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ABSTRACT

Recent breakthroughs in silicon photonics technology are enabling the integration of optical

devices into silicon-based semiconductor processes. Photonics technology enables high-speed,

high-bandwidth, and high-fidelity communications on the chip-scale—an important development in

an increasingly communications-oriented semiconductor world. Significant developments in silicon

photonic manufacturing and integration are also enabling investigations into applications beyond

that of traditional telecom: sensing, filtering, signal processing, quantum technology—and even

optical computing. In effect, we are now seeing a convergence of communications and computation,

where the traditional roles of optics and microelectronics are becoming blurred.

As the applications for opto-electronic integrated circuits (OEICs) are developed, and manufac-

turing capabilities expand, design support is necessary to fully exploit the potential of this optics

technology. Such design support for moving beyond custom-design to automated synthesis and opti-

mization is not well developed. Scalability requires abstractions, which in turn enables and requires

the use of optimization algorithms and design methodology flows. Design automation represents an

opportunity to take OEIC design to a larger scale, facilitating design-space exploration, and laying

the foundation for current and future optical applications—thus fully realizing the potential of this

technology.

This dissertation proposes design automation for integrated optic system design. Using a building-

block model for optical devices, we provide an EDA-inspired design flow and methodologies for op-

tical design automation. Underlying these flows and methodologies are new supporting techniques

in behavioral and physical synthesis, as well as device-resynthesis techniques for thermal-aware

system integration. We also provide modeling for optical devices and determine optimization and

constraint parameters that guide the automation techniques.

Our techniques and methodologies are then applied to the design and optimization of optical

circuits and devices. Experimental results are analyzed to evaluate their efficacy. We conclude with

discussions on the contributions and limitations of the approaches in the context of optical design

automation, and describe the tremendous opportunities for future research in design automation for

integrated optics.
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CHAPTER 1

INTRODUCTION

Advancements in integrated optics are expanding the role of optical devices in system design.

Opto-electronic integrated circuits (OEICs) [1], merging optics and control electronics on a

monolithic substrate, are now a reality and enable optical integration in a diverse set of applications,

such as sensing, signal processing, communications, and also computing [2]–[9]. The driving

forces behind optics technology comes from different, but interrelated areas. One area is optical

interconnects. As semiconductors feature sizes have scaled downward, metal interconnects are now

the dominant cause of delay and power usage in system design. In addition, the trend towards greater

parallelism at the system level [10] has prioritized the role of communications in computing. Optics

are therefore being pushed as an inter- and intrachip interconnect technology to provide high-speed,

long-haul, low-power communications [11]–[16]. The ability for optics technology to fulfill this

communications role hinges on the ability to deploy optics at the endpoints of data transmission and

throughout the substrate.

A second driving force behind optical technology is therefore that of manufacturing. Significant

developments in microphotonics have come from the ability to manufacture silicon-based optical

devices. Traditionally, the separation between optics and microelectronics has been one of process

differences: whereas microelectronics can utilize silicon as a semiconductor, optical devices have

traditionally relied on more group III–V semiconductors to create usable optical devices (lasers [17],

[18], high-speed modulators [19], [20], detectors [21]). The use of silicon enables integrated optics

to leverage mature silicon-based semiconductor processes as well as enable such optical devices to

integrate directly in system designs. The lack of process compatibility has stymied cross-domain

integration until recently. We are now in a position to fully realize the potential of the marriage of

optics and microelectronics.

Moving beyond optics as a complementary communications technology is the push for optics

as a computing technology [2]–[9]. Optics has always been considered the next step in computing

technology; however, the great success of complementary metal-oxide-semiconductors (CMOS)

in silicon-based processes, coupled with the cost and a lack of large-scale optical manufacturing



2

capability, have stymied the development of high density optical computing systems. Recent

advances in optical system manufacturability and technology support presents new opportunities

in design-space exploration. Initiatives such as Optoelectronic Systems In Silicon (OpSIS)

[22]—the optoelectronic counterpart to Metal Oxide Semiconductor Implementation Service

(MOSIS) [23]—are enabling researchers the ability to fabricate integrated optical designs within

relatively inexpensive, but cutting-edge silicon optical processes. Support from industry [24], [25],

government [26], and academia [22] are also pushing such research in order to develop optical

technologies that extend beyond the traditional roles of telecommunications.

We are now reaching a threshold where photonic integration is possible beyond the traditional

limits of telecom technology, driven by interdisciplinary research and development to fully utilize

this technology. The need is here, but the necessary design support to take optical design beyond

that of manual and hand design is not well developed. As optical devices are integrated on larger

scales, the need for design automation becomes apparent to handle greater levels of complexity in

design. Scalability requires abstractions, which in turn enables and requires the use of optimization

algorithms and design methodology flows. Design methodology flows are key to partitioning large

systems into realizable subcomponents, which may be characterized and optimized at different

levels of abstraction. This process enables synthesis and optimization techniques to be further

refined and expanded within an automation framework for performance improvement and reliability.

The feasibility of this approach has already been demonstrated to great success for microelec-

tronics. There is interest in replicating this success in optical design and integration. This thesis

takes steps in this direction, proposing a design automation flow with abstractions, optimization

algorithms, tool-flows, and methodologies—enabling the synthesis of OEICs through automated

means. Design automation represents an opportunity to take OEIC design to a larger scale,

facilitating design-space exploration and laying the foundation for current and future optical

applications—fully realizing the potential of this technology.

1.1 Developments in CMOS and Microphotonics
Silicon is the mainstay of the semiconductor industry. The ease of manufacturing for

semiconductors in well-characterized silicon-based processes and steady improvements in perfor-

mance and density at each process node makes CMOS-based technology the dominant computing

manufacturing technology. For the same reasons, attempts were also made to develop silicon-based

integrated optics—silicon photonics. Early attempts, however, proved fruitless, except for passive

waveguide devices.

Silicon’s indirect band gap means that silicon cannot produce light based on classic electron

transitions. All-silicon lasers were considered all but impossible until 2004 with the development
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of [27] and in 2005 with Intel’s all-silicon, continuous-wave Raman laser [28]. These lasers utilize

stimulated Raman scattering rather than electron transitions to produce light emission; however,

such lasers are very large and experimental, and miniaturization efforts are still underway. Silicon’s

band gap also prevents it from detecting light at normal telecom wavelengths, requiring materials—

such as germanium—for light detection. Incorporating a material such as germanium into silicon-

based processes is difficult because of lattice incompatibilities. Without the necessary additional

device support in modulation and light emission, hybrid processes were not pursued.

Despite silicon’s limitations in both light emission and detection, the major hurdle in silicon-

based optics has always been modulation. The electro-optic effects in silicon are either absent, in

the case of Pockels effect [29], or very weak in the case the Kerr effect [30]—traditionally limiting

optical modulation to practically useless tens of Mhz. Thermo-optic modulation is also very slow

and power hungry. Therefore, in order to achieve necessary data rates (> 1 Ghz, but ideally 10s

to 100s of GHz), III–V semiconductor compounds such as gallium arsenide (GaAs) and indium

phosphide (InP), or materials such as lithium niobate (LiNbO3) would become the materials of

choice for photonic modulators. The ability of III–V semiconductors to realize functioning laser

devices also makes them attractive for manufacturing optical systems. Integrated optics would

therefore be limited to nominally telecom applications—where the long-distance, high-fidelity of

optical communications coupled with necessary high data-rates justified the expense of specialized

manufacturing processes.

Silicon would remain the subject of photonic research throughout the 1980s and 1990s. In

particular, all-silicon passive waveguide devices, such as Array Waveguide Gratings (AWGs) [31]

used for multiplexing, remained a useful application of so-called 1st-generation silicon photonics

[32], [33]. In addition, a number of useful results would also be discovered in the 1990s, notably the

characterization connecting refractive index changes to free-carrier concentration in silicon by [34].

This important result would be the breakthrough that propelled 2nd-generation silicon photonics a

decade later.

In 2005, Intel Corporation announced the first all-silicon optical modulator operating beyond

the 1 Ghz threshold [19]. In contrast to modulators based on electro-optic modulation, where

an applied electric field directly modulates light, Intel’s modulator relies on phase changes

induced by refractive index changes due to carrier concentration. Within a Mach–Zehnder

device topology, this causes constructive and destructive interference at the output, enabling light

modulation. Though relatively slow compared to contemporary modulators, Intel’s modulator

represented a significant breakthrough in silicon photonics. An all-silicon optical modulator at

usable modulation speeds (> 1 Ghz) meant that viable optical networks could be fabricated in
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all-silicon processes. This development ushered in a number of subsequent breakthroughs in

silicon photonic device development, including faster modulators [20], [35], hybrid lasers [17], and

other device technologies [36]. The viability of all-silicon optical modulation also prompted the

development of hybrid silicon-germanium processes [37] incorporating strained silicon techniques

to enable germanium bonding to silicon materials. In conjunction with optical modulators, such

processes enable fully functioning optical systems—including light sources from external lasers

coupled to the system [38].

The promise of monolithic integration of photonic networks in silicon-based processes opens

the door to a great number of opportunities in system design. Optics, once an exclusively telecom

technology, is now able to leverage advanced processes in fabrication and integration. This change

enables far greater flexibility and complexity in design as well as the ability for designers to

investigate novel methods for utilizing optics in systems. Already a number of architectures have

been proposed for connecting systems via optical interconnect networks [14], [39], including as

separate layers in 3D integrated chips (ICs). Investigations have also been made into optical digital

signal processing [40], sensing, and even computing frameworks that can leverage optics in ways

that would have been cost prohibitive. In essence, we are now seeing a convergence of computation

and communications.

What is now lacking is the design automation infrastructure to design and build optical system

using more advanced methodologies. The expense and specialization of integrated optics systems

has traditionally meant that there was little incentive to invest in automated means to construct

networks of devices. With expanded device integration, electronic design automation (EDA)-like

optical design flow methodologies are necessary to enable design beyond the small scale. Optical

toolsets such as those from Lumerical [41], RSoft [42], and others are suitable for the design and

analysis of smaller optical systems, but are not designed with automation in mind, nor do they

provide the necessary abstractions to scale into larger systems. By abstracting the optical design

process by using concepts such as logical building-block models, we can exploit decades worth of

EDA techniques and automation design patterns to automate the process of optical design.

Optical switching is particularly well suited to abstraction. By treating optical switching

devices as digital switching elements, we can model optical routing as a network of building-

blocks connected by waveguides. Modeling these optical building blocks within a Boolean logic

framework enables us to applying logic optimization techniques in the same manner as those

applied to EDA netlists. Physical synthesis is also well adapted to automation, as placement and

routing techniques utilized in EDA are equally applicable to optical devices—while still requiring

technology-specific constraints and objectives within the optimization engines.
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1.2 Electronic Design Automation
It is customary to describe design automation techniques in the context of a design flow. Figure

1.1 depicts an architypical EDA design flow we adapt for optical design automation. The design flow

divided into two major phases: 1) behavioral synthesis, where a circuit specification is transformed,

optimized, and mapped onto a library of technology-abstracted, interconnected building blocks

forming a netlist and 2) physical synthesis, where the netlist is transformed into a physical layout

through device placement and the routing of wires, power rails, clocks, and other interconnects to

and between such devices. The result of this design flow, after numerous rounds of verification,

validation, and sign-off, is a layout ready for lithographic manufacturing.

The design flow only captures the overall structure of synthesis. The details are important,

especially in how we bridge the gap between technology and abstraction. More specifically,

we extract technology-specific parameters to constrain the design process. Understanding how

transistor-based parameters apply to EDA is key to understanding how we may also model a design

flow for optics.

1.2.1 Behavioral Synthesis

Behavioral synthesis is a key step in the process of system design and relies on the idea that

technology elements can be modeled as (logical) building-blocks. A building-block model enables

networks of devices to be analyzed and optimized at different levels of abstraction. In high-level

(electronic system level) synthesis (HLS), designs are decoupled from the underlying hardware

entirely in order to concentrate on its architectural, algorithmic, and resource design parameters.

Behavior and algorithmic level languages such as SystemC are transformed and optimized into

Register-Transistor Level (RTL) descriptions with an emphasis on resource binding and allocation,

scheduling, and constraint generation. Ensuring that a design is testable is also an important

consideration at this stage, ensuring that correctness can be accounted for at lower levels of

abstraction.

The output of HLS is an RTL description to be mapped to the underlying hardware building

blocks. Interconnected devices are decomposed into subsets using partitioning algorithms. These

subcircuits are then transformed and optimized leveraging powerful concepts such as Boolean logic,

functional representation including equation forms, and graph representations such as And-Inverter

Graphs (AIGs) [43] and Binary Decision Diagrams (BDDs) [44], optimization methodologies, and

composition/decomposition techniques to design and optimize circuits. The result is a netlist ready

for physical synthesis.

In semiconductor technology, the transistor serves as the basis element for constructing logical

building blocks. Transistors are connected together in design patterns such as static-CMOS, to form
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Boolean logic gates and other elements (flip-flops, etc.) to provide the necessary device abstraction

for synthesis. Logics formed from transistors are especially appealing in that they can switch for

large signal gain and therefore provide signal restoration at the output of gates or logic networks.

The resulting effect is an extremely versatile logic composition paradigm, enabling function output

sharing (fan-out), cascading of gates, and signal isolation.

Modeling building blocks is important for optimization and operational correctness. At lower

levels, logic devices are modeled and analyzed using extracted Simulation Program with Integrated

Circuit Emphasis (SPICE) models, which capture a device’s many properties, nominally the device’s

effect on its input and output signals (e.g., AC/DC characteristics, noise, impedance, etc.). Such

analysis is resource intensive. Therefore, device networks are first analyzed using first-order

approximation models such as the logical effort of gates, derived from a gate’s topology and

size/capacitive load ratio, and parasitics. These models are useful for fast, first-order approximations

used in timing optimization.

Optimization parameters for behavioral synthesis include timing, power, and area, but also

testability and accounting for effects analyzed during physical synthesis. Timing affects both

performance and correct operation and is derived from the delay characteristics of the technology’s

circuit elements (e.g., logical effort) and their interconnects (fan-outs, interconnect capacitance,

etc.). Area is usually measured in terms of numbers of gates, the size of such gates, and the

necessary interconnects to connect such gates. Power is also an important consideration, especially

as power is no longer simply measured in terms of the switching activity of a circuit, but also in

terms of leakage. Power management is an important part of behavioral synthesis and also affects

timing and area through additional circuitry and from the side-effects of power-saving operations.

