance (speed and robustness), thus

making it a highly relevant framework for assessing the severity of leakage

channels in cloud environments. The analysis revealed that the fastest covert

channels are not necessarily the most eminent attacks, as they usually as-
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sume a close locality between sender and receiver, or a complex initialisation

phase, resulting in lower severity scores. Achieving higher communication

rate should not come at the cost of unreasonable operational constraints.

This sets a direction for further work, where considerations for the adversary

model are re-aligned with the reality of the commercial environment.
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In this chapter, a new covert channel is devised based on the modulation

of the integrated memory controller. This attack allows establishing a rogue

communication channel across processes running on separate processor cores

and across VMs. The covert channel is compared to related literature, and

mitigation strategies are discussed.
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4.1 Introduction

The functional behaviour of a system is usually well understood by design-

ers. For instance, the seL4 micro-kernel has been proposed as a general

purpose solution, providing strong assurance of confidentiality, availability,

and integrity enforcement from a functional perspective [80]. The identifica-

tion of hidden leakage channels works by analysing the system’s resources or

source-code. Yet, these identification methods rarely account for the system’s

temporal behaviour. Murray et al. [105] highlighted that seL4 micro-kernel

formal proofs completely omit timing channels. The gap left by the absence

of temporal behaviour characterisation allows devising new timing channels,

eventually allowing an attacker to breach information flow policies that en-

able secure computation on multitenant platforms.

Percival [121] demonstrated a covert channel between two threads, based

on contention within the L1-D and L2 caches. Shortly after, Wang and

Lee [157] designed a covert channel that leverages contention on multipli-

ers. More recently, Sullivan et al. [140] demonstrated a high-speed covert

channel between two hyperthreads in AWS EC2 and Google Compute En-

gine instances. In a virtualised environment, core-level co-residency is hard

to achieve as VMs tend to be isolated onto different cores. Furthermore,

this class of covert channels is only relevant to cloud platforms where SMT

is enabled. In reality, this condition rarely occurs. Cloud providers com-

monly disable support for SMT [98] as well as memory deduplication [17],

thus hindering a large range of microarchitectural timing attacks.

Other works proposed exploiting the LLC cache as it is shared among

cores. Xu et al. [166] proposed exploiting conflicts in the LLC. They used

a covert channel to achieve co-location in an Amazon EC2 setting. Further

works followed based on the Pime+Probe [92, 100, 115] or Flush+Flush

technique [56]. Maurice et al. [101] implemented a robust covert channel

capable of establishing a rogue SSH connection across AWS EC2 instances.

A number of academic works have been proposed in order to tackle timing

vulnerabilities emanating from the cache, including hardware cache parti-

tioning [90, 118, 121, 158], software cache partitioning [33, 53, 78], and noise
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injection [152, 158]. It is difficult to assess whether these covert channels

could bypass such countermeasures, and calls for further analysis. Also, Sec-

tion 3.5 showed that exploiting cache memories requires finding congruent

addresses between the two communicating entities, and the locality of the

cache can severely restrict the feasibility of the attack.

Other internal (memory controller, on-chip memory bus) and external

(DRAM) resource remain potentially exploitable [108, 122, 154, 156, 176].

The vulnerability of the memory controller was also demonstrated by Mosci-

broda et al. [108]. Their work shows that by combining all timing channels

detailed in Section 4.2, a malicious process can slowdown the execution of

a concurrent process by a factor of 190%. It is worth noting that their

DoS attack exploits both the memory controller, and the DRAM row-buffer.

Furthermore, they do not address the problem of encoding and decoding

information across virtual machines via the channel scheduler. Pessl et al.

[122] built a high-speed covert channel based on on the DRAM row-buffer.

Their channel reaches up to 596 kbps in virtualised environment. Mitigating

row-buffer covert channels could be achieved by enforcing a close-page policy

on the memory controller. As a result, every memory access would result in

a row-miss, thus inhibiting the timing channel. Furthermore, authors relied

on a privileged adversary model, and both entities need to undergo an ini-

tialisation phase in order to agree on a specific DRAM bank. This agreement

cannot be performed online without incurring additional memory usage side-

effects. In this chapter, the very first instance of a memory controller-based

microarchitectural covert channel is presented. Eventually, the attack al-

lows an adversary leaking information across processor cores and VMs, thus

bypassing information flow policies essential to the security of multi-tenant

computing platforms. The proposed covert channel is tested on three Intel

x86 microarchitectures, namely Ivy Bridge, Broadwell, and Skylake. The

work presented in this chapter is based on publication [133].
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4.1.1 Structure of this Chapter

Section 4.2 provides additional background on the memory controller, and

analyses the different sources of contention.

Section 4.3 presents the first instance of the proposed attack. It consists of

a cross-core covert channel established between two native processes running

with privileges. The threat model, attack principle, and implementation

considerations are examined.

Section 4.4 presents the second instance of the proposed attack. It consists

of a cross-core covert channel established between two virtualised processes

running without privileges. This instance opens the door to cross-VM attacks

in cloud environments. As in the previous section, the threat model, attack

principle, and new implementation considerations are described.

Section 4.5 describes the experimental setup, and evaluates the capacity

of both covert channels under the binary symmetric model.

Section 4.6 discusses potential countermeasures. Finally, Section 4.7 sum-

marises the contributions of this chapter.

4.2 Sources of Contention

The working principle of memory controllers is introduced in Section 2.2.5.

Delays can be generated via the bank scheduler (see Figure 4.1), as requests

from different processes are mixed in the same bank buffer. If process A is

the only one requesting data in a bank, its memory accesses will be served

immediately. However, if another process B starts requesting data in the

same bank as process A, requests of A and B will compete for scheduling.

Because the load on the bank scheduler increases, requests of process A can

be delayed.

Delays may also be introduced via the channel scheduler, since it arbi-

trates requests for several banks. If there are no other requests than for

bank i, these will systematically win arbitration and be served immediately.

However, if other requests for bank j, with j 6= i, compete for access to the

channel, the load on the channel scheduler will increase, resulting in requests
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Figure 4.1: Memory controller representation.

for bank i to be delayed.

Finally, contention can be introduced via the DRAM row-buffer. Within

the same bank, if there are no other requests than for row m, these will sys-

tematically result in row-hits. However, if other requests in row n interfere,

with m 6= n, the row-buffer will alternatively be updated with rows m and

n, resulting in frequent row-misses.

4.3 Privileged Native Covert Channel

This section presents the basic concept to generating contention via the chan-

nel scheduler through a privileged covert channel in a native environment.

4.3.1 Threat Model

The threat model assumes two processes, a receiver and a sender, willing to

share information. The security policy forbids these two entities from com-
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municating directly. The sender possesses sensitive information and intends

to transmit this information to the receiver. Entities each have their own

address space, which is dissociated in physical memory. They are running on

different cores. Both entities require root privileges, and have knowledge of

the DRAM addressing functions.

4.3.2 Principle

The proposed covert channel exploits timing variations upon uncached mem-

ory accesses. The receiver and sender both occupy space in X, the set

of DRAM banks served by a single channel. The receiver “listens” to the

channel by continuously performing uncached memory accesses at a pre-

determined address, i.e. bank x0 with x0 ∈ X. The sender writes on the

channel by creating conflicts on the resources involved in the memory ac-

cesses of the receiver. The sender generates bit values as follows,

• A zero is written by performing uncached memory accesses in bank x1,

with x1 6= x0 and x1 ∈ X. Because the channel scheduler only serves

banks x0 and x1, contention is negligible. Thus, the receiver’s memory

access in bank x0 will result in a “normal” latency, which is interpreted

as a zero.

• A one is written by performing uncached memory accesses in all banks x

comprised in X, except for bank x0. This operation causes the channel

scheduler to serve requests for every bank within X, which generates

an observable contention. Thus, the receiver’s memory access in bank

x0 will increase in latency, which is interpreted as a one.

Algorithm 1 summarises how bit values are encoded and decoded across

the native covert channel. An Access(x) operation consists in performing an

uncached memory access in bank x. A Probe(x) operation is equivalent, at

the exception that the elapsed time of the operation is returned to its caller.

In order to write a zero, the sender needs to perform memory accesses in

a different bank than the receiver. Doing so prevents interference from the

DRAM row-buffer. Indeed, if both entities were to read from the same bank,
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Algorithm 1: Memory Controller Native Covert Channel Protocol
x: DRAM bank;
X: set of DRAM banks x;
N : number of bits to send;
send[N ], recv[N ]: respective buffers of sender and receiver;

Sender
for all i ∈ [0;N ] do

if send[i] == 1 then
{Access many banks at once}
Access( x1, ..., xX−1 | x 6= x0 );

else
{Access one bank}
Access( x1 | x1 6= x0 );

end if
end for

Receiver
for all i ∈ [0;N ] do
{Timed access to one bank}
t = Probe( x0 );
if t > threshold then

recv[i] = 1;
else

recv[i] = 0;
end if

end for

they would most likely read from different rows (a bank contains thousands

of rows). As a result, reading alternatively from the sender’s row and the

receiver’s row would cause the row-buffer to be systematically updated. Thus,

memory accesses would result in a majority of row-misses, and dramatically

increase in latency. Because this attack exploits exclusively the memory

controller, such interference is undesirable. Furthermore, it is preferable to

keep the sender active upon sending a zero, in order to compensate the effect

of other microarchitectural components (e.g. memory bus). The objective

is to demonstrate the vulnerability in the memory controller, therefore its

effect must be isolated from other sources of contention.