Designing for testability is also a necessary component in behavioral synthesis, ensuring that defects

in manufacturing are detected before shipment. Incorporating testing structures such as scan chains

into the design improves coverage and reduces the complexity of test-pattern generation.

1.2.2 Physical Synthesis

The output of the behavioral synthesis phase is a netlist comprising a set of interconnected

logical building blocks. These devices must be assigned physical locations in the manufacturing

substrate, and the devices must be routed together with “wires” or their equivalent. Physical

synthesis is broken down into two subphases that are often interrelated: placement and routing [45].

Additional effects such as hotspot detection in chip planning are also important considerations to

improve routability, power consumption, heating, and yield.

Considering devices as geometric blocks connected by wires enables us to model the placement

problem as that of arranging blocks within the substrate. Most designs have some sort of hierarchical
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structure made up of modules, and the placement often reflects this structure. At all levels, a

number of metrics guide the procedure such as: area, wire-length between connected devices,

cuts across routing regions, signal delay, potential wire congestion that the routing phase may

encounter, and also thermal management. At the lowest levels, placement involves packing

individual devices together into compact structures such as standard cell rows. Techniques such as

min-cut placement, quadratic (2-D) placement, force-directed placement, and simulated annealing

are common techniques for placement.

Global routing is an important part of physical synthesis, ensuring that nets are routed as

rectilinear Minimum Steiner Trees. Wire-length has traditionally dominated the guiding metrics

for placement; however, this has changed with congestion becoming important for improving the

subsequent routing phase. Global routers such as [46] use mixed-integer linear programming

(MILP) methods and maze routing formulations to reduce congestion and wire-length. As the

placement of devices directly affects the routing of such devices, global routing is often bound

to the placement phase. Techniques such as [47] integrate placement and routing, ensuring that

any placement of devices will also ensure that routing regions have sufficient capacity to connect

devices and modules together.

With placement and global routing complete, detailed-level routing is performed. This stage

is responsible for routing the individual wires to their local destinations. Routing regions are

often broken down into 1) channels, where pins are found on only two sides of the region, and

2) switchboxes, where pins may be found on any side. Various techniques for assigning wires to

metal layers are used [48]–[50] in order to produce a routing solution. In some cases routing may

occur over logic cells to complete, should there be enough room.

1.3 Proposed Design Flow
The design flow proposed in this dissertation, depicted in Fig. 1.2, draws inspirations from EDA

design flows and methodologies. As in the previously described EDA design flow, this optical design

automation flow is divided into two major phases: behavioral synthesis and physical synthesis.

Ancillary to this flow is technology modeling, where the groundwork is laid for design automation in

terms of building-blocks models and optimization metrics used throughout the design flow. System

integration is also important and role by introduces external constraints and effects on the optical

system such as area-limitations, packaging, and thermal interactions between on-chip heat sources

and optical devices.

Our contributions to this design flow are indicated in Fig. 1.2. For the behavioral synthesis phase,

we model optical switching elements as building-blocks that implement Boolean logic functions.

As a communications technology, this building block model is derived from conventional electro-
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optical routing devices. By using conventional routing devices, synthesis techniques will remain

applicable to communications networks as well as frameworks that may utilize optical logic. As

in EDA behavioral synthesis, this abstraction also enables us to utilize Boolean logic concepts and

techniques to design and optimize optical networks, and leverage Boolean logic synthesis techniques

developed for EDA—suitably refined and extended within the constraints of the technology.

With a building block model complete, our task is now to develop optics-specific logic synthesis

techniques to construct and optimize optical netlists. These netlists are composed of optical

switching elements and waveguide interconnects and form the input to the physical synthesis stage.

The physical synthesis stage comprises the placement of optical devices and the routing of

those devices using waveguides. The building-blocks used in behavioral synthesis are also used for

physical synthesis, treated as logic cells for placement, with waveguides acting as interconnecting

wires. Much like the device placement strategies employed for microelectronic designs, area is an

important consideration. Wire length, to a first degree, can also aid in ensuring routability. An

important modeling constraint we impose on the routing problem is that waveguides are fabricated

in single-layer planar substrates. While this still allows for waveguides to cross—perpendicular to

each other—and retain their signals, this comes at with a signal loss penalty.

Signal loss is identified as the major guiding metric in optical physical synthesis. Integrated

optics lacks the signal restoration properties of static-CMOS and therefore signal losses must be

minimized across designs. All devices in an optical network have insertion losses, and even the

interconnecting waveguides can affect signal integrity. The aforementioned waveguide crossings

in particular are important loss sources, and as networks scale in complexity, the need to minimize

waveguide crossings is critical. The techniques incorporated into our design flow—at all stages—are

therefore centered around reducing signal loss.

Thermal considerations are also an important part of this optical design flow. For CMOS-based

technologies, thermal management is an important part in ensuring correct operation of designs;

rises in temperature can cause delay faults, premature aging, and also cracking of chips. In the

optics domain, however, we are more concerned with the thermal stability of optical devices. The

properties of optical materials, notably the refractive index, are affected by temperature. This effect

is often small and negligible, but certain sensitive devices are exceptionally affected. We, therefore,

also include a thermal-aware resynthesis step for photonic switching devices as a part of the design

flow.

1.3.1 Thermal-Aware Resynthesis

The need for fast, compact, optical modulators and routing devices has led to the development

of resonant devices such as optical ring resonators that can deliver high performance in a small
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footprint. The resonant operation of the ring resonator enables small variations in refractive index

to effect large changes in wavelength response. This effect also makes ring resonators sensitive to

temperature changes that change the refractive index of the medium.

Integrating such devices into the network fabric of systems will ultimately require tuning to

compensate not only for process variation, but the effects of temperature gradients in the substrate.

Such tuning is power intensive, requiring per-device microheaters and feedback circuitry to actively

compensate for thermal variations or offset voltages applied to P-i-N junctions on the ring. If

thermal gradients can be estimated ahead of time, compensation methods can be applied as

permanent modifications to temperature-sensitive devices such as ring resonators—complementing

active tuning techniques and saving power.

1.4 Contributions of This Dissertation
This dissertation proposes design automation for integrated optic system design. Drawing

inspirations from EDA design flows, we develop a photonic system design flow for automating

network design and physical synthesis. This automation design flow changes how we approach

integrated optic design, enabling the move beyond traditional manual design and layout to that of

automated techniques. As the scale of device integration grows, automation techniques will be

critical in order to fully realize the potential of the technology.

We model device abstractions that capture key parameters of optical switching devices that

enable a building-block composition methodology. This building-block methodology is used both

for behavioral synthesis and physical synthesis. We also identify optimization objectives for guiding

automation techniques:

• Behavioral Synthesis: Optical devices are modeled as logic elements to employ powerful

concepts from Boolean logic theory for functional composition and optimization [2], [3].

Each optical gate incurs insertion losses. We therefore develop technology-specific common

subexpression-based techniques to reduce gate counts [2].

• Physical Synthesis: Optical devices are placed in a standard-cell-style layout topology,

where the device-blocks with ports are connected by waveguide interconnects. Waveguide

crossings and bends act as signal loss mechanisms and are optimized for in both global and

detailed routing. [51], [52]

• Thermal-Aware Device Resynthesis: Thermal interactions between on-chip heat sources

and ring resonators pose significant operational challenges. To account for external thermal

gradients, we present resynthesis templates that exploit waveguide geometry for temperature

compensation of optical devices. We present a methodology for constructing ring-resonator
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templates enabling process-compatible compensation, incorporating temperature-range and

precision parameters [53] (submitted and in review).

This work also demonstrates how contemporary EDA design techniques and methodologies are

adapted for optical design:

• Boolean Decomposition: New technology-specific XOR-based Boolean decomposition

techniques are applied to logic synthesis for integrated optics [2].

• Optical Device Placement: EDA partitioning and placement techniques are applied to

optical device placement. Devices are placed into rows suitable for channel-based routing

[54].

• Global Routing: A mixed integer linear programming (MILP) problem formulation and

methodology is presented for signal-loss-constrained routing [54].

• Detailed Routing: We suitably adapt and constrain conventional channel routing techniques

to minimize waveguide crossings. New channel-routing techniques are developed [51], [52]

( [55] in review); these techniques are also applicable to general-purpose channel routing.

• Device Layout: Using contemporary Very Large-Scale Integration (VLSI) layout tools, we

construct a system layout for an optical design for fabrication using predesigned optical

devices as interconnected building blocks. This design was fabricated in an optical process

[22] and is depicted in Fig. 1.3.

1.4.1 Thesis Organization

The remainder of the dissertation is organized as follows. Chapter 2 reviews integrated optics

technology and theory, providing an overview of integrated optic systems in the context of this

work. Subsequent chapters cover the various topics that form the main body of research in this

dissertation. As the breadth of design automation is large, we address previous work and relevant

preliminaries within the individual subsections of this dissertation.

• Chapter 3 covers behavioral synthesis, where we describe our logical building-block model,

our Boolean logic composition methodology, and a logic synthesis technique incorporating

common subexpression extraction to reduce gate count.

• Chapter 4 presents our overall physical synthesis methodology. We also describe design

constraints for physical synthesis, metrics, and routing grid modeling.

• Chapter 5 presents a global-routing formulation for optical waveguide routing. This is

formulated within a crossing-constrained mixed-integer linear programming (MILP) problem

methodology.

• Chapter 6 covers our detailed routing approach, specifically channel routing for optical



11

waveguides. We present two channel routing techniques and show how each reduces signal

losses by minimizing waveguide crossings and bends through routing constraints.

• Chapter 7 presents our methodology for thermal-aware resynthesis for photonic ring-

resonator devices. Ring resonators are key components of many optical network architectures;

however, their temperature sensitivity presents challenges to integration. We analyze the

effects of thermal changes on ring-resonators and present a template-based, ring-resonator

design enabling process-compatible resynthesis for thermal compensation.

• Chapter 8 concludes this dissertation, reflecting on the research performed as well as future

research directions in this area.
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Fig. 1.3 Our silicon photonic 1-bit full adder fabricated through OpSIS



CHAPTER 2

INTEGRATED OPTICS PRELIMINARIES

Integrated optics are used in high speed communication systems for routing signals in the form

of light from sources to destinations using optical waveguides [56]. Waveguides are fabricated with

layers of different refractive indexes. The waveguide’s guiding (film) layer, with refractive index

n f , is sandwiched between substrate and/or cladding layers (ns and nc); for ns = nc we simply use

ns to describe both layers. The guiding layer has a refractive index greater than the substrate layers,

and this enables light to be confined within the structure.

Consider the waveguide depicted in Fig. 2.1. Light is confined within the guiding layer only if

the angle of incidence at the n f → ns boundary exceeds the critical angle θc as defined by Snell’s

law [56]

θc = arcsin

(
ns

n f
sin90

)
(Critical angle from Snell’s Law) (2.1)

Sandwiching the guiding layer between two substrate layers means that should the angles of

incidence remain beyond the critical angle at both interfaces, total internal reflection (TIR) will

occur within the guiding layer. Total internal reflection is the primary mechanism behind the guiding

properties of optical waveguides.

The critical angle defines the minimum bend radius necessary to contain light within the

waveguide without losses. As waveguides bend, the angles of incidence are affected, possibly

leaking light into the substrate should the radii become too small. Waveguides made with greater

differences in index of refraction have much smaller critical angles and therefore can tolerate smaller

bend radii. Waveguides constructed of silicon and SiO2, i.e., SOI, are excellent in this respect, with

a relatively large refractive index difference of 2.0.

2.1 Propagation of Light in Waveguides
Though the ray diagram in Fig. 2.1 is sufficient to describe TIR, it does not account for the

electromagnetic wave properties of waveguides. Consider the symmetric slab waveguide depicted

in Fig. 2.2. As the electromagnetic waves of light propagate down this structure, the waves reflect



16

at the boundary of the guiding layer, reflecting at the same incident angle θ due to TIR. For a

given angle, the motion of waves down the waveguide defines a k-vector triangle with orthogonal

components: 1) the transverse component kx and 2) the longitudinal component, the propagation

constant, denoted as β .

The propagating waves interact with each other, causing constructive and destructive inter-

ference. If we solve for the system of equations [38]—including materials, waveguide dimensions,

and wavelength—we find that only for discrete values of β does constructive interference occur.

These values are denoted the guiding modes of a waveguide. For all other angles, the waves

destructively interfere with each other and dissipate over distance.

The discrete modes of a waveguide are numbered from the fundamental mode, mode 0. These

modes are orthogonal. Depending on the its profile properties, a waveguide may support multiple

modes simultaneously. Figure 2.3b depicts the shape of a mode in the vertical and horizontal

directions within a 2D waveguide profile; combined, we see a 2D mode profile such as depicted in

Fig. 2.3c. The majority of the electromagnetic field is confined within the guiding layer; however,

evanescent fields also extend partially into the substrate where they may couple to other structures.

The propagation constant β captures how light propagates through the waveguide materials and

structure as compared to the free-space wavelength λ0. More formally

β =
2πneff

λ0
(2.2)

where neff is the effective index of the waveguide.

The effective (refractive) index neff is a function of the mode number, waveguide geometry,

material refractive indexes, and the wavelength of light. In effect, values of neff for the various modes

of a waveguide are defining properties of the waveguide. As each neff is unique for a given mode

of a waveguide, it is used synonymously with the given mode for purposes of device design. For

simple structures, such as the symmetric slab waveguide depicted in Fig. 2.1, analytical/graphical

solutions can be easily found. For more complex geometries, including 2D waveguide profiles, the

mode must be calculated using numerical methods provided by tools such as [41], [42].