4.3.3 Design Considerations

The mechanism for exposing timing variations is relative to the microarchi-

tecture, not the above OS and applications. Therefore, porting this imple-

mentation from Linux to Windows or MacOS would not benefit the study in

any way. The native, privileged covert channel works in two phases. First,

each entity must identify a virtual address which maps to the desired DRAM

bank(s). Then, both processes synchronize to exchange information covertly.

In the first phase, processes read the restricted /proc/self/pagemap page
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translation table to compute the pointer’s physical address. Physical-to-

DRAM address translation (channel, rank, bank, row, column) requires knowl-

edge of the DRAM addressing functions. These vary from one processor to

another, and must be reverse-engineered if not disclosed by the manufac-

turer1. The DRAM address mapping was computed with the reverse engi-

neering tool first presented in [122]. Prior to launching the covert channel,

entities can decide on which DRAM banks to use specifically.

In the second phase, entities use the operating system wall-clock to syn-

chronize. The clflush instruction is used to flush the cache upon each

memory access, so as to force the request to be served from DRAM. Because

an uncached memory access is higher in latency than a cached one, the cpuid

instruction is used to prevent out-of-order execution of the time-stamp reads.

Finally, time-stamps are read with the rdtsc and rdtscp instructions2.

4.4 Unprivileged Cross-VM Covert Channel

This section presents the application of the memory controller covert channel

to an unprivileged attacker in a cross-VM scenario.

4.4.1 Threat Model

Similarly to the threat model presented in Section 4.3.1, the sender and

receiver are willing to share information illegitimately. However, they are

now running in separate VMs, with each VM having a dedicated address

space. The hardware platform features a multi-core processor, such that

the hypervisor schedules each VM on a different core. The security policy

enforced ensures memory isolation, access control, and does not present any

software vulnerability. The sender and receiver are both unprivileged user

programs. Memory accesses are handled by the guest operating system, itself

managed by the hypervisor or host operating system.

1DRAM addressing functions on the Ivy Bridge test platform (see Table 4.1): BA0=
b13 ⊕ b17; BA1= b14 ⊕ b18; BA2= b16 ⊕ b20; and Rank= b15 ⊕ b19

2The source code of the native covert channel is available at https://github.com/b

sepage/mc2c.git
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4.4.2 Principle

In Section 4.3, the covert channel is designed for a privileged adversary model.

Indeed, an unprivileged attacker is unable to read the /proc/self/pagemap

file, which is necessary for virtual-to-physical address resolution. Yet, the

attacker needs to find addresses in its virtual address space which map to

different DRAM banks.

Rather than searching for specific banks in a process’ address space, sev-

eral virtual pages were mapped in order to resolve how these are spread across

physical memory. For each virtual page, the base pointer was translated into

a physical address, and then converted into bank address, according to the

platform’s DRAM addressing functions. The following observations were

made,

1. A single (page-aligned) virtual page is mapped to a single bank.

2. Virtual pages within the same logical address space are mapped to

different DRAM banks.

These observations suggest that the sender only requires allocating multi-

ple virtual pages, and that each page will map to a different bank. However,

there is a probability that one page will be mapped to the same bank as the

one accessed by the receiving-end. Such scenario would cause row-buffer con-

flicts to occur. Accessing different rows triggers row-buffer updates, which

would add a significant delay into the receiver’s accesses. Algorithm 2 sum-

marises how bit values are encoded and decoded across the cross-VM covert

channel. The receiver “listens” to the channel by continuously performing

uncached memory accesses at a fixed random location, i.e. virtual page r0.

Given a set S of virtual pages s in the sender’s virtual address space, the

sender generates bit values as follows,

• A zero is written by performing uncached memory accesses in virtual

page s0, with s0 ∈ S. Because the channel scheduler serves at most

two banks (i.e. one mapping to s0 and one mapping to r0), contention

is negligible. Thus, the receiver’s memory access in bank r0 will result

in a “normal” latency, which is interpreted as a zero.
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Algorithm 2: Memory Controller Virtual Covert Channel Protocol
r: virtual page in receiver’s address space;
s: virtual page in sender’s address space;
S: set of virtual pages s;
N : number of bits to send;
send[N ], recv[N ]: respective buffers of sender and receiver;

Sender
for all i ∈ [0;N ] do

if send[i] == 1 then
{Access many pages at once}
Access( s0, ..., sS−1 );

else
{Access one page}
Access( s0 );

end if
end for

Receiver
for all i ∈ [0;N ] do
{Timed access to one page}
t = Probe( r0 );
if t > threshold then

recv[i] = 1;
else

recv[i] = 0;
end if

end for

• A one is written by performing uncached memory accesses in all banks

s comprised in S. This operation causes the channel scheduler to serve

requests in many banks at once, which generates an observable con-

tention. Thus, the receiver’s memory access in bank r0 will increase in

latency, which is interpreted as a one.

Figure 4.2 shows the latency of the receiver’s memory accesses, with the

sender alternatively being active and inactive. The latency graph shows that

when the sender is active, the receiver presents an overhead of 6.5 CPU

cycles on its accesses. The timing variation indicates that the proposed

strategy is valid for creating a covert channel. This new approach has the

benefit that it completely discards the virtual-to-bank address translation

procedure. Therefore, the attacker neither requires privileges, nor knowledge

of the platform’s DRAM addressing functions. In this configuration, the

attack can be applied to virtual environments, where physical addresses are

virtualized by the hypervisor.
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Figure 4.2: Effect of active sender upon latency of receiver’s memory accesses
(Ivy Bridge setup).

4.4.3 Design Considerations

The cross-VM, unprivileged covert channel works in two phases. In the first

phase, the sender maps and locks memory pages without reverse-engineering

their physical location. Note that the sender and receiver no longer require

agreeing on specific DRAM banks. In the second phase, entities respectively

read or probe their memory accesses to encode and decode bit values. Prob-

ing and accessing is performed using the clflush, cpuid, rdtsc, and rdtscp

instructions.

4.5 Evaluation

This section presents the evaluation of the covert channel capacity under the

binary symmetric model, in both native and virtualised environment. Three

Intel x86 microarchitectures are tested.

Table 4.1: Experimental setups.

Setup Processor
CPU

Frequency
Memory

#DRAM
banks

Ivy Bridge Intel i5-3210M 2.5 GHz 1×4GB DDR3 16
Broadwell Intel i7-5500U 2.4 GHz 1×8GB DDR3 16
Skylake Intel i5-6300U 2.4 GHz 1×8GB DDR4 16
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4.5.1 Experimental Setup

The experimental setups used for characterising the channel capacity is pre-

sented in Table 4.1. The Kernel Virtual Machine [96] hypervisor is used to

manage virtual machines, and each VM is operated by a Debian distribu-

tion (Linux kernel version 4.19.0). All setups feature a dual-core processor,

allowing us to lock the sender’s and the receiver’s VM onto different proces-

sor cores. The virsh edit command is used to assign a specific cpuset to

the vcpu attribute. All the setups feature 16 DRAM banks. Note that a

commercial infrastructure- or platform-as-a-service server system will likely

feature greater amounts of DRAM, i.e. the occurrence of row-buffer inter-

ference will drop accordingly. Therefore, the proposed setup represents a

worst-case scenario for the attacker.

4.5.2 Channel Capacity

The channel capacity is measured by modelling the covert channel as a binary

symmetric channel (see Section 3.3.13). It is a function of the raw bit rate r

and the binary entropy H2, and was calculated using Equations 3.1 and 3.2.

Figure 4.3 compares the capacity C and error probability p against a raw

bit rate r ranging from 100 bps to 1300 bps for the native scenario (Figure

4.3(a)), and from 50 bps to 350 bps for the virtualised scenarios (Figures

4.3(b), 4.3(c), and 4.3(d)). Measures were taken by sending a fixed-size

message and counting the number of bit flips on the receiving-end. The error

probability p was then calculated as the number of bit flips divided by the

number of bits sent.

In the native scenario (Figure 4.3(a)), the error probability stays below

0.1 for bit rates of up to 1250 bps. The channel capacity reaches up to 729

bps, with an error probability of 6.25%. In the virtualized scenarios, the

Ivy Bridge (Figure 4.3(b)), Broadwell (Figure 4.3(c)), and Skylake (Figure

4.3(d)) setups respectively achieve a maximum capacity of 90, 95, and 69

bps. The error probability remains below 0.1 for a raw bit rate of up to 175

bps across the three setups. Results are reported in Table 4.2.