Electromagnetic waves comprise two fields: an electrical field and a magnetic field. The

interaction of these fields is described by a wave function. A plane wave is described using the

notation

E(z, t) = Ae j(kz−ωt) (2.3)

where A is the wave’s amplitude, k is the propagation constant, z is distance, ω is the angular

frequency, and t is time. Overall, (2.3) describes how the wave moves with respect to space and
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varies with respect to time. The waveform of (2.3) is periodic, having a wavelength λ defined over

space as

λ =
2π
k

(2.4)

The majority of integrated optical waveguides are planar structure fabricated on or within

substrate materials using lithographic and deposition methods. As the dimensions of the component

waveguides usually do not vary in height, the width of waveguides and their spatial placement are

used for fabrication of devices. A 3D structure, such as the ring resonator in Fig. 2.3d, can therefore

be modeled as a 2D structure, simplifying design for many devices.

2.2 Integrated Optic Systems
Figure 2.4 depicts a high-level view of an integrated optics system. We describe the components

of this system and their operations; the details of the individual devices can be found in [38]. At

the optical inputs of a system are lasers that provide light at the wavelengths the system is designed

for, around 1550 nm for SOI systems. For silicon-based processes, this light is usually coupled into

the system from outside using fiber couplers or grating couplers. To inject data into the system,

modulation devices, such as Mach Zehnder interferometers (MZIs), are used to vary the intensity

of the input light. The light is then routed throughout the substrate using waveguides and optical

switching devices with electrical switching inputs or in some cases employing all-optical switching.

The routing network also includes passive devices such as waveguide splitters, waveguide

crossings, and passive multiplexing devices, such as array waveguide gratings. Splitters divide the

input among two outputs with each output receiving half the input power, minus losses. Crossings

are necessary for waveguides to cross each other on the single-layer planar substrate with minimal

losses; crossings will feature into our physical design work in subsequent chapters. Devices such

as array waveguide gratings enable (de)multiplexing of various wavelengths and have been a useful

application for 1st-generation silicon photonics.

At the outputs of the system are demultiplexers for multiwavelength systems, photodetectors,

and garbage outputs. Waveguides can support ranges of wavelengths, and therefore multiple

channels of data may be present on a waveguide that need to be demultiplexed at the output. After

demultiplexing, a photodetector (receiver) is required to translate optical signals into electrical

signals to read the transmitted data. Such photodetectors utilize materials such as germanium

[57], which are incorporated into modern silicon photonics processes [22]. Finally, some routing

networks need to dispose of unused light. To prevent interference and noise, the light from these

“garbage outputs” must either be routed to the edge of the substrate for disposal or absorbed by a

material such as germanium, placed near the exit-point of the waveguide.
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2.3 Conclusion
We have described the basics of integrated optics and integrated optic systems. We also note

that the integrated optic system in Fig. 2.4 can be modeled as a set of devices interconnected with

waveguides. Except at the endpoints, most of the optical devices in the system will be switching

or other routing elements. We therefore concentrate our building-block approach on switching

(routing) devices such as MZIs and ring resonators. In our behavioral synthesis chapter, these

abstract switching building blocks will feature as logical elements. In our physical synthesis chapter

we treat these devices as blocks requiring routing. Finally, the waveguide concepts presented in this

chapter will feature in the device modeling we present in our thermal-aware resynthesis technique.
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Fig. 2.1 Total internal reflection of light within a waveguide

Fig. 2.2 Symmetric slab waveguide



20

(a) (b)

(c) (d)

Fig. 2.3 Waveguide and mode shapes: (a) 3D view of a waveguide structure
(b) Mode shapes of a waveguide profile (c) Numerically calculated
mode shape (d) Ring-resonator modulator
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Fig. 2.4 High-level view of an integrated optic system



CHAPTER 3

BEHAVIORAL SYNTHESIS

One of the goals of this work is to develop synthesis techniques that utilize conventional

integrated optics devices that can be fabricated with current technology while also being applicable

to future design processes. We describe the basic operation of the integrated optic devices we utilize.

The constraints of the physical device model are key to the logic synthesis methodology we develop

in this chapter.

3.1 Modeling Mach–Zehnder Interferometers
Routing light using waveguides is performed through the use of coupling and controlled

interference. Consider the Mach–Zehnder Interferometer (MZI) depicted in Fig. 3.1a created using

directional couplers. The paths connected between P and F and Q and G are waveguides. Under

certain conditions, when waveguides are brought in close proximity to each other, energy transfers

between one waveguide to the other, and vice versa. The couplers in this device are 3dB couplers,

dividing and/or combining the signal from both inputs equally between the two outputs. The actual

routing is controlled by input S, described by the following equations:

φ1 =
ω
c
·n ·L φ2 =

ω
c
· (n+Δn) ·L (3.1)

Δφ = |φ2 −φ1|= π =
ω
c
·Δn ·L (3.2)

where ω is the angular frequency of the light (dependent on wavelength), φ1 and φ2 represents the

phase of the light in the two center waveguides, and n is the index of refraction for the waveguide.

Figure 3.1b depicts the MZI in parts, an input S causes a change in refractive index Δn in the

region indicated by (1) via heating, carrier injection, or other means. This causes a path-length

difference, and therefore a phase difference, between the signals in (1) and (2), causing constructive

or destructive interference at the second coupler. A phase difference of 0 or π [56] will route

each input completely to one output or the other, and the device acts as the controlled crossbar

depicted in Fig. 3.2a. Similarly, other designs [16], [58], as depicted in Fig. 3.1c, can be used to

reduce the amount of phase-shift needed and the size of the overall device. Changing the refractive
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index can be accomplished by using a microheater or more advanced methods such as the Metal

Oxide Semiconductor (MOS) capacitors used in Intel’s high-speed modulator [19]. Modulation is

also possible using devices such as ring resonators. The operation of such devices will be covered

in later chapters. In our work, we can utilize either an MZI or ring resonators as an electrically

controlled optical crossbar switch to design digital optical logic.

3.2 Our Device Model
The operation of the MZI allows us to model it as a crossbar gate that routes light signal

completely between two paths depending on the state of S and depicts it symbolically in Fig. 3.2a,

with its two states Fig. 3.2b and Fig. 3.2c (bar and cross, respectively). The waveguides are sourced

by light (logical “1”) or darkness (“0”), and the output of a function is read using optical receivers

at the end. In our model, the switching input S is an electrical signal; it is an outside signal that

controls the cross/bar configuration and cannot be switched by optical inputs. Connections to p and

q, and f and g are waveguides, and for simplicity, light is assumed to move from the p and q side to

f and g. In our model, an optical signal cannot directly switch a crossbar’s S input.1 More formally

(S = 0)⇒ (P = F)∧ (Q = G)
(S = 1)⇒ (Q = F)∧ (P = G)

(3.3)

These constraints affect how functions may be composed and imply that the inputs to a crossbar are

the primary inputs for that network. Waveguide connections between crossbar gates are depicted

symbolically as black “wires.” All designs created using the above model can be physically realized,

including allowing waveguides to cross each other without interference.

In addition to MZIs, we also utilize optical splitters, depicted symbolically in Fig. 3.2d. A

splitter divides the light from one waveguide into two output waveguides, each of which contain

the original signal, but at half the power (a 3dB loss). In our model, splitters are the only signal

degradation mechanism for a given topology, as we assume that there are no losses due to waveguide

bends or insertion losses for MZI devices. Such losses are factored into heuristics during the

physical synthesis stage, described in the later chapters of this dissertation.

3.3 Previous Work in Integrated Photonic Logic
Early attempts in optical digital logic were designed around the idea of using light in spatially

projected computation to take advantage of spatial parallelism [59]. However, the practicality of

1Switching a crossbar gate with an optical signal requires an opto-electrical interface comprising an optical receiver
unit feeding switching hardware—a system that can be large, expensive, and slow. Designing for such hardware is
currently beyond the scope of the synthesis technique applied to this device model.
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such designs and devices did not justify their use as they were very slow, large, and expensive; this

approach to optical digital logic was generally abandoned.

For optical logic using guided light, investigations into all-optical transistors have also been

made and continue to be made [60], [61]; however, these devices are very experimental and

often require materials and processes not found in contemporary processes. Ultra-fast switching

using nonlinear directional couplers [62], [63], terahertz optical asymmetric demultiplexers [64],

nonlinear optical loop mirrors [65], and Sagnac gates [66] have also been explored, but are generally

the realm of fiber-based optics. Nonlinear Kerr effects in SOI processes can be exploited [67], but

require interaction with special nonlinear cover materials. Investigations into nonlinear, soliton-

based logic gates are also promising [9]; however, these devices require either fibers or relatively

long (e.g., 5 mm) SOI waveguides [68] to implement.

Optical logic design using crossbar routing devices has been investigated in literature. Shamir,

Caulfield, and others investigated the use of optical crossbar gates as Fredkin gates [69], [70]. The

Fredkin gate model assumes that an optical input can also drive the switching input of a gate,

allowing the gate to be used in a reversible logic role, but precluding its applicability to our device

model. There has also been research in non-Fredkin crossbar gates [4], [6], [7], demonstrating

the potential for implementing digital logic using MZIs; however, these are generally confined to

small demonstrative circuits that do not scale to larger design implementations and arbitrary logic

functions. More recently, techniques such as [71] investigate the integration and routing of optical

interconnects; however, such work is for routing, not implementing logic.

We therefore explore methodologies for composing logic functions using MZI crossbar gates

that can also scale to larger designs if necessary. We explore how these may be used directly and

how their limitations motivate a technique for logic sharing without violating the opto-electrical

barrier.

3.4 First Attempts and Crossbar Logic Forms
Static-CMOS benefits from two important properties: metals and semiconductors conduct when

physically connected, and logic is restorative in nature. These two properties grant static-CMOS

a great level of flexibility for implementing and optimizing logic functions, especially as it allows

fanout for multilevel logic implementation. Unfortunately, this flexibility does not extend to optical

circuits.

Consider the two networks in Fig. 3.3 implementing functions f1 = a+ b and f2 = c · (a+ b).

The first network implements f2 by using the output of f1 to drive the switching input of a gate. This

is an unworkable design under our model because an optical signal f1 cannot switch the electrical

input of another gate. A more optimal solution is found in the second design Fig. 3.3b, which
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uses f1 as an optical input to another gate. This design benefits from using fewer gates, but more

importantly, the subfunction is kept entirely in the optical domain. In such a way subfunctions can

be shared, but with limitations.

• Waveguide splitters: The device that enables signal sharing using waveguides is the

waveguide splitter. A waveguide splitter shares the signal of the input waveguide between

two output waveguides, dividing the input power between two outputs, generally with a 50:50

ratio (3dB loss). As the outputs of the splitter have only half the power of the original signal,

there are limitations on how many may be used, which can serve as a cost-metric in the design

of an optical logic network. Furthermore, as an optical signal, the subfunction may still only

be switched and routed further using primary inputs to the network.

• Garbage outputs: A “garbage output” is a waveguide output that is not connected to a

receiver (a function output), i.e., it is left unused. These unconnected outputs cause problems

because the signals, and the light/energy it carries, may interfere with the operation of the

network if not properly “disposed.” This is demonstrated in Fig. 3.4, which is the visual

output of a Finite Difference Time Domain (FDTD) simulation [72] of an MZI device. The

FDTD simulation technique models wave propagation through a (discrete) wave medium;

Fig. 3.4 depicts the MZI device routing light from the top-left input to the lower-right output.

The lower-right output of the device is left unconnected. Light arriving at this unconnected

output can do a number of things, including dispersing into the substrate as noise and heat

(as shown in the figure as ripples in the substrate) and/or reflecting back into the device,

interfering with other signals.

Garbage outputs are problematic and must be properly routed to the edges of the substrate where

they can be dispersed away from the logic devices. The additional waveguides needed for this can

cause congestion and complicate the overall physical routing of a network. Every crossbar gate

output that is left unconnected is a garbage output. For example, the network shown in Fig. 3.3b

would require three garbage outputs to be routed to the edges of the substrate, leading to a far-less

compact design. Minimizing gate count, in general, reduces the number of garbage outputs and is

an important part of any synthesis procedure.

With these constraints in mind, we now explore two basic design styles/methods for creating

optical crossbar logic networks: BDD-based design and Virtual Gate design. We show how these

design styles operate and highlight their abilities as well as limitations. These limitations motivate

more advanced approaches using Boolean decomposition as a means to derive designs that may be

more optimal and beyond the ability of the other approaches to optimize for. All these described
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methods lend themselves to automation and provide a comparison of these approaches near the end

of the chapter, using metrics which are described in the coming sections.

3.5 BDD-Based Design
The 2x2 crossbar can be modeled as two multiplexers with complemented inputs. As

multiplexers, each crossbar gate effectively implements Shanon’s expansion in one variable:

f = x̄ fx̄ + x fx (3.4)

out put f = s̄p+ sq (3.5)

out putg = sp+ s̄q

We can therefore utilize logic structures that employ Shanon’s expansion, namely (Reduced Order)

Binary Decision Diagrams (BDDs) [44] for direct implementation using crossbar gates.

Consider the Reduced Ordered Binary Decision Diagram (ROBDD) in Fig. 3.5a, which

implements two functions: f1 = ab+ c and f2 = āb+ c, using variable order a ≺ b ≺ c. A dashed

line indicates the negative cofactor, and a solid line the positive cofactor, which are connected to the

p and q ports of a gate respectively. This is reflected in Fig. 3.5b. A crossbar network can therefore

be technology-mapped from the BDD. The BDD’s variable-switched function form directly maps

to crossbar gate networks and does not violate our crossbar model. In addition, the properties of

the resulting network are also directly related to the properties of the BDD structure, including the

effects of variable ordering on the canonical structure of an ROBDD.

3.5.1 Salient Features

A BDD-based crossbar network will, in general, have a number of garbage outputs equal to

the number of nodes present in the BDD. The physical aspects of crossbar gates also mean that

networks cannot take advantage of ROBDD extensions such as complemented edges as the signal

in a waveguide cannot be “inverted” without extra hardware; complemented functions will need

to be derived as separate BDD function. Common subexpression extraction is possible in the

form of shared functions is possible through the use of splitters; however, the effects of the signal

degradation must be accounted for.

BDD-crossbar networks are relatively path-delay balanced as they have a feed-forward design

topology. The longest path is computed as

lmax = h · l0 (3.6)

where h is the height of the BDD graph.
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Where BDD-based design suffers is in the number of garbage outputs produced by the approach.

Each gate has the potential to produce a garbage output that must be accounted for through routing

or a light absorbing structure. The canonical structure of ROBDDs can also lead to networks of

extremely large gate counts for a given function. Though BDD-based design is attractive for its

predictable signal delay, the number of garbage outputs and unpredictability of logic composition

in terms of gate counts leads us to abandon this logic composition method for crossbar gate logic.

We therefore investigate a composition methodology using “virtual gates.”

3.6 Virtual Gate-Based Design
Consider the device networks depicted in Fig. 3.6. We denote these logic composition functions

“Virtual Gates.” A virtual gate (VG) is—functionally and conceptually—a crossbar gate that is

switched by a function, not necessarily a primary input. The gate is “virtual” in the sense that it is

a black box for a function composed of “real” gates—those driven by primary inputs—as well as

other virtual gates. A novel form of nesting can be used to compose VG function implementations,

where Boolean operators are implemented by replacing child gates with other gates a real or virtual.

A given VG implementation comprises two input waveguide ports p and q connected by

waveguides and crossbar gates to two output ports f and g. The nesting operation comprises the

Boolean operator forms depicted in Fig. 3.6 and is illustrated in Fig. 3.7a where two AND virtual

gates are nested within an OR virtual gate, creating the final function ab+ cd. Evaluation of a VG,

given a primary input assignment, involves assigning p and q inputs logical 0 and 1, respectively,

and applying cross or bar configurations to gates as defined in Fig. 3.2. The output of the function

is detected at f, with g = ¬f.

The process of composition is illustrated in Fig. 3.7a, where a function f = ab + cd is

implemented by replacing (or nesting) the gates of an OR function with VGs implementing a · b

and c ·d. The result is depicted in Fig. 3.7b.

While it may seem strange to see feedback loops in device designs, the physical devices can

indeed implement self-feedback. As an experiment, the model for the AND gate depicted in

Fig. 3.6a was simulated in a 2D FDTD simulator OptiFDTD®by Optiwave Software; the visual

output2 of which can be seen for a = 1,b = 0 in Fig. 3.8. The signal from the top-left crosses in the

top gate, but passes through in the bottom gate, returning to the top gate where it crosses again to

appear in the top-right output.

2Note that there are differences from the virtual gate diagram: the bottom two ports are swapped because the
waveguides are not crossed in the center and the “light” source is positioned at the p input rather than at the q input.
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3.6.1 Salient Features

Networks composed of virtual gates have exactly two optical inputs, p and q, and two outputs,

f and g, as the entire network is, in itself, a virtual gate; in addition, for a given function, a

maximum of one garbage output is created. The existence of a complete logic enables virtual

gates to implement any logic function using crossbar gates comprising only primary inputs. This

includes factored functions and any other single-output representation using Boolean operators.

Control signals (S) are connected via the primary inputs of the function. The f port implements the

function, and g = ¬ f . Furthermore, the total number of real gates is the number of primary literals

in the original logic expression the network is derived from.

Virtual gates also suffer from very unbalanced signal paths, depending on the state of the

switches, with the potential for a signal to traverse every waveguide present in a VG network. The

maximum signal path lmax is roughly computed as

lmax = 2 · p · l0 (3.7)

where p is the number of operators in the virtual gate, and l0 is a “unit length” of waveguide.

This is based on the fact that all virtual gate operators connect two gates (virtual or real) by two

waveguides, and a signal could possibly traverse all paths to reach the destination. For example,

the network in Fig. 3.7a would have a 2 · 3 · l0 = 6l0 long maximum signal path, which is close to

the longest possible signal path from p to f with variable assignment {a,b,c,d} = {1,0,1,0} at

5l0. The value lmax is a reasonable rough estimate; it can be further refined by estimating routing

distances for operators and physical network topology.

3.6.2 Expression Sharing

The major limitation of designing with virtual gates is that the nesting of gates prevents the

extraction/sharing of arbitrary common subexpressions (CSE). For example, in Fig. 3.9 one cannot

simply share the ab term from f = ab+bc for use with another gate; assignments such as abcd =

{1,1,1,1} will cause all crossbar gates to assume a cross-configuration, isolating the top input of

the h-gate from the optical inputs of the network. In effect, any operator employing feedback for its

inputs can produce an undefined state. Only the XOR operator does not exhibit this behavior as it

has no feedback, but XOR-based CSE is not well studied.

Despite the versatility of the virtual gates to implement any logic function, the inability of a

virtual gate network to share subexpressions easily implies that the overall network can be very

large due to replicated expressions. Furthermore, a virtual gate network has the potential for long

signal paths—traversing every waveguide in the network.
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3.7 XOR-Based Common Subexpression Extraction
Virtual gates are theoretically capable of implementing any single-output Boolean function in

a factored form. This, however, has some caveats: the inability to drive gate-inputs using optical

signals implies that only splitters may be used to share expressions. This places severe constraints on

VG expression sharing, namely that sharing is not possible using operators connecting operands via

loops (e.g., AND and OR operators). Common subexpressions connected via AND or OR operators

must be reimplemented (replicated) wherever they appear as discussed in the previous section.

Expression sharing using VGs is only possible through the use of the exclusive-OR (XOR)

operator as it does not contain loops in its construction. This has its limitations, however: expression

sharing is hierarchical. Consider the three VGs XORed together in Fig. 3.10a. If we attempt to share

the output of the b VG, the output is not the function b, but rather the function formed by b and its

inputs: a⊕b. Sharing the function b directly would require a separate b gate driven only by 0 and 1

at its inputs. Therefore, common subexpression extraction, as implemented in CMOS technologies,

cannot be applied to VG networks. However, it is still possible to perform expression sharing by

means of XOR decomposition, the structure of which is depicted in Fig. 3.10b.

3.7.1 XOR-Based Expression Sharing

Our goal in expression sharing is to reduce the overall literal count—and therefore gate count—

by sharing functionality. The network topology in Fig. 3.10b depicts f0 and f1 sharing a common

subexpression P through the relationship in (3.8). Ideally, this relationship will reduce the total

literal cost of the design.

f0 = P⊕Q0 f1 = P⊕Q1 (3.8)

f0 = (P⊕m)⊕ (Q0 ⊕m) f1 = (P⊕m)⊕ (Q1 ⊕m) (3.9)

Reducing literal count utilizing the XOR operator is not as straightforward as with AND or OR

operators [73], [74] and more difficult considering the feed-forward topology in Fig. 3.10b. We

approach this problem as one of adding or removing cubes from the subfunctions P, Q0, and Q1.

Consider the case where an arbitrary term m is XORed with the right-hand-sides of both

equations of (3.8). In order to balance the equations, we use the XOR identity a⊕a = 0, requiring

that m must be added again to each of the equations. If we group the terms as depicted in (3.9), what

can be taken from the result is that simultaneously adding a term m to all three functions P, Q0, and

Q1 does not change the functionality of f0 and f1. We can choose terms such that one or more of

the functions are simplified as a means of optimizing the overall expression-sharing VG network, as

we will see in the following example.
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3.7.2 Motivating Example

Consider the binary-coded-decimal (BCD) to 7-segment display in Fig. 3.11a, which converts

a BCD to a visual representation of a number by turning segments on or off (1 or 0) depending

on the value (0–9) of the BCD (x3x2x1x0). The truth table for segments 0 and 1 (S0 and S1) is

depicted on the right side of Fig. 3.11a (unlisted rows are assumed to be zero). The table is mapped

to Karnaugh maps (K-maps) depicted in Fig. 3.11b, allowing us to derive the prime implicants for

the functions and the resulting sum-of-products (SOP) equations below the K-maps. Through this

method, the total literal count for the two SOP expressions is 21 literals, requiring 21 crossbar gates

if implemented as virtual gate networks.

We now decompose S0 and S1 into functions P, Q0, and Q1 as depicted in Fig. 3.10b, where

S0 = P⊕Q0 and S1 = P⊕Q1, and initially assign P := 0, Q0 := S0, and Q1 := S1. At this point, the

network is essentially the same as implementing S0 and S1 separately. Now consider the case where

we XOR an expression k with P, Q0, and Q1, where k is the intersection of minterms contained

in Q0 and Q1. This operation has the effect of cancelling those minterms in P, Q0, and Q1 that

are also contained in k and adding them if not. This new set of functions is actually less optimal

than the original (depicted in Fig. 3.11c), because some of the larger cubes are broken up in the

XOR operation. These less-optimal functions can, however, be improved by repeating the operation

using minterms 1 and 6, affecting all three functions P, Q0, and Q1, resulting in the K-maps

and functions in Fig. 3.11d. The final set of functions uses only 10 literals total—11 gates less

than implementing the original functions separately. This example demonstrates the potential for

good common expression sharing by “adding” and “removing” minterms from the decomposition

functions. The same operation can also be extended to cubes in general.

Note that while the decomposition is XOR-based, the subfunctions P, Q0, and Q1 are

implemented as VGs in any form—sum-of-product, factored forms, etc. The most optimal form is

chosen for VG implementation. This is a novel feature of our decomposition technique as compared

to conventional XOR-based optimization methods.

3.7.3 Limitations of Contemporary XOR-Based Synthesis Techniques

XOR-based optimization is well studied in literature. Techniques such as [73], [74] are

designed to minimize Exclusive-Sums-of-Products (ESOPs) expressions with exact and fast

heuristic methods. ESOP expressions are, however, very limiting compared to VG networks as

they comprise only AND-XOR terms. Decomposition methods have also been explored using graph

structures and concepts such as x-dominators [75] to find structural XOR relationships. However, an

XOR decomposition can only be extracted if found on the graph structure; an XOR decomposition

with expression sharing always exists in our approach. [76] addresses some shortcomings of
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previous decomposition methods by finding linear relationships between subfunctions of form

f = g1h1 ⊕ g2h2, thereby reducing the area of XOR-based logic functions. While this performs

an XOR decomposition, it does not create common subexpression sharing “by design.” The

technique described in [77] applies a heuristic method of sharing subfunctions of positive-polarity

Reed–Muller expansions for Toffoli gate synthesis. However, as with other Toffoli synthesis

methods [78], expression sharing of this type is incompatible with our approach because expression

outputs cannot be shared across the opto-electro barrier. We therefore present a technique for finding

XOR decompositions for VG networks while simultaneously performing common subexpression

sharing.

3.8 Multi-Output Expression Sharing
Boolean functions are represented using ROBDDs [44]; this enables a more compact representa-

tion while allowing efficient XOR-based manipulations. Rather than using minterms to manipulate

functions, as in the motivating example, we use cubes derived from the BDDs. The number of

literals in the function (our metric) is the sum of all literals from the cubes of a BDD. It should

be noted that while the literal count of the BDDs is used as a metric during synthesis, the BDD is

used solely as a function-manipulation data-structure, not as a technology-mapping/implementation

structure.

Two functions can be decomposed into a structure depicted in Fig. 3.10b. This can be extended

to a multilevel decomposition by repeating the process hierarchically. The function in Algorithm

1 implements this procedure as a top-level function decomposition from a multioutput design,

returning a decomposition tree of subfunctions representing the optimized design.

The algorithm selects most “compatible” functions f0 and f1 using BESTPAIR(), where

compatibility of functions is ranked such that the number of shared variables is maximized and

the number of function-exclusive variables is minimized—increasing the probability of producing a

useful decomposition. Using f0 and f1, the algorithm attempts to find a P, Q0, and Q1 decomposition

that can replace f0 and f1 as a branch in the tree. When a decomposition improves the literal count,

the result is mapped into the decomposition tree, the stems of the decomposition (Q0 and Q1) are

removed from the function pool (F0), and the root P is added to F0 for further decomposition.

The result of this procedure, applied to all segments of the BCD-to-7-segment display, can be

seen in Fig. 3.12. Segment outputs S0,S1,S2,S3 and S6 are able to benefit from multilevel sharing,

where outputs S4 and S5 are only able to share functionality with each other and are implemented

separately.

The actual XOR decomposition is performed by Algorithm 2, taking two functions f0 and f1 as

inputs and producing an improved decomposition, or FALSE if no decomposition could be found.
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θ () counts the number of literals in a given set of BDDs. Variable N0 is a chosen maximum number

of passes; we use N0 = 130.

The XOR decomposition technique works by applying cubes to the decomposed functions such

that net literal count is reduced. SEED() returns all cubes from Q0 ∪Q1 ∪Q0 +Q1 ∪Q0 ⊕Q1 to

provide an initial pool of cubes to optimize with. In each iteration, a cube is selected from C and

XORed with P, Q0, and Q1 to attempt to reduce the net literal count. Cubes from the resulting

decomposition are then added to the cube pool C, further increasing the available cubes that can be

used. These cubes are repeatedly used until no improvement is found. The technique then tests the

result against the best found result, storing it if there is improvement. A new starting point is then

chosen to repeat the process. This continues for a chosen number of passes N0.

An important part of our approach is the ability to hill-climb out of local minima. This comes

in two forms: the first occurs at lines 16 and 18 and is important for allowing the algorithm to

apply cubes to the decomposition even when they cause no literal-count improvement. To prevent

deadlocks, this is allowed only for E0 number of times (E0 = 10 in our implementation). This gives

the technique more flexibility in finding a better decomposition. The second method allows a restart

at a point based on the best decomposition and a cube that caused the largest effect (line 22) on the

decomposition. The process then repeats and continues until there are no more passes left.

After a complete decomposition is performed for a design, the subfunctions of the decomposi-

tion tree are implemented as optimized factored-forms and mapped to VGs. The final decomposed

multi-output design is implemented as a tree of XOR-decomposed functions, in the same type of

structure as seen in Fig. 3.12. We evaluate this technique’s efficacy on a number of logic designs in

the next section.

3.9 Experimental Results
The crossbar logic synthesis technique described in Section 3.8 is applied to a number of logic

designs from the ACM/SIGDA (i.e., MCNC) logic synthesis benchmark suites [79]. We also include

the BCD-to-7-segment design. Two designs (cm138a and cm42a) saw no change via our technique

and are not included in the table.

The results of the technique’s application is seen in Table 3.1. The original literal count Lorig

represents the number of literals counted for implementing all outputs separately as VGs. The

decomposed literal count Ldecomp represents the number of literals of the decomposed network after

applying our technique. Also included is the number of subfunctions (#funcs) implemented as VGs

in the decomposed implementations.