Virtualization has a significant impact on the effective channel capacity,
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Figure 4.3: Effective capacity and error probability measured against raw bit
rate.

as it brings additional sources of noise. First, sender and receiver compete

with each other to be scheduled by the hypervisor. Second, the sender and

receiver are not able to use the operating system wall-clock to synchronise,

as they run in separate VMs. The receiver might sample at a different rate

than the sender can transmit, with the bias increasing over time. Third,

programs executing concurrently (e.g. hypervisor) can alter the state of the

channel scheduler, bank scheduler, or row-buffer. Therefore, it is normal that

the cross-VM version of the covert channel achieves lower performance than

its native counterpart.
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Table 4.2: Experimental results.

Setup Environment Bit rate Error rate Capacity

Ivy Bridge Native 1100 bps 6.25% 729 bps
Ivy Bridge Virtualized 150 bps 7.8% 90 bps
Broadwell Virtualized 150 bps 7% 95 bps
Skylake Virtualized 100 bps 5.6% 69 bps

4.6 Mitigation

Section 3.5 showed that the memory controller covert channel achieves a

severity score of 4.7 (CCSS), making it more practical than any known cache-

based covert channels. Potential mitigation strategies are discussed here.

Memory controller-based (and DRAM row-buffer) covert channels rely

on uncached memory accesses. Therefore, one countermeasure consists in

disabling or restricting access to the clflush instruction. This mitigation

technique would require architectural changes resulting in increased complex-

ity. In addition, it is still possible to invalidate cache lines by priming a cache

set or a cache line, as in the Prime+Probe and Evict+Time attacks.

Auditing-based techniques have been proposed in the past [50]. The

systematic flushing of the cache causes a very high number of cache misses,

which can be monitored in order to detect abnormal behaviours. However,

auditing usually results in high numbers of false positives. Further work is

required to assess whether this is a suitable approach.

Wang et al. [154] proposed an alternative hardware design of a memory

controller. They achieve temporal isolation between different security do-

mains, at the cost of a memory latency ranging from 60% to 150%. So far,

there hasn’t been any countermeasures relying on spatial isolation.

4.7 Summary

This chapter presented two instances of microarchitectural covert channel

attacks using the integrated memory controller. The first attack is privileged

and was tested in a native environment. It achieved a capacity of up to 729

88



Chapter 4. The Memory Controller-based Covert Channel

bps (raw bit rate of 1100 bps). The second attack is unprivileged and was

tested in a virtualised environment. It achieved a capacity of up to 95 bps

(raw bit rate of 150 bps). The measurement study presented in Chapter

3 showed that the memory controller covert channel obtains a CCSS score

of 4.7, where cache-based covert channels never go as high as 3.8. CVSS

scoring showed similar severity impacts, with 4.9 for the proposed attack

against 4.9 and 4.7 for cache-based counterparts (see Table 3.2). The pro-

posed covert channel is a trade-off between performance and considerations

for operational constraints. The results of this work have been reported to

Intel for responsible disclosure.

Future work should address the problem of finding countermeasures that

prevent exploitation of the memory controller and the DRAM row-buffer

resource. In parallel, this attack should be further developed in order to

expand it to multi-processor platforms, where the communicating entities

belong to different NUMA nodes. Mechanisms for bi-directional communi-

cation should also be investigated, thus allowing the implementation of more

advanced protocols. As mentioned earlier, the vulnerability exposed in this

chapter is independent from the operating system. However, the generalisa-

tion of this attack to other ISA such as ARM or RISC is required, as the

memory controller implementation will have different properties. The mem-

ory controller may present other vulnerabilities on ARM- and RISC-based

microarchitectures.
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In this chapter, a new instance of the memory bus covert channel is proposed,

which challenges the set of countermeasures against timing channels, whether

these are already deployed or still theoretical. The resulting implementation

shows that x86 microarchitectures still present salient vulnerabilities, and that

state-of-the-art defence strategies—even theoretical ones—remain unsuccess-

ful at hindering data leakage in multi-tenant environments.
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5.1 Introduction

Microarchitectural covert and side channels have been increasingly popu-

lar in the last decade, and even more since the release of the Spectre and

Meltdown attacks [81, 89]. In response, a plethora of mitigation strategies

has been proposed in academia, from new hardware designs through soft-

ware partitioning to anomaly detection. These defence strategies often aim

at closing a Prime+Probe [116] covert or side channel, omitting attacks

which are not based on cache exploitation. In parallel, new attacks consider a

set of countermeasures, usually the ones already deployed in the targeted en-

vironment, and aim at demonstrating a residual threat despite these existing

countermeasures. A trend that is observed is that attackers often disregard

the latest developments in terms of defences, arguing that these are not de-

ployed by OS or cloud providers. Therefore, it is difficult to assess the novelty

of these attacks, as they might already have been addressed by recent works.

In this chapter, a retrospective analysis on state-of-the-art attack and

defence techniques is performed. To do so, a new microarchitectural covert

channel is proposed which allows cross-VM communication in a public cloud,

while discarding the usage of artifacts which are theoretically made unavail-

able by recently proposed countermeasures. Covert and side channel attacks

differ in the attack scenario, however they share the underlying mechanisms

for leaking information. Therefore, the study accounts for all defence strate-

gies, as long as they are relevant with the covert channel attack scenario (e.g.

constant-time techniques).

Auditing strategies have been proposed against timing channels [175, 9,

31, 84]. These aim at detecting abnormal behaviours at runtime, and deploy-

ing reactive measures accordingly (e.g. interrupting the suspected workload,

migrating a VM, temporarily injecting noise, etc.). Because the sustain-

ability of the auditing approach is highly correlated to the ability of avoiding

false positives, multiple machine learning-based techniques have also emerged

[119, 8, 106, 23, 107]. The main drawback of auditing is that it is usually

tailored for specific workloads such as cryptographic computations. Thus

its applicability against microarchitectural covert channels remains an open
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question, as they might not have an easily identifiable signature. Further-

more, auditing does not aim at closing a malicious behaviour, but at detecting

it. While the decision is made to apply reactive measures, sensitive informa-

tion such as cryptographic keys might have already been leaked. Auditing

strategies are not capable of closing a microarchitectural covert channel in

a deterministic way, and their practicality has already been questioned due

to their performance cost [56]. Therefore, they are not considered viable

countermeasures against such attacks. The work presented in this chapter is

based on the publication [132].

5.1.1 Structure of this Chapter

Section 5.2 presents multiple strategies to closing timing channels, from noise

injection to resource partitioning. Requirements on how to bypass these

defence mechanisms are extracted, in order to establish a strategy for the

implementation of the proposed covert channel.

Section 5.3 presents the new instance of the memory bus-based covert

channel. It discusses the adversary model and puts forward several techniques

in order to render the countermeasures presented in Section 5.2 obsolete.

Section 5.4 addresses the evaluation of the proposed attack. The covert

channel is modelled under the binary symmetric model and its performance

are measured in a commercial environment. The effects on microarchitectural

states are also discussed.

Section 5.5 suggests different approaches to closing the proposed covert

channel, and performs a comparison with the ARMv8.2-A instructions in

order to identify whether this instance could also be deployed on mobile

platforms. Finally, Section 5.6 summarises the contributions of this chapter.

5.2 Design Goals

This section reviews the countermeasures introduced in Section 2.4.2 in order

to derive design goals for the new covert channel, and performs a comparison

with state-of-the art covert channel attacks.
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5.2.1 Deriving Design Requirements

As surveyed in Section 2.4.2, several proposals consist of jittering the times-

tamps of high-resolution timers [62, 152, 99, 93], such that it prevents the

receiver to obtain accurate timestamps. The first objective is thus to elimi-

nate the usage of the rdtsc and rdtscp high-resolution timers which could

become unreliable due to noise injection countermeasures. The same require-

ment applies to operating systems clock sources which lack accuracy. In order

to account for noise injection on high-resolution timers, the following condi-

tion is set:

Design requirement 1: Noise injection on timers

The covert channel shall not rely on the rdtsc nor rdtscp instruction

for measuring timing variations.

Noise can also be injected in the cache hierarchy in order to prevent the

victim’s accesses to conflict with the attacker’s cache sets, or to prevent the

attacker from distinguishing cache-hits and cache-misses [123, 44]. Eventu-

ally, this approach inhibits the attacker’s capability from learning about the

victim’s working cache set, and hinders covert channels that rely on congru-

ency, e.g. Prime+Probe or Evict+Reload [116]. Other works suggested

“fuzzing” the cache replacement policy such that the attacker cannot have

assurance of the presence of the victim’s data in cache memory [91, 45, 168].

In order to build a covert channel that remains resilient in the presence of

noise injection countermeasures, the second design goal consists in making

the covert channel independent from the state of cache memory:

Design requirement 2: Noise injection on caches

The attacker cannot rely on the latency of cache accesses. Therefore,

data caches such as the L1-D, the L2, and the LLC shall not be used

as a communication medium.

The third category of countermeasure is software partitioning. As sur-

veyed in Section 2.4.2, software partitioning includes cache colouring tech-

niques which aim at enforcing security domains within the data caches, by
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means of address resolution bits (e.g. two colouring bits allow defining four

security domains) [158, 155, 78]. This approach prevents an attacker ex-

ploiting congruency. The second design choice already allows circumventing

these countermeasures. However, other software partitioning techniques have

been proposed, namely disabling page sharing [98] and disabling SMT [17].