Overall, most designs enjoy reduced literal counts when the decomposition is applied (negative

ΔL), in some cases orders of magnitude differences. An increase or no change in literal counts for
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some designs can be attributed to discrepancies between the literal counts of the BDD-functions

used in the technique’s internal metrics and the actual implementations of those functions as VGs.

3.9.1 Limitations

Our synthesis procedure does not allow for electro-optical interfaces (receivers and transmitters)

except at the start and endpoints of the circuit. However, in larger systems, these functional blocks

comprise parts of the overall design that must be interconnected. A more extensive synthesis

procedure is needed to partition larger circuits at electro-optical transceiver boundaries, with

individual blocks implemented via synthesis techniques such as those presented in this chapter.

3.10 Application to a Fabricated Design
Our virtual gate methodology is the basis of the optical 1-bit full adder design submitted for

fabrication with the OpSIS [22] foundry and depicted in Fig. 1.3. The gate network for the sum

and Cout functions are depicted in Fig. 3.13. Though the XOR-based logic synthesis technique was

applied to the pair of functions, the resulting gate count was increased due to the additional gates

required to synthesize the sum function as compared to its compact 3-gate XOR representation.

As a means to save area, the fabricated design utilizes ring resonator-based [16], [58], rather

than MZI directional coupler-based, devices as switching elements. These devices are logically

equivalent; however, the Q and G ports of single-ring resonators are swapped as depicted in

Fig. 3.14.

The resulting ring-based full adder network is depicted in Fig. 3.15. Though the ring resonators

reduce area, routing complexity is increased due to the Q−G port swap. The waveguides must

also cross each other in order to connect to their destination ports. How such routing complexity is

accounted for is the subject of subsequent chapters.

3.11 Conclusion and Future Work
This chapter describes design and synthesis methods for implementing digital logic using

integrated optical devices that function as crossbar switches. We have shown a design methodology

for constructing arbitrary logic functions using VGs and present an XOR-based methodology for

expression sharing for multi-output designs. The efficacy of our synthesis techniques is shown on a

number of logic designs, often with large improvements.

3.11.0.1 Future work

This synthesis procedure is limited to implementations that do not incorporate electro-optical

transceivers. As part of a more extensive synthesis procedure, partitioning techniques have to be
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explored to enable larger designs to be implemented as a series of interconnected subfunctions

designed using techniques such as presented in this chapter. However, the physical design of the

optical network is an integral part of such partitioning. Parameters such as signal degradation from

splitters, routing congestion, and delay balance will ultimately decide how circuits are partitioned

for separate implementation. Therefore, it is required to explore ways to integrate this technique

with automated layout and routing using the same “building block” concept used for synthesis.

This will enabling physical design to be coupled with automated synthesis and allow for further

refinement of the synthesis process. In addition, such a physical framework will enable us to explore

how other techniques can be incorporated into our logic design. It may be interesting, for example,

to investigate how different wavelengths operate within the same logic structures and whether this

enables greater resource sharing with techniques such as wavelength division multiplexing. Our

end goal is to produce a framework for design automation for integrated optics. The framework

will perform both logic synthesis for integrated optics as well as lead to future directions in physical

design and layout.
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(a) (b)

(c)

Fig. 3.1 Mach–Zehnder Interferometer (MZI) routing devices:
(a) Directional coupler-based (b) Directional coupler MZI in parts
(c) Ring-resonator-based

(a) (b) (c) (d)

Fig. 3.2 Crossbar switches: (a) Gate (b) Bar (c) Cross (d) Splitter

(a) (b)

Fig. 3.3 Two configurations for f1 = a+b and f2 = c · (a+b):
(a) Incompatible design (b) Compatible design
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Fig. 3.4 Dispersion of light into the substrate from a garbage output

(a) (b)

Fig. 3.5 BDD-based design for f1 = ab+ c, f2 = āb+ c: (a) BDD graph
(b) Resulting BDD-based design

(a) (b) (c)

Fig. 3.6 Virtual gate functions for 2-input Boolean operators: (a) AND
(b) OR (c) XOR
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(a)

(b)

Fig. 3.7 Composing functions with virtual gates: (a) Virtual Gates
implementing f = ab+ cd (b) Resulting network

Fig. 3.8 FDTD simulation of an AND virtual gate
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Fig. 3.9 Internal functions of virtual gates cannot be shared

(a) (b)

Fig. 3.10 Virtual Gate expression sharing: (a) XOR expression sharing is
hierarchical (b) XOR decomposition structure

Algorithm 1 Function Optimization

function OPTIMIZEDESIGN(D:design)
MAPTOTREE(D → T );
F0 � FUNCTIONSFROM(D); Up � /0; � Up = Used pairs
while (F � (x ∈ F0,y ∈ F0) : x � y, (x,y) �Up)) � /0 do

( f0, f1)� BESTPAIR(F); Up �Up ∪ ( f0, f1);
if (B� XORDECOMP( f0, f1)) � FALSE then

MAPTOTREE(B[P],B[Q0],B[Q1]→ T );
REMOVE( f0, f1)FROM(F0);
F0 � F0 ∪B[P];

end if
end while
return T ;

end function
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(a)

(b)

(c)

(d)

Fig. 3.11 XOR operations on BCD-to-7 segment display function:
(a) 7-segment display and truth table for segments 0 and 1
(b) Karnaugh maps for S0 and S1 (unmarked grids = offset) (c) The
original P, Q0, and Q1 after XORing with k (d) Optimized P, Q0,
and Q1
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Fig. 3.12 BCD-to-7-Segment complete decomposition

Fig. 3.13 1-bit full adder constructed from virtual gates

(a) (b)

Fig. 3.14 Ports of two functionally equivalent optical logic building blocks:
(a) Directional coupler-based logic gate (b) Ring-based logic gate
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Algorithm 2 XOR Decomposition

function XORDECOMP( f0, f1)
P� 0; Q0 � f0; Q1 � f1; L0 � θ ({P,Q0,Q1});
best � [P,Q0,Q1,L0]; � Current best results
N � N0; � N = Passes left; N0 = total passes
V [] := /0; � V [e] maps e → Seto fCubes;
Uv � /0 � Uv = used V cubes
while (N > 0) do

C� SEED({P,Q0,Q1}); � C = cubes;
Uc � /0; � Uc = used cubes
L1 � θ ({P,Q0,Q1}); � Starting # literals for pass
L� L1; E � E0;
repeat

m� REMOVECUBEFROM (C); Uc �Uc ∪m;
p� P⊕m; q0 � Q0 ⊕m; q1 � Q1 ⊕m;
v� θ ({p,q0,q1})−θ ({P,Q0,Q1});
if (v < 0) or ((v = 0) and (E > 0)) then

P� p; Q0 � q0; Q1 � q1; � Accept the change
E � if (v = 0) then E −1 else E0;
L� L+ v;

end if
C�C∪ (CUBESOF ({p,q0,q1}) \Uc);
e� |θ (p)−θ (P)|+ |θ (q0)−θ (Q0)|+ |θ (q1)−θ (Q1)|;
if m � CUBESOF (V ) then

V [e]�V [e]∪m; � Map cube’s effect e to cube
end if
if (C = /0) and (L � L1) then

C�Uc; Uc � /0; L1 � L; � Retry until no change
end if

until (C = /0);
if L1 < best[L0] then

best � [P,Q0,Q1,L0];
N � N +1; � Reward improvement with extra passes

else
N � N −1;

end if
m0 � (c ∈V [e] : largest(e),c �Uv);
P� best[P]⊕m0;
Q0 � best[Q0]⊕m0;
Q1 � best[Q1]⊕m0;

end while
if best[L0]< L0 then

return best;
else

return FALSE
end if

end function
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Table 3.1 Logic synthesis benchmark results
Design In Out Lorig Ldecomp ΔL # funcs

5xp1 7 10 294 160 -134 15
alu2 10 6 25645 899 -24746 9
alu4 14 8 6227 4906 -1321 13
apex4 9 18 15967 4154 -11813 32
b1 3 4 16 9 -7 3
b12 15 9 1847 146 -1701 13
bcd7seg 4 7 132 35 -97 11
bw 5 28 955 314 -641 43
c8 28 18 200 406 +206 27
cc 21 20 147 136 -11 27
clip 9 5 888 736 -152 9
cm162a 14 5 85 125 +40 9
cm163a 16 5 43 65 +22 8
cmb 16 4 76 48 -28 4
cps 24 109 7156 5332 -1824 152
cu 14 11 91 71 -20 11
decod 5 16 80 65 -15 16
duke2 22 29 2174 2220 +46 43
ex1010 10 10 86694 5433 -81261 19
ex5p 8 63 60960 902 -60058 79
f51m 8 8 317 109 -208 11
i1 25 16 82 88 +6 17
inc 7 9 744 176 -568 14
lal 26 19 184 196 +12 25
ldd 9 19 427 141 -286 25
misex1 8 7 122 93 -29 12
misex2 25 18 188 175 -13 24
misex3 14 14 17971 13232 -4739 25
misex3c 14 14 5006 6892 +1886 27
pcle 19 9 87 131 +44 14
pcler8 27 17 199 420 +221 22
pdc 16 40 208008 41269 -166739 79
pm1 16 13 67 72 +5 16
rd53 5 3 144 74 -70 5
rd73 7 3 840 249 -591 5
rd84 8 4 3288 465 -2823 6
sao2 10 4 532 250 -282 7
sct 19 15 141 265 +124 22
spla 16 46 141815 3372 -138443 69
sqrt8 8 4 155 120 -35 6
sqrt8ml 8 4 1382 44 -1338 7
squar5 5 8 387 70 -317 11
table3 14 14 7021 4446 -2575 25
tcon 17 16 48 48 0 24
ttt2 24 21 337 544 +207 31
x2 10 7 87 132 +45 9
z4ml 7 4 62 114 +52 6

L = # literals
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Fig. 3.15 Ring-resonator-based 1-bit Full Adder



CHAPTER 4

PHYSICAL SYNTHESIS METHODOLOGY FOR

INTEGRATED OPTICS

As the availability and applications of integrated optics expand, the need for automated design

space exploration, optimization, and physical synthesis of integrated electro-optical systems is also

beginning to appear. For this reason, the Electronic Design Automation (EDA) community is

investigating how automatic design space exploration techniques can be adapted to the photonics

domain [2], [71], [80]–[83].

We also take a step forward in this direction and investigate physical design automation for

integrated electro-optical circuits and systems. We show that an EDA-style design methodology—

i.e., placement, global routing, detailed routing—is applicable to optical layout and routing, and

techniques/algorithms used for VLSI physical design can also be suitably adapted. In this chapter,

we highlight how constraint models, design rules, and optimization criteria will drive and govern

physical design automation techniques for hybrid electro-optical system integration.

4.1 Previous Work
Design automation is a relatively new concept in integrated optics. For this reason, not much

work has been done. At the physical level, [81] demonstrates a full-custom layout of photonic

structures using a commercial CMOS-based layout editor (Cadence Design Systems Virtuoso).

Waveguide curves are discretized at a fine level into rectangular geometry, enabling waveguides

to be represented in a format that traditional foundries accept. This methodology is significant in

that it provides a building-block pathway for producing foundry-ready layouts and masks for non-

Manhattan device geometries (rings, arcs, waveguide curvature). However, “design automation”

is essentially absent, and the design must be conceived of and optimized manually. Similarly, the

commercially available photonics CAD suite [41], [42] provides a framework for physical device

design, analysis and simulation engines for performance analysis of optical design components.

However, automated techniques for design space exploration during physical synthesis—automated
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floorplanning, placement, waveguide routing while optimizing for physical parameters such as

insertion-loss, bend-loss, phase coherence issues, etc.—are not available.

Recently, [71], [82] present techniques for global optical interconnect synthesis. Such

techniques analyze the routing problem at different levels of abstraction than the techniques

presented in this work. Once global routing is performed, local routing is necessary to complete

routing. At this routing level, a channel router may be utilized to ensure crossing-minimality, as

well as heuristically minimal bends. The work of [83] presents high-level, run-time calibration and

reconfiguration techniques to reduce power usage in on-chip interconnect networks. The technique

employs multiple redundant optical devices to which subchannels can be remapped in cases where

it would reduce overall tuning power. Automatic place-and-route for wavelength-routed optical

NoCs is presented in [84]. This technique helps designers bridge the gap between network topology

schemes and their physical implementations.

4.1.1 Motivation

The main motivation for investigating this problem stems from physical design of integrated

electro-optical logic circuits [2], [4], [7], [85]. Consider the Graphic Data System (GDS) layout of

our OpSIS-fabricated [22] full adder depicted in Fig. 4.1. Eight (8) ring resonators are arranged into

columns by a device placer such as to minimize area as well as routing complexity. The column

arrangement induces the presence of vertical routing regions between device columns denoted

as channels, with device connection-points, denoted as ports, facing the channels. Interchannel

waveguides are used to allow routes between devices in other channels.

Such circuits are complex in their device interconnections, often featuring high device counts

and large amounts of feedback loops. These designs comprise a set of predesigned optical devices—

modulators, switches, splitters—placed on a planar substrate, connected together via waveguides.

For example, in our previous work [2], our multilevel logic synthesis methodology for implementing

logic demonstrates how optical designs can scale beyond the ability of custom design. The physical

synthesis of such applications now has to be addressed.

The chapter is organized as follows: 1) we first describe the design constraints of our problem

formulation; 2) we then outline our EDA-style design flow methodology; 3) the details of each step

of the design flow are described, including how such methods are adapted for optics; and 4) how

design rules for waveguide routing are accounted for in the routing grid.

4.2 Design Constraints
At the physical automation level, we identify signal power and substrate area as our core guiding

metrics.
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4.2.1 Signal Power

Signal power is the primary guiding metric in our methodology. All devices, including bulk

waveguides, have insertion losses, measured in decibels (dB). Our assumption is that these losses

are precharacterized through device-analysis (FDTD, etc.) for the following type devices:

• Predesigned devices [ device-specific ] (e.g., modulator devices, switches, splitters, etc.).

Losses are characterized from inputs to outputs. For example, waveguide splitters have their

signal power from the input effectively halved at each output (a 3 dB loss).