The former allows hindering attacks that leverage shared memory such as

Flush+Reload and Flush+Flush [56]. The latter prevents two hard-

ware threads from exploiting contention among CPU-level resources. There-

fore, the third design choice is defined as follows:

Design requirement 3: Software partitioning

The covert channel must remain functional when shared memory and

SMT are disabled. Also, set-associative caches shall not be used as a

communication medium.

Finally, hardware partitioning countermeasures have been studied, to pro-

vide physical isolation among multiple cache sets [37, 118, 158], to enforce

time-division multiplexing in the memory controller [154], or to apply prior-

ities to access the on-chip network [156]. Similarly to cache colouring, these

techniques aim at enabling several security domains to co-exist while pro-

tecting microarchitectural resource from being abused. Gruss et al. [56] also

suggested making the rdtsc and clflush instructions privileged. This con-

sideration is also discussed in Section 4.6. In order to account for hardware

partitioning, the following condition is set:

Design requirement 4: Hardware partitioning

The covert channel shall not rely on either the memory controller

or the interconnect as a communication medium. Furthermore, the

attacker cannot execute privileged code. The rdtsc and clflush

instructions are considered privileged and are thus unavailable.
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5.2.2 Comparison with State-of-the-Art

None of the LLC-based cross-VM covert channels [124, 166, 92, 100, 101] meet

the second design requirement. These cannot meet requirement 3 either as

they exploit caches’ set-associativity. Ristenpart et al. [124] and Xu et al.

[166] require accessing (privileged) page tables in order to find congruent

addresses, thus they also fail to meet requirement 4.

The MOB covert channel [140] depends on the availability of SMT. This

attack fails to meet requirements 1 and 3. The DRAM row-buffer [122] and

memory controller [133] attacks fail to meet requirements 1 and 4. Both

rely on cache flushing in order to force memory accesses being served from

DRAM, and the memory controller covert channel exploits a microarchitec-

tural component which has been discarded.

All existing covert channels rely on the rdtsc instruction and thus fail to

meet requirement 1 and 4. Also, the memory bus covert channel proposed

by Wu et al. [164] doesn’t meet requirement 4 as they did not specify how

they implemented uncached memory accesses—hence we assume that they

proceeded with the clflush instruction. Liu et al. [93] claimed that their

own memory bus covert channel can be closed by injecting noise in timers.

We show in this paper that it is still possible to design the covert channel

Table 5.1: Cross-VM covert channel attacks against desired design goals.

Attack Exploited resource D1 D2 D3 D4

[124] Last-level cache - - - -
[166] Last-level cache - - - -
[164] Memory bus -   -
[93] Memory bus -   -
[122] Row-buffer -   -
[92] Last-level cache - - - -
[101] Last-level cache - - - -
[140] MOB -  - -
[133] Memory controller -   -
[100] Last-level cache - - - -

Proposed attack Memory bus     
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while bypassing their defence strategy.

More generally, the memory bus covert channel was initially designed to

overcome the drawbacks of cache-based attacks, namely the addressing uncer-

tainty (e.g. unprivileged virtual-to-physical address translation in virtualised

environment), the scheduling uncertainty (e.g. synchronisation errors), and

cache physical limitations (e.g. exploiting the L1-D doesn’t allow cross-core

communication). In this paper, we demonstrate that it also enables bypass-

ing state-of-the-art countermeasures against timing channels.

5.3 Building a Stealthy Covert Channel

This section presents an instance of the memory bus covert channel that

meets all the requirements established in Section 5.2.

5.3.1 The Memory Bus-based Covert Channel

In a multi-threaded application, shared memory regions may be accessed con-

currently. In order to prevent undesirable situations such as race conditions,

instructions can be performed atomically. In an atomic memory operation,

the requested cache line is locked in order to prevent its modification by an-

other thread. A singularity occurs when accessing a memory region which

spans across two cache lines.

Wu et al. [164] observed that, upon accessing a cache line-crossing region

(a.k.a. exotic), atomicity was enforced by locking the memory bus. By

guaranteeing exclusive access of the shared bus to one thread, others would

be unable to modify the cache lines of interest. When the exotic operation

is completed, the memory bus is unlocked.

Moreover, Wu et al. [164] noticed that a similar behaviour happens on

NUMA architectures. Atomic accesses to exotic regions result in every out-

standing load/store operation to be completed across all CPUs before the

atomic operation is performed [71]. This strategy effectively guarantees that

no other memory operation can affect the cache lines of interest. However,

it also introduces significant timing variations which are visible across all
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CPUs.

A covert channel can be created based on the effect of exotic memory ac-

cesses: a one is transmitted by generating atomic operations on a cache line-

crossing region, a zero is transmitted by remaining idle for a fixed amount of

time. Concurrently, the receiving-end probes its own accesses and interprets

low and high latency accesses as zeroes and ones.

5.3.2 Threat Model

There are two communicating entities, a sender and a receiver. The sender

exists in the victim’s environment in the form of a trojan or any other form of

malicious program. The receiver exists in the attacker’s environment. Both

communicating entities execute without privileges. The instances of the vic-

tim and the attacker are scheduled on separate cores of the same processor.

The hypervisor is assumed to be free of any software vulnerability, and in-

stances are logically separated. Thus sender and receiver do not share any

memory region. Finally, it is assumed that state-of-the-art countermeasures

are operating in the environment of both the sender and the receiver, and

that these countermeasures impose the requirements listed in Section 5.2.

5.3.3 Implementation

Wu et al. [164] designed a cross-VM covert channel based on the memory bus

lock behaviour. However, as described in Section 5.2, their covert channel

can be closed with various countermeasures. Here, we demonstrate how to

design the memory bus covert channel in a way that meets requirements 1

to 4. The covert channel can be broken down into three primitives:

Sending-end

In order to force atomicity, a lock prefix can be attached to an instruction.

The lock signal can only be applied to read-modify-write operations whose

destination operand is a memory location. Read-modify-write operations

combine a load, an arithmetic, and a store operation. We choose the xchg
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instruction which simply swaps the contents of its two operands, and auto-

matically asserts a lock signal if the first operand is a memory location. In

order to transmit a one, contention is generated by passing to the assem-

bly function a pointer with a base address aligned on a cache line boundary

added with an offset of 63 bytes (Listing 1). In order to transmit a zero, the

same assembly function can be passed a pointer with a base address aligned

on a cache line boundary. Also, promoting the operation to 64-bit wide with

the rex.w prefix allows reducing the global time of execution by half. The

full source-code of the sending-end is provided in Appendix A.

1 ; RDI = pointer to exotic or "normal" region

2 REX.W XCHG [RDI], RAX ; read-modify-write operation

3 RET

Listing 1: Transmitting a symbol.

Receiving-end

The x86 Streaming SIMD Extension provides instructions to perform direct

read and write operations to main memory without affecting the cache. A

non-temporal store of double quadword from an xmm register into a 128-bit

memory address is performed with the movntdq instruction [70, 58]. The

receiver can use this instruction to accelerate the probing and reduce er-

rors due to cache pollution of other processes (see Listing 2). More impor-

tantly, it prevents the cache-miss hardware performance counter from incre-

menting, inhibiting countermeasures based exclusively on the monitoring of

cache activity. The mfence (lines 4 and 6) instruction plays two important

roles. Firstly, it prevents re-ordering between the non-temporal store (line

5) and the reading of the counter (lines 3 and 7). Secondly, it allows flush-

ing the write-combining (WC) buffer, thus ensuring of the execution of the

non-temporal store in-order. Non-temporal operations follow WC semantics,

which specify that data must not be cached so as to reduce cache pollution

(i.e. when data is used only once). Non-temporal operations are combined in

the WC buffer, and delayed until the buffer becomes full, or upon a serialising
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event (e.g. mfence, cpuid, lock, etc.) [70]. We note that the size of the WC

varies from one microarchitecture to another, however it can take the size of

several cache lines and one single movntdq might not be enough to fill it up.

Thus the second mfence instruction (line 6) ensures that the non-temporal

store is not delayed until the WC buffer is full. The full source-code of the

receiving-end is provided in Appendix B.

1 ; RSI = pointer to counter

2 ; RDI = pointer to "normal" region

3 MOV RDX, [RSI] ; read counter value

4 MFENCE ; memory barrier

5 MOVNTDQ [RDI], XMM0 ; non-temporal store

6 MFENCE ; memory barrier

7 MOV RAX, [RSI] ; read counter value

8 SUB RAX, RDX ; compute elapsed time

9 RET

Listing 2: Receiving a symbol.

Counting-thread

In order to discard the usage of the TSC, it is replaced with a counting thread

using the inc instruction (see Listing 3). The counter value is systematically

written to memory, so as to make it visible to the receiving-end. We note

that this will require the receiver to have access to a second logical CPU,

and that it does not alter the resolution of measurements—in fact it can

even improve it [129].

1 ; RDI = pointer to counter

2 XOR RBX, RBX ; zeroise register

3 _LOOP:

4 INC RBX ; increment counter value

5 MOV [RDI], RBX ; write counter value to cache

6 JMP _LOOP

Listing 3: Counting thread.
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Algorithm 3: Memory Bus Covert Channel Protocol.
MS1: exotic memory region within sender’s address space;
MS0: normal memory region within sender’s address space;
MR: normal memory region within receiver’s address space;
N : number of bits to send;
send[N ], recv[N ]: respective buffers of sender and receiver;

Sender
for all i ∈ [0;N ] do

if send[i] == 1 then
{Exotic access}
Access( MS1 );

else
{Normal access}
Access( MS0 );

end if
end for

Receiver
for all i ∈ [0;N ] do
{Timed normal access}
t = Probe( MR );
if t > threshold then

recv[i] = 1;
else

recv[i] = 0;
end if

end for

The proposed protocol is presented in Algorithm 3. The sender performs

atomic memory accesses either in a cache line-crossing region (i.e. exotic)

or in a single cache line (i.e. normal), with the Access function referring

to Listing 1. Meanwhile the receiver starts the counting thread, and probes

memory accesses into a single cache line of its own userspace, with the Probe

function referring to Listing 2.

The entire premise of the covert channel is based on the ability for the

receiver to observe a timing variation depending on the sender’s activity. In

our AWS EC2 m5d.large instance pair (see Table 5.2), the receiver’s accesses

to DRAM take an average of 935 increment iterations when the sender is

inactive, and 2403 increment iterations when the sender is active. Therefore,

there is an average performance overhead of 1468 increment iterations per

memory access. An increment iteration is the time that it takes for the

counting thread to perform one increment operation (see Listing 3). On

the AWS EC2 m5d.large, we measured that it takes 1498034 CPU cycles to

perform 220 iterations, that is an average of 1.42 CPU cycles per increment

operation. This means that overhead caused by the sender’s activity amounts

to 2084 CPU cycles. Thus it is trivial for the receiver to differentiate the

binary values sent across the covert channel.
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5.4 Evaluation

This section presents the evaluation of the covert channel capacity in the

AWS EC2 commercial environment. Three x86 microarchitectures are tested.

This Section also discusses the effects of the attack on microarchitectural

states, in regards to the requirements established in Section 5.2.

5.4.1 Experimental Setup

The testing environments are summarised in Table 5.2. It consists of three

AWS EC2 instance pairs featuring different x86-64 microarchitectures, namely

Intel Xeon E5-2676v3 (released in 2015), Intel Xeon Platinum 8175 (released

in 2017), and AMD EPYC 7571 (released in 2019). The tests are repeated

on each instance pair. Both the sender and the receiver run in their own

instance and have access to two virtual CPUs. Furthermore, dedicated in-

stances are used in order to ensure that sender and receiver are scheduled on

the same processor.

5.4.2 Channel Capacity

The error rate (Figure 5.1a) is computed by counting the number of bit flips

over a 256-bit message. At a bitrate of 480 bps, the covert channel reaches

an error rate as low as 5.46% on the Intel Xeon Platinum 8175 platform.

The channel capacity (Figure 5.1b) is computed under the binary symmetric

model (see Section 3.3.13). At a bitrate of 480 bps, the covert channel reaches

a capacity of up to 333 bps on the Intel Xeon Platinum 8175 platform. The

same order of magnitude as the original proposal is achieved [164]. Results

Table 5.2: Error rate and capacity (raw bitrate of 480 bps).

Instance type Microarchitecture Error rate Capacity

m4.large Intel Xeon E5-2676v3 8.31% 281 bps
m5a.large AMD EPYC 7571 12.3% 221 bps
m5d.large Intel Xeon Platinum 8175 5.46% 333 bps
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(a) Error rate (%) as a function of the bit rate (bps).

(b) Channel capacity (bps) as a function of the bit rate (bps).

Figure 5.1: Error rate and capacity.

are summarised in Table 5.2. In addition, Figure 3.2 shows that this covert

channel achieves the highest severity score in the CCSS framework. This is

explained by its ability to circumvent countermeasures previously discussed,

its high channel capacity, and its convenience to deploy in the wild.

5.4.3 Effects on Microarchitectural States

The proposed covert channel successfully meets all the design requirements

previously established. First, it has been established that a high resolution

timer is required in order to measure the latency of performing memory

accesses. A timing channel can effectively be mitigated if the values read

from this counter are too noisy. Design requirement 1 intends to prevent

such countermeasure. In order to gain assurance that neither the rdtsc nor

the rdtscp instructions are used, the entire binaries were disassembled in

order to confirm that these instructions are not present. The receiving-end
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relies exclusively on the counting thread in order to benchmark the execution

of memory accesses, and there are no other benchmarking operations taking

place in the code. Only the evaluation of the channel capacity requires using

the TSC. Beyond the testing phase, this operation is not required.

Second, the covert channel is based on the ability for the sender and re-

ceiver to manipulate and observe microarchitectural states. In the case of

cache-based covert channels, this microarchitectural state is the presence of a

cache line in a cache set. Injecting noise in caches, such that the receiver and

sender can lose the above-mentioned capability, can effectively mitigate the

attack. Design requirement 2 intends to thwart such countermeasures. The

sending-end exploits the bus locking behaviour for atomic accesses to cache-

line crossing regions (see Section 5.3.1). The resulting performance cost is

generated system-wide. Thus all memory accesses are impacted, whether

they target caches or DRAM. Also, the receiving-end benchmarks uncached

accesses only. On x86 microarchitectures, non-temporal instruction are de-

signed to fetch data directly to DRAM. Therefore, noise injection in caches

does not affect the microarchitectural state leveraged by the sender and re-

ceiver, since they only communicate via DRAM accesses. Noise injection on

caches would be completely oblivious to this covert channel.

Third, software partitioning enforces spatial isolation over certain proces-

sor resources, such that co-tenants cannot share a vulnerable microarchitec-

tural state. Design requirement 3 accounts for such countermeasures, some

of which are already deployed by cloud providers. It is not possible to gain

control over the disabling of SMT on the commercial platform, and dedicated

instances from the same AWS account may share hardware CPUs. Therefore,

an additional experiment is reproduced in a lab environment, such that SMT

can be disabled and processes can be pinned to separate hardware CPUs. The

covert channel was launched across two native processes on an AMD Ryzen

Threadripper 1950X processor (Zen), which features 16 cores. SMT was

disabled from the Basic Input Output System (BIOS menu), and each com-

municating was set to different cores via the (privileged) taskset command.

This command was only used for the testing of this design requirement—it is

not necessary for deploying the attack. This lab experiment shows that the
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proposed covert channel allows cross-core communication, hence it cannot be

mitigated on commercial platforms where SMT is disabled. We note that this

lab experiment is carried out solely for the purpose of demonstrating compli-

ance against design requirement 3, and is therefore not subject to a channel

capacity evaluation. Finally, the cache architecture (e.g. set-associative) is

not relevant with the memory bus. Firstly, because it does not rely on mod-

ulating a shared cache set. And secondly, because non-temporal accesses

bypass the cache on x86 platforms. Therefore, cache colouring cannot have

a mitigating effect on the proposed covert channel.

Finally, hardware partitioning comprises different forms of segregation

which would be enforced at the hardware level, from isolated cache parti-

tions through time-multiplexing on certain scheduling resources to privileged

instructions. The tests were performed from user accounts, and the disas-

sembling of the binaries showed that neither the rdtsc nor the clflush—

theoretically privileged—are used. While the memory controller is solicited

in DRAM accesses, it is not responsible for generating timing variations.

Thus time-multiplexing over the memory controller or the interconnect can-

not conceal timing variations caused by the bus lock behaviour. As for cache

partitions, these are irrelevant with the proposed attack since timing varia-

tions do not cause any cache accesses. As a result, it can be asserted that

design requirement 4 has been met.

5.5 Discussion

This section considers new approaches to mitigate the proposed covert chan-

nel, and discusses the effect of cache line-crossing atomic accesses in ARMv8.2

microarchitectures.

5.5.1 Closing the Memory Bus Covert Channel

Auditing strategies claim to have a system-wide approach to mitigating leak-

age channels, as other strategies allegedly focus on specific attacks. Yet, au-

thors of these auditing mechanisms never included the bus lock counter into
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their model inputs. Further work is required in order to verify whether this

event influences the rate of false positives. The long-term solution to closing

cross-VM covert channels could be to challenge directly the adversary model.

It is assumed that each communicating entity is running in its own VM, and

that the two VMs are scheduled on the same processor. A new VM alloca-

tion policy where one tenant can only be a neighbour of a small set of other

would significantly reduce the chances for the attacker to achieve or main-

tain co-residency with the instance of the victim. This idea is first explored

by Wu et al. [164], however it must be balanced with the performance cost

and would only become practical as a result of a risk analysis initiated by

cloud providers. Other techniques for closing the memory bus channel are

discussed in Section 6.2.