• Waveguide crossings [ 0.1–0.2 dB / crossing ] Per-crossing losses are on the order of 0.1–0.2

dB per crossing [86]–[88], affecting both crossing waveguides.

• Waveguide bends [ 0.001–0.3 dB / bend ] Losses are dependent on the inherent waveguide

properties (materials, geometry, etc.), radius of curvature of the bend, and surface roughness

due to fabrication [89]–[91].

• Bulk waveguides [ 0.01–2 dB / cm] As these losses are extremely low (dB per centimeter,

e.g. 0.03 dB/cm [92]), we consider bulk waveguides essentially lossless.

Losses due to the presence of predesigned devices are effectively fixed. Therefore, the

design automation problem concerns itself with designing within the permitted losses between

such devices—the routing fabric. We identify three main routing loss mechanisms in descending

importance: 1) waveguide crossings, which induce a relatively large fixed loss per crossing;

2) waveguide bends, especially bends close to the minimum radius of curvature; and 3) bulk

waveguides, which generally have low losses; however, surface roughness can induce losses over

larger distances for smaller waveguides.

4.2.2 SOI Waveguides

Si-photonic waveguides, with their large refractive index differentials, provide strong mode

confinement, and therefore bends can be much sharper, saving area. While waveguide bends can be

effectively lossless given a large enough radius of curvature, accepting small per-bend losses can be

advantageous in reducing the area occupied by a bend [90]. The choice of minimum routing grid

size can therefore affect the weighting of metrics used to guide the routing, whether losses due to

bends, waveguide crossings [86], or area.

4.2.3 Area

Many optical devices, such as those used for switching, are designed such that their input and

output ports appear on only opposing sides. This feed-forward device design often extends to the

device networks as a whole, resulting in overall networks that are very wide. Wide substrates may

not be desirable when integrating optics into designs, and a more suitable aspect ratio may need to
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be enforced. The side-effect of this is that devices must be rearranged on the substrate in a manner

that can affect interdevice locality as well as increase waveguide routing complexity. This becomes

an important part of the placement phase of our methodology.

4.3 Methodology
We propose the following methodology for the overall physical design problem for integrated

optics. As depicted in Fig. 4.2c, predesigned optical devices are represented as rectangular blocks

(a) that are arranged (placed) in fixed-width columns (b). Such a placement gives rise to vertical

routing channels (c), which are routing regions that separate the placed devices. Waveguides are

routed between devices at “ports” (d) that face the channels. For ports in different columns, these

waveguides may pass through horizontal routing channels, as depicted in (e). While the substrate is

planar, waveguides may also cross each other perpendicularly (f) without sharing signals.

Overall, the physical design methodology requires that the problem be solved in three steps:

• Placement of optical switching devices into columns, i.e., a grid-based layout.

• Global routing of waveguides that connect these devices. Global routing solution will

determine the overall routing topology of all the nets.

• Detailed routing of all the nets, which manifests itself as a well-defined channel routing

problem.

While this methodology is analogous to that employed in the VLSI domain, the design and

optimization constraints imposed by the optical technology are different. Any CAD solution to this

problem will have to incorporate such technology specific constraint models and design rules.

4.4 Device Placement
Predesigned optical devices are placed into columns. Consider the layout of devices in Fig. 4.2a.

While devices maintain ports on only their left and right sides, connections may be made to any other

device in the network by routing through vertical columns and between columns. In such a manner,

connectivity is preserved, but the overall network has a smaller aspect ratio. This transformation

does not come without issues: the column arrangement may affect the locality of connected devices,

which in turn affects routing congestion and losses due to routing length, crossings, and bends. The

problem of device locality and connectivity is not limited to optics and has been studied extensively

for VLSI chip planning. Placement techniques, such as those used for row placement and chip

floorplanning [93], can therefore be employed for placing devices within an optical substrate.

The placement of devices into columns enables us to utilize routing techniques designed for

such placement strategies. In our applications we use the Capo placer [93] to arrange devices in

rows given a specific aspect ratio. Connected devices are localized as much as possible, reducing
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congestion. The Capo placer is used directly, without any optics-specific constraint optimization.

While optics-specific placement techniques are desirable, especially thermal-aware placement, it is

beyond the scope of this dissertation. In contrast, routing solutions for waveguides is one of the

important contributions of this work.

4.5 Waveguide Routing
Routing is performed in two phases: 1) global routing, which determines the general routing

path and horizontal routing channel placement and 2) detail routing, which is formulated as planar

waveguide channel routing.

4.5.1 Global Routing

Global routing determines the high level topology a signal may take through the channels

from source to destination. The chosen routes induce bends and crossings with other nets. The

optimization goal of the global router is to minimize losses due to waveguide crossings and

waveguide bends. In addition, global routing also takes into account overall net lengths and routing

congestion. Global routing is explained in detail in Chapter 5.

4.5.2 Channel Routing

The global router provides a set of vertical routing channels with net/port connectivity, such as

depicted in Fig. 4.2c. At this stage, detail routing is performed, determining the actual placement

of horizontal and vertical connections within the vertical channel. Consider the routing channels

depicted in Fig. 4.2b. The channel routing area is a grid between the pins on either side of the

channel, where waveguides are routed between pairs of pins. Traditional VLSI channel routing

seeks to minimize the area of a fully routed channel. In our channel routing techniques, we optimize

for crossings and bends, with channel height a subsequent metric. The details of our channel routing

approaches are found in Chapter 6.

4.6 Design Rules: Routing Grid Realization
The result of routing algorithms must be transformed into the physical waveguide layout. This

entails converting the routing grids into waveguide bends satisfying the material bend constraints,

which are generally defined in terms of minimum radius of curvature and coupling distance.

4.6.1 Mapping Routing Grids to Waveguides

A rectilinear routing grid is realized as waveguides by converting all 90◦ grid transitions to 90◦

waveguide bends. This requires that such bends complete within a quarter of the routing grid. This
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is illustrated in Fig. 4.3b where a horseshoe-shaped bend utilizes two 90◦ waveguide bends, each

taking place within a quadrant of the routing grid. This mapping represents the smallest grid that

can be suitably used for complete routing grid flexibility.

The physical routing can also exploit the spacing between curves at the corners of grids. These

“knock-knee” style bends, as depicted in Fig. 4.3c, enable additional track sharing—potentially

reducing the overall number of tracks needed for a routing. For example, in the solution depicted

in Fig. 4.4b, the knock-knee bends between signals C-E, F-G, D-I, and G-J allow each respective

pair to occupy the same track, with the net effect of reducing the total number of tracks to four

(4). Routing techniques enabling knock-knee track sharing must account for shared rectilinear grid

locations, e.g., Fig. 4.4a, during channel construction.

The waveguide’s minimum radius of curvature r has an important role in determining the routing

grid’s minimum size. In some cases, r may be chosen for area reduction, at the expense of per-bend

losses [90]. For example, to enable knock-knee routing patterns, the distance wc in Fig. 4.3c must

be sufficient to prevent significant coupling between waveguides.

4.7 Conclusion
We have presented physical design automation methodology for silicon nanophotonic circuits

and systems. Automation will be key to large scale system synthesis. We demonstrated that

traditional VLSI physical design flows of placement, global routing, and detailed routing can be

adapted to the optics domain. While this methodology is analogous to that in the VLSI domain,

the design and optimization constraints imposed by the optical technology are different. We

have described the design constraints and optimization criteria that are imposed by such optical

technology and show how they can be incorporated into the placement and routing formalisms.
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Fig. 4.1 Routing channels of optical GDS layout
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(a) (b)

(c)

Fig. 4.2 Physical Design Methodology: (a) Columns of optical devices, and
global routes (b) Resulting channels for detailed routing (c) Ports,
routes and channels
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(a) (b)

(c)

Fig. 4.3 Conversion of grid units to waveguide curves: (a) S-shaped grid to
bends (b) Horseshoe-shaped grid to waveguide bends
(c) Knock-knee grid with 90◦ bends, radius of curvature r, and
minimum coupling distance wc

(a) (b)

Fig. 4.4 Knock-knee model for for grid spacing: (a) Shared grid corners
enable knock-knees (b) Channel routing incorporating knock-knee
bends (4 tracks, 8 crossings)



CHAPTER 5

GLOBAL ROUTING FOR INTEGRATED OPTICS

After placement, routing determines the interconnect fabric that connects placed devices

together from their respective ports. For large designs of many routes, direct routing of the

interconnect fabric is an intractable problem. Therefore, routing is broken into two phases: global

routing and detailed routing. Global routing provides the high-level overall placement of routes

throughout the device network, while detailed routing determines the localized routing necessary to

complete routing.

We present a global routing formulation as a necessary tool for producing crossing-aware,

high-level routing solutions for subsequent detailed routing. This global router also incorporates

a number of important concepts from VLSI global routing in order to produce realistic solutions.

5.1 Global Routing Problem Formulation
Given a placed set of devices, the global router provides a high-level routing solution that

optimizes/satisfies the following:

• Wire length: Routes should reduce wire length in order to meet timing constraints, reduce

area, and avoid congesting zones.

• Congestion: Areas with large numbers of routes are difficult to route in the subsequent

detailed routing phase. Congestion also affects such factors as heat generation, which can

further compound signal delay and defects. Capacity constraints can limit the number of

routes occupying a given area.

• Overflow: A routing solution should not produce solutions that require more area than is

provided. Should this be an impossible task, device blocks may require different placement.

The result of global routing is a solution that is passed to the detailed routing stage for localized

routing.
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5.2 Previous and Contemporary Work
Global routers are important for effective routing in the VLSI domain and employ a variety

of techniques to complete routing. Sequential-type routing [46], [47], [94], [95] perform routing

by sequentially routing nets within areas using iterative negotiation-based rip-up and reroute as

well as pattern routing techniques. Such techniques employ heuristics on net ordering and also

perform rip-up and reroute techniques to refine the solution. Routers also incorporate concurrent

global routing to provide a routing solution for a given set of routes simultaneously. The benefit

of this approach is that all routes are accounted for in the process of finding a solution, instead of

possible back-tracking in routing using rip-up/reroute-type techniques. The problem is generally

solved using mixed integer linear programming (MILP); however, due to the size of most routing

problems, techniques such as [46] break down the problem into small hierarchical subsets in order to

make concurrent routing feasible. Via-minimization is incorporated into global routers [96], which

reduces area and routing overhead in multilayer designs.

Despite the advanced state of VLSI global routers, there are limitations in their applicability to

the optical routing domain. VLSI routing is inherently multilayer, and VLSI global routers are

designed to take advantage of multiple layers in order to produce routing solutions. As such,

global routers are also not designed to minimize crossings. Minimization techniques for metrics

such as vias, though applicable to bends, cannot be applied to waveguide crossings as a single

via can facilitate multiple crossings due to multiple layers. Also, while 2-pin nets can utilize

less complex direct-search techniques such as maze routers and A*-search algorithms [45], the

interaction of optical waveguides due to crossings requires that any approach utilize techniques

such as concurrent-type routing.

We therefore propose our own MILP-based model for global routing for integrated optics. Our

model incorporates constraints and metrics for waveguide crossings, bends, and route length. We

also include constraints to account for and control congestion. Our model is then applied to a

number of routing problems producing routing solutions.

5.3 Routing Using Mixed Integer Linear Programming
Global routing comprises an MILP formulation with coefficient weights derived from a pre-

analysis of the routes corresponding to nets. The coefficient weights encode signal losses induced

by chosen routes of a given net and also losses caused by the combination of chosen routes—i.e.,

interroute losses. The overall structure of the MILP formulation is covered first; the details of the

pre-analysis are covered subsequently.
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5.3.1 MILP Formulation

The global routing problem is formulated on a graph G comprising a set of grid-edges E derived

from layout of the device placement. For example, the routing regions between devices in Fig. 5.1

produce a set of edges connecting between port-endpoints; the details of G for a channel-based

placement will be explained in a later section.

A set of m unique nets are routed in the graph by selecting one of ni unique routes between the

net’s corresponding endpoints. This set of routes for net i is Ri. More formally

ri
k = k-th route of Ri, where 1 ≤ k ≤ ni (5.1)

xi
k =

{
1 if net i is routed using route ri

k

0 otherwise
(5.2)

ni

∑
k=1

xi
k = 1 (5.3)

Boolean (binary) variables xi
k denote whether a given route ri

k is selected. Only one route ri
k ∈ Ri

may be chosen for a given net in a given routing, as enforced by (5.3).

5.3.2 Grid-Edge Capacity Constraints

In order to limit congestion, we introduce grid-edge capacity constraints. A route ri
k comprises

a set of edges Ei
k defining the route in the routing-grid G. Grid-edges may be shared by multiple

routes; however, only a limited number of route-edges may occupy a given grid-edge e. This grid-

edge capacity is denoted as emax and is enforced using the following relation:

m

∑
i=1

ni

∑
k=1

xi
k · xi

k,e < emax (5.4)

where

xi
k,e =

{
1 e is an edge of ri

k

0 otherwise
(5.5)

5.3.3 Route Cost Constraints

A given route ri
k has a cost α i

k associated with it, comprising 1) a static cost α i
k,static, representing

the power loss due to physical properties such as bends and the length of the route and 2) interroute

costs, representing the losses associated with the interaction of the route with other routes—i.e.,

waveguide crossings. Each waveguide crossing causes signal degradation, affecting both nets

involved, and it is possible that two nets will have more than one crossing per assigned route.

Therefore, for two different nets i and j, with respective routes ri
k and r j

l , we assign a crossing-

loss-coefficient α i, j
k,l representing the total cost of selecting both routes in terms of total crossings.
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This coefficient only applies when both routes are selected, and implemented using a conjunction

equation, (5.7).

α i
k = α i

k,static · xi
k +

j�i

∑
j

ni

∑
k=1

n j

∑
l=1

α i, j
k,l · xi, j

k,l (5.6)

xi, j
k,l = xi

k ∧ x j
l =

{
2 · xi, j

k,l − xi
k − x j

l ≤ 0

xi
k + x j

l − xi, j
k,l ≤ 1

(5.7)

Ai =
ni

∑
k=1

α i
k Ai < Ai

max (5.8)

A given net i has a cost Ai associated with it, equal to the total cost of the net’s chosen route—

static plus the sum of all interroute costs. This cost is constrained below a maximum tolerated Ai
max,

which is predetermined by the optical design specifications. As only a single route is chosen for

a given net, Ai is simply the sum of the route costs for the given net, (5.8). By construction, any

solution found will satisfy the maximum cost constraints for all nets.