Another alternative could be to develop state flushing [52] as a mean to

interrupt the memory bus covert channel. State flushing consists of resetting

microarchitectural states regularly during execution. For example, the x86

ISA features the wbinvd instruction which writes-back to system memory

and invalidates cache lines of both internal and external caches. This in-

struction can effectively close cache side channels, but it is too aggressive to

become practical—Ge et al. [51] describe it as an overkill and measured a

performance overhead of up to 12 ms. State flushing can be considered as

a side channel countermeasure, where microarchitectural states are flushed

whenever a sensitive workload is executed. However it is not practical to con-

sider state flushing as a covert channel countermeasure, since it would require

flushing microarchitectural states continuously and independently of the run-

ning workload. Also, current ISAs lack support for efficient state flushing,

forcing authors of these mechanisms to either develop new instructions [162],

or to combine existing instructions with heavy software support [49]. Unfor-

tunately, developing state flushing on commercial cloud platforms can only

be performed by hardware manufacturers. Also, this approach would conflict

with auditing techniques that already monitor abnormal microarchitectural

state behaviour (e.g. against timing side channels).

A new feature known as Memory Bandwidth Allocation (MBA) has been

introduced in Intel Xeon Scalable processors [67]. This feature allows con-
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trolling the memory bandwidth of each core, and could be leveraged in order

to inhibit the memory bus covert channel. The advantage of this approach is

that it relies on existing hardware support, much like Liu et al. [90] used the

Intel CAT feature in order to close Prime+Probe cache attacks. Note that

Intel CAT was also used by Lipp et al. [87] as a Rowhammer enhancer [79],

who then suggested to modify Intel CAT in order to mitigate the vulnerabil-

ity. It is possible that Intel MBA could also lead to new vulnerabilities, as

many other hardware optimization techniques did, e.g. out-of-order execu-

tion, SMT, prefetching, etc. Finally, Intel MBA is not available on all Intel

microarchitectures.

5.5.2 The Case of ARMv8.2-A

ARM processors have recently arrived on cloud platforms with the Neoverse

microarchitectures. Thus it is expected that the share of x86 processors

in IaaS will decrease for the benefit of ARM architectures. Reproducing

the memory bus covert channel across two AWS EC2 instances platform

featuring a 64-bit ARM architecture was not successful. It was possible

to re-create the receiving-end, the only exception being that non-temporal

instructions might not be guaranteed to be served from DRAM. However,

the sending-end, which uses the A64 swp instruction—equivalent of the x86

xchg—is deprecated since the ARMv6 ISA. To the best of my knowledge,

this instruction should be re-introduced in the ARMv8.2-A ISA or upcoming

versions, but it will no longer generate the desired system-wide “bus lock”.

Its behaviour might be similar to the load-acquire store-release mechanism.

Therefore, it has not been possible to reproduce the timing channel on the

Graviton and Graviton2 processors.

5.6 Summary

This chapter analysed the set of potential countermeasures against microar-

chitectural covert channel attacks in IaaS environments. A new instance of

the memory bus lock exploitation was then created, where all defence mech-
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anisms become obsolete. The proposed attack was tested in a the AWS EC2

commercial environment. The attack reached an effective capacity of 333 bps

while remaining effective against noise injection, software partitioning, and

hardware partitioning defence strategies. The objective of this chapter was to

close the gap between newly released attacks and countermeasures. Despite

an extensive literature review, this chapter has shown that there are so far no

means of addressing the memory bus lock vulnerability. It is hoped that this

work will stimulate the community to investigate system-wide countermea-

sures against timing channels rather than incremental solutions. A discussion

on how to close the proposed covert channel was finally provided, along with

a comparison against the ARMv8.2-A architecture which, at the time of this

writing, is only emerging on the IaaS market. The results of this work have

been reported to AWS, Intel, and AMD for responsible disclosure.
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6.1 Summary and Conclusions

Microarchitectural timing-based attacks are software-launched exploits that

leverage the sharing of processing resource among multiple tenants, in or-

der to compromise sensitive information. These attacks can either take the

form of a side channel, where the victim is accidentally leaking information,

or the form of a covert channel, where the attacker has infected the victim

with a malicious sending-end that deliberately transmits information. These

timing-based attacks have been increasingly popular in the last decade, and

even more since the release of the Spectre and Meltdown exploits [81, 89]. De-

spite the exposure of shared computing environments to such attacks, cloud

providers keep on attracting more and more businesses willing to outsource

their infrastructure. In this context, covert channels become particularly

interesting for leaking information in a non-conspicuous manner, e.g. to

avoid generating network traffic and associated logs [135]. They are relevant

with advanced persistent threats, where an attacker employs cutting-edge

techniques in order to maintain long-term intrusion and data exfiltration ca-

pabilities. As a result, a covert channel is ideal for stealthy data theft on

high-profile targets.

In this thesis, an evaluation was first conducted on the severity of covert

channel attacks against Infrastructure-as-a-Service. Using the Common Vul-

nerability Scoring System (CVSS v3.1), medium severity scores of up to 5.0

were obtained. In comparison, the MySQL Stored SQL Injection vulnerabil-

ity (CVE-2013-0375) also achieved a medium severity score, and was patched

shortly after its disclosure. To this day, there are still no practical counter-

measures against practical covert channel attacks released several years ago

[122, 164]. This study reveals that these attacks are not theoretical threats,

and that they require the immediate attention of the community. A new

framework for evaluating microarchitectural covert channels was then pro-

posed. It allows comparing attacks based on their performance as well as the

associated adversary model, and successfully outlines shortcomings which the

CVSS fails to identify. For example, it was shown that certain cache-based

attacks would obtain similar CVSS scores as other attacks despite substan-
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tial limitations in their adversary model. The proposed framework puts in

evidence these disparities, thanks to additional metrics and a bespoke scor-

ing system. This research thread managed to identify the conditions for

circumventing contemporary cloud environment’s information flow policies.

Resulting vulnerabilities can in turn be exploited, as demonstrated hereafter.

Secondly, this thesis presents a new covert channel attack based on the

modulation of Intel integrated memory controllers, with two possible vari-

ants. The first attack is privileged and is to be deployed in native environ-

ments. Test results demonstrated a capacity of up to 729 bps. The second

attack is unprivileged and is to be deployed in virtualized environments, with

a capacity of up to 95 bps. The memory controller-based attack allows estab-

lishing a rogue communication channel across processes running on separate

processor cores, thus circumventing defense strategies based on the disabling

of SMT. In addition from being resilient to software partitioning and other

noise injection countermeasures, this technique facilitates the deployment of

covert channels by eliminating the negotiation phase between communicat-

ing entities—such as finding congruent addresses in Prime+Probe attacks

[116]—and does not rely on the availability of shared memory—such as in

Flush+Reload attacks [56]. As such, it provides a viable alternative to

existing works as well as new challenges for hardware manufacturers. Despite

expanding the range of possible attack vectors, laboratory experiments also

demonstrated the effect of virtualisation on cross-VM covert channels. In

particular, it was shown that overcoming the addressing uncertainty while

holding out against background noise is not trivial. This consideration forces

devising even further innovative methods in order to propose reliable com-

munication while challenging existing and potential countermeasures.

Thirdly, a comprehensive analysis of state-of-the-art countermeasures was

conducted, including but not limited to noise injection, software partition-

ing, and hardware partitioning techniques. It was shown that the strategies

proposed in academia consist of incremental changes to the hardware ar-

chitecture, operating system, or hypervisor. In parallel, most of the new

leakage channel designs aimed at exploiting residual vulnerabilities, without

challenging latest developments in terms of defences. Using the findings of
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this analysis, a new covert channel was devised that leverages the x86 bus

lock vulnerability. The resulting attack allows cross-core, cross-VM attacks

with a channel capacity of up to 333 bps. A rogue channel could be estab-

lished and tested within a commercial environment between two AWS EC2

instances, thus asserting of the applicability of such attacks in the wild. Tests

targeted several x86 and ARMv8 microarchitectures released between 2015

and 2019. This new design disregards common issues such as addressing

uncertainty and enables high-speed communication channels in a virtualized

environment. However, its main contribution lies in its ability to overcome

the large set of defences published in academia, whether these are theoretical

or already deployed. This research thread thus demonstrates that outsourc-

ing data to a third-party cloud provider presents a risk, and that a motivated

attacker can easily make his way around information flow policies in order

to leak this data without being detected.

The research publications associated to Chapter 4 and Chapter 5 has lead

to a responsible disclosure to Intel, AMD, and AWS, regarding vulnerabilities

to timing channels of the integrated memory controller and the memory

bus. Intel has assured that such vulnerability was covered by a publicly

available guidance [68]. AWS responded that this research item constitutes

“a further reminder that customers should not run un-trusted code on their

instances to fulfill the customer side of the shared responsibility model”.

Besides responsible disclosures, the work presented in this thesis has lead

to new publications: covert channels targeting ARM-based Android devices

[136], and fingerprinting of sensitive workloads on ARM, x86, and RISC-V

implementations [136, 137].

6.2 Recommendations for Future Work

This thesis aims at studying microarchitectural covert channel vulnerabilities

in multi-tenant environments, from the adversary model through new attack

mechanisms, to a study of defense strategies. The resulting analysis opens

new research directions, along with other open challenges such as new attack

vectors.
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For instance, a Javascript-based covert channel would enable the attacker

to embed the sending-end into a malicious browser or website plugin. As a

result, the adversary would be able to penetrate the victim’s environment at

runtime. Javascript-based microarchitectural side-channel attacks have been

successfully demonstrated in the past [55, 115]. Following their publication,

access to high-resolution timers from web-based scripts has been restricted.

However, the sending-end does not require to probe any memory access. It

would be worth investigating which shared resource, aside of the last-level

cache, can be modulated accurately in Javascript in order to create a reliable

covert channel across VMs.

The malicious payload could also be concealed in an existing program

by means of return-oriented programming (ROP). ROP allows an attacker

who has hijacked a program’s control flow to craft a rogue software payload

by re-using chunks of the victim program [29, 125]. Crafting an encoding

an artifact in this way would discard the necessity to rely on a standalone

malicious software, thus improving the attacker’s ability to maintain per-

sistent access while remaining undetected. This approach could enable an

attacker circumventing countermeasures based on the fingerprinting of ma-

licious workloads, e.g. signature-based malware detection. Further work is

required to determine whether this approach could contribute to reducing

the complexity of deploying covert channel attacks.

Alternatively, auditing strategies have been proposed in academia to mit-

igate side channel vulnerabilities [175, 9, 31, 84]. Among others, Zhang et al.

[178] developed a technique that enables VMs to detect timing-based side

channel on the LLC. The victim continuously probes memory accesses to

detect anomalies. Yet, this approach might incur a significant performance

cost. Auditing strategies claim to have a system-wide approach to mitigat-

ing leakage channels. Authors of these auditing mechanisms usually omit the

bus lock counter from their model inputs. This metric measures the ratio

of bus cycles, during which a LOCK# signal is asserted on the bus. It would

be trivial to account for this metric during anomaly detection, however its

effect on false positives remains an open question.

Another approach consist in enforcing static analysis at intermediate

113



Chapter 6. Conclusion

stages of the software supply chain. Recent events have shown that the com-

plexity of this ecosystem benefits to malicious individuals [112]. Static code

analysis cannot be enforced on the complete cloud image. Moreover, while

OS providers might apply good security practices, it is not necessarily the

case for all user application. Further work is required in order to analyse the

effect of implementing control checks at different stages of the development

process. It is therefore necessary to identify the key stages where security

evaluations may be required in order to detect malicious payloads.

The long-term solution to closing cross-VM covert channels could be to

challenge directly the adversary model, which assumes that both the at-

tacker’s and victim’s virtual machines are co-located. Wu et al. [164] suggest

an approach to mitigating covert channels in public clouds where the policy

requires each tenant to neighbour only one other tenant. This is a trade-off

between dedicated instances [134] and complete sharing of computing re-

sources. This approach renders covert channel attacks almost impractical,

however the operational cost remains an open-question.
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Memory Bus-based Covert

Channel Sender

1 #include <iostream>

2 #include <cstdint>

3 #include <cstdlib>

4 #include <cassert>

5 #include <time.h>

6 #include <unistd.h>

7 #include <vector>

8 #include <sys/time.h>

9 #include <sys/mman.h>

10

11 using namespace std;

12

13 #define LOGERROR(f, ...) \

14 do{ printf("[%-5s] ", "ERROR"); \

15 printf(f, __VA_ARGS__); exit(EXIT_FAILURE); \

16 }while (0)

17 #define LOGINFO(f, ...) \

18 do{ printf("[%-5s] ", "INFO"); \

19 printf(f, __VA_ARGS__); }while (0);

20 #define MMAP_PROT PROT_READ | PROT_WRITE

21 #define MMAP_FLAGS MAP_POPULATE | MAP_ANONYMOUS | MAP_PRIVATE |

MAP_LOCKED↪→

22

23 /* ************************************************** */
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24

25 extern "C" uint16_t asm_snd(uint64_t*);

26 extern "C" uint16_t asm_nop(uint64_t*);

27

28 /* ************************************************** */

29

30 long int timerset(int off){

31 timeval t0;

32 if (gettimeofday(&t0, NULL))

33 LOGERROR("%s", "gettimeofday\n");

34 return (t0.tv_sec - (t0.tv_sec)%100 + (long int) off);

35 }

36

37 /* ************************************************** */

38

39 int main(int argc, char *argv[]){

40 cout << endl;

41 assert( argc==2 );

42

43 // Initialize message

44 uint8_t msg[256] = {

45 0,1,0,0,1,0,1,1,0,1,0,0,1,1,1,0,0,0,1,1,0,1,1,1,0,1,0,1,0,0,1,0,

46 0,1,0,1,0,1,1,0,0,1,0,0,0,0,1,1,0,1,1,1,1,1,0,1,0,0,1,0,1,1,0,0,

47 0,1,0,0,1,0,0,0,0,0,1,1,0,1,1,0,0,0,1,0,1,1,1,0,0,1,0,1,1,1,1,0,

48 0,1,0,0,0,1,0,1,0,0,1,0,0,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0,0,1,1,0,

49 0,0,1,1,0,0,1,0,0,0,1,0,1,1,1,0,0,1,0,1,1,0,0,0,0,1,0,1,0,0,0,1,

50 0,1,1,0,0,1,1,0,0,1,0,0,0,0,1,1,0,1,1,0,0,0,0,1,0,1,0,0,1,1,0,0,

51 0,0,1,1,0,1,1,1,0,1,1,0,0,0,1,0,0,0,1,0,1,0,1,0,0,1,1,0,1,0,0,0,

52 0,1,0,0,0,0,1,0,0,0,1,1,1,0,0,1,0,1,1,0,0,1,0,0,0,1,0,1,1,1,1,1};

53

54 // Initialize bit rate

55 size_t M1 = 2400;

56 size_t M0 = M1*1.27;

57

58 // Initialize pointer

59 void* ptr0 = mmap(0, getpagesize(), MMAP_PROT, MMAP_FLAGS, -1, 0);

60 if (ptr0==(void*)-1)

61 LOGERROR("%s", "mmap\n");

62 if (mlock(ptr0, getpagesize()))
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63 LOGERROR("%s", "mlock\n");

64 assert( (uintptr_t)ptr0%0x40==0 );

65 void* ptr1 = reinterpret_cast<void*>(reinterpret_cast<uint8_t*>(ptr0)

+63*sizeof(uint8_t));↪→

66

67 // Initialize countdown

68 long int t1 = timerset(atoi(argv[1]));

69 LOGINFO("%s", "counting down...\n");

70 timeval t0;

71 while (1) {

72 if (gettimeofday(&t0, NULL))

73 LOGERROR("%s", "gettimeofday");

74 if (!(t1-(t0.tv_sec)))

75 break;

76 }

77 /** NO CODE HERE **/

78 // Transmit message

79 for (size_t i=0; i<256; ++i) {

80 if (msg[i]==1){

81 for (size_t j=0; j<M1; j++)

82 asm_snd((uint64_t*)ptr1);

83 } else {

84 for (size_t j=0; j<M0; j++)

85 asm_nop((uint64_t*)ptr0);

86 }

87 }

88

89 LOGINFO("%s", "sender has finished\n");

90 cout << endl;

91 return 0;

92 }
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1 #include <algorithm>

2 #include <iterator>

3 #include <iostream>

4 #include <cstdint>

5 #include <cstdlib>

6 #include <cassert>

7 #include <vector>

8 #include <array>

9 #include <cmath>

10 #include <cstring>

11 #include <unistd.h>

12 #include <pthread.h>

13 #include <sys/time.h>

14 #include <sys/mman.h>

15

16 using namespace std;

17

18 #define LOGERROR(f, ...) \

19 do{ printf("[%-5s] ", "ERROR"); \

20 printf(f, __VA_ARGS__); exit(EXIT_FAILURE); \

21 }while (0)

22 #define LOGINFO(f, ...) \

23 do{ printf("[%-5s] ", "INFO"); \

24 printf(f, __VA_ARGS__); }while (0);
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25 #define MMAP_PROT PROT_READ | PROT_WRITE

26 #define MMAP_FLAGS MAP_POPULATE | MAP_ANONYMOUS | MAP_PRIVATE |

MAP_LOCKED↪→

27

28 /* ************************************************** */

29

30 extern "C" uint16_t asm_rcv(uint64_t*, uint64_t*);

31 extern "C" void asm_clk(uint64_t*);

32 uint64_t clk;

33

34 /* ************************************************** */

35

36 long int timerset(int off)

37 {

38 timeval t0;

39 if (gettimeofday(&t0, NULL))

40 LOGERROR("%s", "gettimeofday\n");

41 return (t0.tv_sec - (t0.tv_sec)%100 + (long int) off);

42 }

43

44 /* ************************************************** */

45

46 void record(const vector<uint16_t> vec, const char *path)

47 {

48 remove(path);

49 size_t pos (0);

50 FILE *f;

51 f = fopen(path, "a");

52 for (auto it=vec.begin(); it!=vec.end(); it++) {

53 char s_buf[256];

54 for (size_t j=0; j<sizeof s_buf; j++)

55 s_buf[j] = 0;

56 snprintf(s_buf, sizeof s_buf, "%lu\t%u\n", pos, *it);

57 if (f==NULL)

58 LOGERROR("%s", "fopen");

59 size_t k = 0;