5.3.4 Minimization Function

The final minimization function is a sum of all net costs. The function incorporates per-net

weights Wi in order to prioritize certain nets over others during optimization. The minimization

function is implemented as

minimize:
m

∑
i=1

Wi ·Ai (5.9)

5.3.5 Route Pre-Analysis

The MILP formulation described earlier relies on a route pre-analysis that determines the

cost-coefficients for all routes and interroutes. The pre-analysis comprises: 1) the derivation of

a graph representing the routing channels with weights representing costs due to edge traversal;

2) the derivation of multiple routes per net for analysis and recording their static costs; and 3) the

analysis of interroute costs.

5.3.5.1 Graph and route derivation

Given a device placement, a graph is derived from the vertical and horizontal channels separating

the device blocks. Nodes are placed at locations where ports are located and where horizontal and

vertical routing regions meet. Any device placement topology may also be used (e.g., Fig. 5.1);

however, we assume a channel-based placement is used. In a channel-based placement, such as

depicted in Fig. 5.2a, nodes and edges are first derived for the vertical channels from the location

of device ports and horizontal channels. These channels are then connected to other channels via

horizontal interchannel edges, such as depicted in Fig. 5.2b.
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Routes are selected by passing the routing graph and net-endpoints to a k-shortest loopless-route

algorithm such as [97]. The set of available routes for a given net is selected from the top k-shortest

routes; these routes are then analyzed.

5.3.5.2 Static route costs

Static route costs α i
k,static are derived from the set of edges a route traverses Ei

k, comprising a

sum of edge cost weights as in (5.10) and the number of bends traversed.

Though straight-waveguide losses at these scales are negligibly small, longer routes have a

greater potential for intersecting other routes, potentially causing more crossings. Edges are

therefore weighted according to their length in the substrate. Waveguide bends also have a cost

associated with them as they can be a significant loss mechanism. In order to penalize their use, we

modify the graph by adding weighted transition edges (via edges) connecting between vertical and

horizontal nodes, as depicted in Fig. 5.1 and Fig. 5.2b. With all graph edge costs αe
cost precomputed

as weights, the overall static cost is a simple sum:

α i
k,static = ∑

e = edge of ri
k

αe
cost (5.10)

5.3.6 Interroute Losses

Interroute losses α i, j
k,l are caused by waveguide crossings. The fact that routes share graph edges

does not necessarily imply that a crossing will be required. Consider two nets p and q in Fig. 5.3,

where net q has two possible routes: q(1) and q(2). While both routes of q share routing edges with

p (represented as routing regions in the diagram), only route q(1) requires a crossing; route q(2)

does not. The technique only accounts for required crossings for interroute costs. Assuming no

additional weighting, route q(1) would have an interroute loss of one (1), whereas route q(2) would

have zero (0).

Determining a required crossing between two routes depends on the endpoints of a shared path.

Consider the two nets depicted in Fig. 5.4a, where route A and B share edges in the middle. At the

endpoints of the shared edges, the two routes diverge; we denote these as diverging endpoint edges

(DEEs). By analyzing the relative directions of these DEEs, we can determine whether a crossing

is required.

We introduce the concept of rotation to determine whether a crossing is produced by a shared

path. For a given endpoint, rotation is the direction a route’s DEE must rotate towards DEE of the

other route, pivoted on their shared node, on the arc that does not contain the shared route edges.

For example, in the left path endpoint of Fig. 5.4a, the DEE of A at (1) rotates counter-clockwise
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towards the DEE of B. Likewise, at (2), the DEE of A again rotates counter-clockwise towards the

DEE of B.

Proposition 5.1 [ Crossing rotation pairs ] For a given path, with two route-endpoint DEEs x and

y and respective rotations Rx and Ry (clockwise or counter-clockwise), a crossing is only required if

Rx = Ry.

Connected DEE-pairs of any angle (e.g., 180 degrees) are considered functionally equivalent 90◦

angled DEE-pairs retaining the same rotation relationship; this is depicted in Fig. 5.4b. A crossing,

if it is required, will occur only once for a given shared path; we can treat the shared path edges as

a single node that retains the crossing of the original.

These two transformations are combined by connecting the pivots of the DEE-pairs, and

comparing two cases: 1) where the rotations of both endpoints are the same (rotating from A to B),

and 2) when the rotations of both endpoints are different. Figure 5.5a clearly demonstrates how the

same rotation forces DEEs of a given route to reside on opposite sides of the other route—inducing

a crossing. When rotations are opposite, as in Fig. 5.5b, a given route’s DEEs are adjacent and can

connect together without requiring a crossing.

Exchanging rotation directions for the above cases covers all additional rotation cases, and

therefore DEE-pairs with the same rotations will always induce a crossing, while opposite rotations

will not.

Using Proposition 5.1, let i and j be two nets each with respective routes k and l and let P be the

set of all paths shared by k and l. The value of α i, j
k,l is computed as

∑
p∈P

{
1 Rp

x = Rp
y

0 otherwise
(5.11)

where, for a given path p, Rp
x/y is the rotation direction of the first and second endpoints, denoted x

and y respectively.

The presence of interroute loss can affect routing more than route length, forcing longer routes

to be exercised. Consider the nets in example Fig. 5.3, where a net q can utilize one of two distinct

routes (1) and (2). Route (1), though shorter than route (2), must cross the chosen route for p; to

avoid the crossing, route (2) could be utilized. Route (2), however, crosses over the chosen route for

r. Should route r have less stringent loss constraints than route p, route (2) may be chosen over (1),

despite a longer overall path. Ultimately, the final route choice is derived from a combination of all

loss factors.
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5.4 Results
The global routing formulation is applied to a number of optical routing problems. These

problems were produced using the optical device placement methodology described in the previous

chapter where devices are arranged into rows in the manner of standard cells. A routing grid is

derived from the placement of devices and the location of device-ports. For each route, a number of

candidate routes are generated, and the routes are analyzed for equation weighting. The router also

assigns capacity constraints to grid edges based on the routing-area margins of the device blocks

within the rows. The graph and set of candidate routes are then translated into an MILP problem

formulation. The MILP problems are solved by the commercial optimization tool Gurobi [98].

Solutions to these MILP problems are then remapped onto the routing grid for visual inspection.

Figure 5.6a depicts the congestion map of a small optical logic design. Areas of higher

congestion along edges are depicted with lighter colors (e.g., white or yellow) than less congested

areas (e.g., black or brown). Highly congested zones are centered in areas where well-connected

logic blocks are clustered together. Capacity constraints ensure that no capacity overflow is present.

Larger designs such as Fig. 5.6b show the same pattern of congestion related to logic clustering.

5.4.1 Global Routing in a Full Adder Design

Our 1-bit full adder design also requires global routing to determine interchannel waveguide

routes. These are depicted in Fig. 4.1. The routing is based on the network depicted in Fig. 3.15,

where ring-resonators are used as the switching element.

5.5 Conclusion
This chapter presents a crossing-aware global routing model for integrated optics. The MILP

model optimizes for crossings and bends and also limits congestion in the routing solution. We have

demonstrated the application of this model to a number of optical routing problems and produced

usable routing solutions in the context of crossing minimization.

We wish to emphasize that contemporary VLSI routers are very sophisticated, with the ability

to route for complex designs well beyond the optical designs presented in this research. The main

routing contribution for this dissertation is in detailed routing—the subject of the following chapter.

However, in order to perform detailed routing, a crossing-aware global routing solution is required.

For VLSI routers, crossing minimization at a global level is not incorporated. Therefore, instead of

utilizing VLSI-centric global routers, we developed our own to create usable designs for detailed

routing.

Once these designs are produced, we move onto detailed routing. In essence, the global router

presented in this chapter is a tool development born out of necessity. Our router achieves its purpose
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and incorporates many of the constraints and concepts present in VLSI routers. However, it is

neither a sufficiently fine-tuned router, nor meant to compete with contemporary routing tools in the

VLSI domain.
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Fig. 5.1 Routing graph derived from device placement

(a) (b)

Fig. 5.2 Construction of routing graph from channel layout: (a) Vertical
nodes and edges from layout (b) Complete routing graph

Fig. 5.3 Different route choices inducing different crossings
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(a) (b)

Fig. 5.4 Rotation of A to B at the endpoints of a shared path: (a) Conditions
for determining route crossings (b) Rotation-equivalent routings

(a)

(b)

Fig. 5.5 Functionally equivalent configurations of path-endpoints and their
rotations: (a) Same direction (A → B) induce crossings (b) Opposite
directions require no crossings
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(a)

(b)

Fig. 5.6 Congestion maps of two routed designs: (a) Congestion map of
small routing benchmark (b) Congestion map of larger routed
benchmark



CHAPTER 6

CHANNEL ROUTING FOR

INTEGRATED OPTICS

This chapter presents a methodology and solutions for detailed routing of integrated optical

waveguides. In particular, we show that the detailed routing problem manifests itself as a channel

routing problem, where (Silicon) optical waveguides are fabricated on a planar substrate and are

connected to devices at the ends of the channel.1 Planar routes require waveguides to bend (curve)

and cross each other—causing loss of signal power. Channel routing techniques are therefore needed

that minimize waveguide crossings and bends. This work presents two techniques: 1) a channel

router based on sorting and 2) a channel router based on crossing-aware, graph-constraint track-

assignment. Both routers minimize signal loss as a function of waveguide crossings and bends

within the channel while also reducing area.

6.1 Problem Formulation
This chapter is concerned with channel routing and not with device placement. It is assumed

that a (column-based) placement of optical devices is already given, along with the general routing

path/topology of optical signals. This, subsequently, gives rise to a channel routing problem—such

as the one redepicted in Fig. 6.1—which we solve while minimizing signal loss.

The waveguide connecting two ports is denoted as a net and comprises a single route with no

signal sharing (fanout). Signal sharing is explicitly provided by predesigned waveguide splitter

devices; these devices are treated as placed, 3-port, predesigned optical devices, with ports for

routing. Therefore, our methodology renders every net a two-terminal net within the channel.

Work in optical interlayer connections exists [99], [100]; however, demonstrated interlayer

connections come with a high penalty in terms of manufacturability—such as precisely aligned

mirrors and grating couplers—and ultimately signal loss (2.5–3dB/connection). Such frameworks

1In the VLSI domain, channel routing is no more a topic of extensive research investigations due to the availability
of a large number of metal layers and over-the-cell routing. This work revisits channel routing specifically for optical
technology, which introduces new optimization criteria not addressed by VLSI channel routers.
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are best suited for extraordinary routing in the presence of multiple optical routing layers, should

they exist. Minimizing losses within each optical layer is therefore imperative.

We begin with an overview of signal loss mechanisms on which optimizations are based.

Following is a description of the contributions of this work along with previous work in integrated

optic design. We then describe our investigations into existing implementations of non-Manhattan

grid sorting routers, the limitations of which lead to the development of our own sorting-based

router. After describing our sorting-based router, we investigate a second channel router: a

crossing-aware, left-edge style router. We then compare and evaluate the performance of our

channel routers on a number of optical design benchmarks. The chapter concludes with an analysis

of the results and concluding remarks.

6.1.1 Optimization Objective

The primary optimization objective in our routing formulation is signal loss minimization.

Within the channel, this is achieved by 1) minimization of the total number of waveguide crossings

and 2) minimization of the number of waveguide bends. Minimization of the number of tracks

(channel height) is the subsequent secondary objective.

We optimize for the total signal loss within the channel due to optical feedback within the

system. For example, in the 1-bit full-adder circuit depicted in Fig. 4.1 a signal may be routed such

that it enters a given channel multiple times and may cross multiple other nets; this is depicted in

the highlighted signal path. Therefore, instead of minimizing losses on a per-net basis, we minimize

for total losses within a channel.

6.1.2 Contributions of This Work

This chapter presents methods for channel routing of integrated optical waveguides fabricated

on a planar substrate. Two distinct crossing-aware channel routing techniques are presented: 1) a

sorting-based router based on a non-Manhattan routing grid and 2) a left-edge style router utilizing

crossing-aware graph-constraints. Both techniques are crossing-minimal and are constrained in a

technology-suitable fashion to reduce bend-loss and area (number of tracks).

Our sorting-based channel routing technique utilizes a non-Manhattan routing grid and posi-

tional net sorting. We draw inspirations from sorting-based routers [101], [102]. These routers

have useful properties of being minimal in terms of crossings. In our investigations, however, the

original sort-router formulation suffers from a number of unaddressed limitations and detrimental

side-effects that make it impractical. We show that there are fundamental flaws in the way the

original swap/sort-routing channel problems are encoded, requiring excessive area, introducing

more waveguide bends, and even affecting the original problem specification.
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This leads us to develop our own crossing-minimal, bend-reducing, sorting-based router. We

overcome the problems of the original formulation by 1) performing routing separately on both

sides of the channel and 2) constraining the formulation to avoid unnecessary bends and enable

routes to better utilize the routing grid. As a result, our router not only retains minimal crossings,

but further minimizes the number of waveguide bends. Track utilization is also greatly improved

over the original technique.

We also present a channel router based on traditional, left-edge style constraint-graph track

assignments [48]–[50]. For such channel routing, we show how 1) crossing constraints are

incorporated into the underlying constraint model enabling the routing solutions to be both crossing-

minimal and 2) exploit the physical realization of waveguide curves for improved track utilization.

For the former, the concept of pin-rotation is introduced as a means to determine whether nets

require crossings. For the latter, we utilize the geometric properties of waveguide curves to enable

knock-knees (KK) to facilitate track sharing, reducing overall track height.

Our channel routing techniques are then applied to a number of optical waveguide routing

problems derived from photonic designs. We evaluate and compare the techniques with respect

to each other in terms of crossings, bend-loss, and channel-height.