60 for (k=0, fputc(s_buf[k], f);

s_buf[k]!='\n';++k,fputc(s_buf[k], f))↪→

61 ;
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62 pos++;

63 }

64 fclose(f);

65 }

66

67 /* ************************************************** */

68

69 void prune(vector<uint16_t>& vec1)

70 {

71 vector<uint16_t> vec2;

72 vec2.resize(floor(vec1.size()/2));

73 for (size_t i=0; i<vec2.size(); i++) {

74 if (i==0) {

75 vec2[i] = (vec1[i] + vec1[2*i])/2;

76 } else {

77 vec2[i] = (vec1[2*i-1] + vec1[2*i])/2;

78 }

79 }

80 vec1.clear();

81 vec1 = vec2;

82 }

83

84 /* ************************************************** */

85

86 void check(const array<uint8_t, 256> arr1)

87 {

88 const array<uint8_t, 256> arr2 = {

89 0,1,0,0,1,0,1,1,0,1,0,0,1,1,1,0,0,0,1,1,0,1,1,1,0,1,0,1,0,0,1,0,

90 0,1,0,1,0,1,1,0,0,1,0,0,0,0,1,1,0,1,1,1,1,1,0,1,0,0,1,0,1,1,0,0,

91 0,1,0,0,1,0,0,0,0,0,1,1,0,1,1,0,0,0,1,0,1,1,1,0,0,1,0,1,1,1,1,0,

92 0,1,0,0,0,1,0,1,0,0,1,0,0,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0,0,1,1,0,

93 0,0,1,1,0,0,1,0,0,0,1,0,1,1,1,0,0,1,0,1,1,0,0,0,0,1,0,1,0,0,0,1,

94 0,1,1,0,0,1,1,0,0,1,0,0,0,0,1,1,0,1,1,0,0,0,0,1,0,1,0,0,1,1,0,0,

95 0,0,1,1,0,1,1,1,0,1,1,0,0,0,1,0,0,0,1,0,1,0,1,0,0,1,1,0,1,0,0,0,

96 0,1,0,0,0,0,1,0,0,0,1,1,1,0,0,1,0,1,1,0,0,1,0,0,0,1,0,1,1,1,1,1};

97

98 uint8_t errors (0);

99 for (size_t i=0; i<256; i++) {

100 if (arr1[i]!=arr2[i])
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101 errors++;

102 }

103

104 LOGINFO("message received (%d errors)\n", errors);

105

106 if (errors) {

107 putchar('\n');

108 for (size_t i=0; i<256; i++) {

109 if (arr1[i]!=arr2[i]) {

110 printf("\033[91m%d\033[m", arr1[i]);

111 } else {

112 printf("%d", arr1[i]);

113 }

114 if ((i+1)%8==0)

115 putchar(' ');

116 if ((i+1)%32==0)

117 putchar('\n');

118 }

119 putchar('\n');

120 }

121 }

122

123 /* ************************************************** */

124

125 void read(vector<uint16_t> vec1, int64_t raw_avg)

126 {

127 // Assign binary value to each sample

128 vector<uint16_t> vec2;

129 vec2.resize(vec1.size());

130 for (size_t i=0; i<vec1.size(); i++) {

131 if (vec1[i]<=raw_avg) {

132 vec2[i] = 0;

133 } else {

134 vec2[i] = 1;

135 }

136 }

137

138 // Find index of last effective sample

139 size_t off;

122



Appendix B. Memory Bus-based Covert Channel Receiver

140 vector<uint16_t> foo{1,1,1,1,1,1,1,1};

141 vector<uint16_t>::iterator itr;

142 itr = find_end(vec2.begin(), vec2.end(), foo.begin(), foo.end());

143 if (itr==vec2.end()) {

144 LOGINFO("%s", "failed to find pattern\n");

145 return;

146 } else {

147 off = distance(vec2.begin(), itr);

148 }

149

150 // Remove non-effective samples

151 vec1.erase(vec1.begin()+off+foo.size(), vec1.end());

152 vec1.shrink_to_fit();

153

154 // Compute upper/lower bound latency

155 int64_t max_sum (0), min_sum (0), max_count (0), min_count (0),

max_avg (0), min_avg (0);↪→

156 for (size_t i=0; i<vec1.size(); i++) {

157 if (vec1[i]<=raw_avg) {

158 min_sum += vec1[i];

159 min_count++;

160 } else {

161 max_sum += vec1[i];

162 max_count++;

163 }

164 }

165 max_avg = max_sum/max_count;

166 min_avg = min_sum/min_count;

167 LOGINFO("uper bound is %lu cycles\n", max_avg);

168 LOGINFO("lower bound is %lu cycles\n", min_avg);

169

170 // Remove outliers

171 vector<uint16_t> vec3;

172 for (size_t i=0; i<vec1.size(); i++) {

173 if (vec1[i]<=(max_avg+max_avg*0.05))

174 vec3.push_back(vec1[i]);

175 else

176 vec3.push_back(max_avg);

177 }
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178

179 vec1.clear();

180 vec1 = vec3;

181

182 // Decode measurements

183 size_t len (256), k (0);

184 float k_float (0);

185 float step = (float)vec1.size()/(float)len;

186 array<uint8_t, 256> arr;

187 while (len--) {

188 vector<uint16_t> vec4;

189 int64_t sum (0), avg (0);

190 for (size_t j=0; j<floor(step); j++)

191 vec4.push_back(vec1[j+k]);

192 for (auto it=vec4.begin(); it!=vec4.end(); it++)

193 sum += *it;

194 avg = sum / vec4.size();

195 arr[255-len] = (avg>raw_avg) ? 1 : 0;

196 k_float += step;

197 k = floor(k_float);

198 }

199

200 // Count errors

201 check(arr);

202 }

203

204 /* ************************************************** */

205

206 void* counter(void* ptr)

207 {

208 asm_clk(&clk);

209 pthread_exit(NULL);

210 }

211

212 /* ************************************************** */

213

214 int main(int argc, char* argv[])

215 {

216 cout << endl;
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217 assert( argc==2 );

218

219 // Initializae measurement vector

220 vector<uint16_t> vec1;

221 vec1.resize(8388608); // 2^23

222

223 uint32_t ts0h (0), ts0l (0), ts1h (0), ts1l (0);

224 uint64_t ela (0);

225

226 // Initialize pointer

227 void* ptr = mmap(0, getpagesize(), MMAP_PROT, MMAP_FLAGS, -1, 0);

228 if (ptr==(void*)-1)

229 LOGERROR("%s", "mmap\n");

230 if (mlock(ptr, getpagesize()))

231 LOGERROR("%s", "mlock\n");

232

233 // Initialize counting thread

234 clk = 0;

235 pthread_t thread;

236 if (pthread_create(&thread, NULL, counter, NULL)!=0)

237 LOGERROR("%s", "pthread_create\n");

238

239 // Initialize countdown

240 long int t1 = timerset(atoi(argv[1]));

241 LOGINFO("%s", "counting down...\n");

242 timeval t0;

243 while (1) {

244 if (gettimeofday(&t0, NULL))

245 LOGERROR("%s", "gettimeofday");

246 if (!(t1-(t0.tv_sec)))

247 break;

248 }

249

250 // Start bench-marking

251 __asm volatile("cpuid\n" : : : "rax","rbx","rcx","rdx");

252 __asm volatile("rdtsc\n\t \

253 mov %%edx, %0\n\t \

254 mov %%eax, %1\n\t" : "=r"(ts0h),"=r"(ts0l) : :

"rax","rdx");↪→
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255

256 /** NO CODE HERE **/

257 // Measure access latency to pointer

258 for (auto &n: vec1)

259 n = (uint16_t) (asm_rcv((uint64_t*)ptr, &clk) & 0xFFFF);

260

261 // Stop bench-marking

262 __asm volatile("rdtscp\n\t \

263 mov %%edx, %0\n\t \

264 mov %%eax, %1\n\t" : "=r"(ts1h),"=r"(ts1l) : :

"rax","rdx");↪→

265 __asm volatile("cpuid\n" : : : "rax","rbx","rcx","rdx");

266 ela = (((uint64_t) ts1h << 32) | ts1l) - (((uint64_t) ts0h << 32) |

ts0l);↪→

267 LOGINFO("bit rate %f bit/s\n", ( 1 / ( (float)( (float)ela / 2.5 ) /

256 ) ) * 1000000000);↪→

268

269 // Prune measurements

270 vector<uint16_t> vec2 = vec1;

271 for (size_t i=0; i<10; i++)

272 prune(vec2);

273

274 // Compute average

275 int64_t sum (0), avg (0);

276 for (auto it=vec2.begin(); it!=vec2.end(); it++)

277 sum += *it;

278 avg = sum / vec2.size();

279 LOGINFO("average access time is %lu cycles\n", avg);

280

281 // Decode measurements

282 read(vec2, avg);

283

284 // Record pruned measurements

285 record(vec2, "sim/measures.dat");

286 LOGINFO("%s", "measurements recorded\n");

287

288 LOGINFO("%s", "receiver has finished\n");

289 cout << endl;

290 return 0;

126



Appendix B. Memory Bus-based Covert Channel Receiver

291 }
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