6.1.3 Previous Work

In VLSI physical design, channel routing algorithms [48]–[50] are textbook knowledge [45],

[103]. Crossing minimization in routing has been studied in the context of the crossing distribution

problem (CDP) [104], [105]. The CDP is concerned with the distribution of a minimal set of

crossings within a routing topology; this is performed through permutations of net orderings. In

contrast, while our work also utilizes net orderings to ensure crossing minimality, the final routing

is performed with the goal of reducing signal loss with respect to crossings and bends—not the

distribution of crossings across a layout.

Channel routing with crossing minimization has also been studied in the context of QCA routing

[106]. Track assignments for multiterminal nets induce varying numbers of crossings; therefore,

[106] formulates crossing minimization, heuristically, as a weighted-minimum-feedback-edge-set

problem. However, in the context of our problem—utilizing exclusively 2-terminal nets—we

exactly minimize waveguide crossings, obviating the need for such an approach.

6.2 Non-Manhattan Grid, Sorting-Based Routing
A channel routing problem is represented by net “pins” fixed to the top and bottom of a channel.

The purpose of the router is to route all nets in the channel’s routing region while minimizing

parameters such as area (channel height, number of tracks), signal delay (net-length), or signal loss.
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Figure 6.2 depicts a minimum track channel routing obtained by a left-edge router. In traditional

VLSI channel routing, area and net-length are primary optimization goals. Channel routing also

seeks to minimize other objectives, such as vias [107], and in the case of optics technology, signal

loss.

Manhattan-based (rectilinear) grids are traditionally employed in VLSI routing, dedicating

layers specifically to horizontal or vertical spans for routing flexibility; non-Manhattan-based grids

(e.g., octilinear) are rarely utilized. Integrated optic waveguides are, however, well suited to

non-Manhattan-based routing grids. Such routing grids can suitably represent waveguide curves

and provide greater routing flexibility in the absence of multiple routing layers.

The work of [101], [102], also described in textbook [103], investigates a non-Manhattan grid

channel router based on sorting. The nets of a channel are assigned numerical indices, and routing

is performed by sorting the nets in a finite number of permutations. The number of permutations

performed represents the number of tracks utilized. Examples of this sorting-based routing are

depicted in Fig. 6.3.

6.2.1 Crossing Minimality

In addition to utilizing non-Manhattan grids, sort-router’s channel solutions are minimal in terms

of the number of crossings. Crossing minimality results from the fact that [101]: 1) crossings only

occur if nets are positioned out-of-order during sorting and 2) once sorted, pairs of nets never cross

each other again during the sorting process.

The flexibility of a non-Manhattan-based grid and crossing minimality makes sorting-based

routing attractive for integrated optics. However, the original sorting-based channel routing

solutions presented in [101], [102] have drawbacks that make them impractical. Below, we describe

the limitations of the sort routers of [101], [102]; these limitations motivate the design of our own

sorting-based channel router, specifically designed for integrated optics.

6.2.2 Sorting-Based Channel Routing

Two sorting techniques are presented in [101], [102]: swap-sorting and bubble-sorting. The

swap-based router swaps positions of pairs of adjacent nets if they are out-of-order. For example, in

the bottom track of Fig. 6.3a, nets 5 and 4 are out-of-order, and they swap columns in the transition

to track 1; this is reflected in the swap depicted in Fig. 6.3b. A bubble-sort based technique can

also be used, as depicted in Fig. 6.3c, allowing indices to sort across multiple column positions.

Bubble-sorting, however, causes nets to cross at 45◦ relative angles and therefore is unusable for

optical waveguide routing. Our channel routing technique utilizes swap-based sorting for routing.
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6.2.3 Encoding Side-Only Nets

The described channel problem setup assumes that all nets appearing on the bottom of a channel

also appear on the top. However, most channel problem instances also incorporate nets with pins

exclusively on one side of the channel. Also, empty spaces between pins (i.e., “gaps”) or within the

routing tracks are also not accounted for by the basic routing algorithm. We first formally define net

types with respect to their pin locations as well as the concept of empty spaces in the routing region:

Definition 6.1 [ X-net, T-net, B-net, side-only nets ] A net with pins on both the top and bottom

of a channel is an X-net (cross-over/shared net). Nets with pins exclusively on one side of a channel

are denoted side-only nets: a T-net (top-only net) has pins on only the top side of the channel; a

B-net (bottom-only net) is a net with pins on only the bottom of the channel.

Definition 6.2 [ Gap ] A gap is an empty location in the routing grid, or an empty pin location.

Gaps are not assigned sorting indices, but may be routed over if unoccupied.

Consider the channel depicted in Fig. 6.4. We must assign net pins initial sorting indices in order

to route the channel nets. Observe nets E, B, and D. Net E is an X-net, and therefore the bottom

pin of E is assigned the index corresponding to its top pin’s index-position, in this case 4. Nets B

and D are B-net and T-net types, respectively; they have their pins exclusively on one side of the

channel—side-only nets. The work of [101] provides a means for encoding T-nets and B-nets into

the channel sorting problem:

6.2.4 B-net Encoding

For a given B-net, the left-side pin is assigned a high-valued index, and the right-side pin is

assigned a negative index. For example, in Fig. 6.4, the left-pin of B is assigned index 13—a value

greater than the number of channel columns—and the right-pin is assigned −2. The result of these

index assignments is that the high-valued index causes the route of the left-pin to sort to the right;

the negative index causes the route of the right-pin to sort to the left. When the routes meet, the net

is considered routed and the indices are removed from the problem in subsequent tracks.

6.2.5 T-net Encoding

T-nets do not exist at all on the bottom track and therefore are added to the initial bottom sorting

track as additional columns (“virtual columns”) to the left and right of the original channel columns.

In Fig. 6.4, these are indicated by the shaded areas. The bottom pins of the T-nets are assigned

indices corresponding to the positions of the top-pins of the net; this causes the respective routes

to sort towards these positions during the sorting. The routes of the T-nets must, however, meet at
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some point within the channel. To facilitate this, T-net pins are assigned to the sides opposite of

their relative positions in the top track. This causes the routes to cross each other at some point on

their way to their final positions.

In Fig. 6.4, net D—a T-net—has pins on top of the channel at columns 3 and 9. These column

positions are used as the indices assigned to the pins at the bottom of the channel—index 9 on the

left, 3 on the right. As the sorting proceeds, the routes for the T-nets converge towards each other,

cross at some point within the channel, and continue to their final sorted position. After the channel

routing completes, only the routing above the crossing point of a T-net is retained as the actual T-net

route (e.g., the solid-line route of D in Fig. 6.4).

6.2.6 Limitations of Swap Router

Consider the swap-router solution depicted in Fig. 6.4. Immediately apparent are the following

problems:

1. wasted tracks (gaps) with suboptimal routes;

2. the final (top) positions of routed net terminals are shifted to the right, as compared to the

original specification;

3. routes detour away from destination column position, creating more “bends,” which can cause

optical signal loss;

4. routes exist outside the channel’s column bounds.

These problems arise from empty spaces (i.e., “gaps”) in the channel problem and the encoding of

T-nets.

6.2.7 Gaps in the Sorting Problem

Gaps in the channel problem affect the relative positioning of nets in a track while not providing

any sorting information themselves. The end result is that the routing solution only respects the

relative positioning of nets, not the absolute position. This is problematic as the routed nets of the

top track may not reflect the positions of the pins in the original specification; this is demonstrated

in the top track of Fig. 6.4. Both B-nets and T-nets introduce gaps into the sorting problem.

6.2.8 T-net Encoding

As demonstrated in Fig. 6.4, the encoding for T-nets negatively impacts virtually all aspects of

the channel solution. T-nets introduce additional channel columns that affect positioning of the net

pins as well as enabling routes to extend outside the channel’s original column bounds. The T-net

temporary/virtual routes (dashed lines in Fig. 6.4) also cause unnecessary detours for any other

route they interact with, increasing track count—a track for each crossing—during the sorting. For
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example, in Fig. 6.4, the T-net route originating from the left-side for net J must cross seven (7)

other routes to form a solution. None of the temporary routing below the cross-over point serves

any real purpose in the final channel solution. This also causes other routes to move outwards, such

as the route for E detouring left as it crosses the left terminal route for A, D, and J.

6.2.9 Postprocessing

Accepting the solution from the swap router as-is would require an additional postprocessing

step to 1) position T-net terminals correctly with respect to the original specification, and 2)

postprocess routes within the solution to improve track usage and prevent routes from extending

outside the bounds of the channel. While some postprocessing work is performed in [102] to

compact the track space, gap handling remains unaddressed. Larger problems, especially with

many T-nets, can produce extremely large solutions, most of which is wasted space. This effectively

defeats the purpose of utilizing the swap router in the first place.

6.3 2-Sided Swap Routing (2Swap)
To overcome the limitations of the original sorting routing, we introduce the 2-sided Swap

Router (2Swap): a sorting-based router that performs routing from both sides of the channel

simultaneously. Sorting still remains a key component of routing, ensuring crossing-minimality;

however, the routing from both sides overcomes two key limitations of the original router:

• The elimination of T-nets from the routing solution. No additional columns are added to the

channel problem and no temporary routes are needed.

• Sorting in the presence of gaps is addressed, and pins on each side of the channel are fixed as

per the original specification.

As in the original swap router, the 2Swap router produces a crossing-minimal solution. This is

ensured by updating the position of route pins at each iteration of the routing. A swap that takes

place on one side of the channel is reflected when the other side is routed, retaining the sorting-based

assurance of crossing-minimality.

6.3.1 Gap Crossing

Gaps are an intrinsic part of virtually every channel routing instance. The presence of gaps,

however, is not even mentioned by [101], and other examples in literature [102] only depict and

describe dense (gapless) routing problems such as Fig. 6.3. We address the existence of gaps within

the sorting problem by allowing routes to span horizontally across gaps to the point of crossing.

During sorting, pairs of routes are analyzed across gaps. Should a swap be possible, a horizontal
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span is created up to the point of crossing, and the swap then occurs. This is depicted in Fig. 6.5c,

where a route for net B traverses multiple gaps ( /0) to cross over route A on the right.

6.3.2 Two-Sided Swap-Routing

The 2Swap router alternates between both sides of the channel for swap-routing while

performing bookkeeping to ensure that crossings are not performed twice and sorting-indexes are

updated. We now define two different net-concepts:

Definition 6.3 [ Source/destination sides, S-net, D-net ] Given a channel side being routed,

routing is performed from the source (src) to destination (dest) sides of the channel. The src/dest

sides of the channel are analogous to the bottom/top sides when routing is performed from the

bottom-to-top. Given a channel side being routed, an S-net is a source-side net—a net with both

pins exclusively on the source side of the channel. Likewise, a D-net is a destination-side net—a

net with both pins exclusively on the destination side of the channel.

The technique works in the following manner:

1. For each iteration of the 2Swap router, swap-routing is performed for a single track on both

sides of the channel, subject to the following conditions:

• For each iteration of the sorting, relative ordering of nets is recomputed for swap-

routing, utilizing the current set of sorted tracks. This helps ensure that the routing

performed for a given side is aware of net-swaps that took place on the opposite side of

the channel.

• For a given side of a channel being routed, only S-nets and X-nets are encoded as indexes

and routed. D-nets are treated as gaps on the destination track for purposes of routing.

This ensures that D-nets are only routed on their respective side as S-nets, avoiding the

problems previously associated with T-nets in the original sorting-based router.

• Any S-nets that have completed routing are removed in subsequent tracks (replaced by

gaps).

2. Routing completes when routes on both the top and bottom are completely sorted with respect

to each other.

3. A postsort routing is performed to provide a routable channel.

The 2Swap technique is given in Algorithm 3.

6.3.3 Postsort Routing

The sorting phase of routing completes when all S-nets are routed, and all X-net-indexes are

sorted with respect to each other. The latter condition, however, does not guarantee that the channel
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is fully routed. Consider the 2Swap routing solution depicted in Fig. 6.5a. While the X-nets in

the middle of the channel are sorted with respect to each other, they are not fully routed as their

column positions are misaligned. In such cases, postsort routing must be applied, as demonstrated

in Fig. 6.5b.

6.3.4 Solution Quality

We route the channel depicted in Fig. 6.4 using the new 2Swap router and observe that it

produces a far more usable solution as depicted in Fig. 6.6a. Fewer tracks are utilized (6 vs. 11),

and no additional columns are added to the routing solution. In addition, the top and bottom pins’

locations are the same as in the specification. Overall, the solution produced by the 2Swap router is

improved with respect to the original swap-router. However, further improvements are still possible,

especially in terms of waveguide bends.

6.3.4.1 Excess Bends and Their Causes

The 2Swap route produces a large number of excess bends in its solutions. This is especially

apparent in larger channel instances such as Fig. 6.5b. The excess bends in 2Swap routes are due

to the fact that while the position of net terminals are fixed to absolute positions, the intermediate

sorting is still a relative sorting-position operation. Pairs of routes for a given net are therefore not

actively converging towards each other during the sorting. For example, in Fig. 6.6a, net E swaps

with net B, shifting E to the right—in the opposite direction of its destination pin. As a result, route

E must detour across a large expanse of space to connect both sides—despite being only one column

away in the original problem. The same problem afflicts net I, which detours left in its swap with

H.

As a signal loss mechanism, bends must also be accounted for, and we address these with a

constrained 2-sided Swap Router.

6.4 Constrained 2-Sided Swap Routing
The Constrained 2-Sided Swap Router (2SwapC) introduces the following key features:

• Convergence and swapping constraints: Routes cannot change columns unless swapping

or utilizing a horizontal span. Swapping only occurs between adjacent routes, under the

condition that the swap results in each respective route converging towards its respective

opposite pin.

• Horizontal spanning: Routes may now cross each other using horizontal spans in addition

to diagonal (swap) crossings. For a given route, the horizontal spans are only permitted as a

direct connection to the paired pin’s route, completing the routing.
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The 2SwapC technique is given in Algorithm 4.

6.4.1 Convergence Constraint and Swapping Restrictions

Routes are restricted from shifting columns, except during a swap or utilizing a horizontal span

(explained later). Swapping is still allowed, but restricted: adjacent net-routes must both converge

towards their opposing pin. The convergence swapping constraint work together to reduce the

number of bends in the routed solution.

Consider the channel routing solution depicted in Fig. 6.7a where the convergence constraint

only restricts routes from routing horizontally away from the opposing pin. The expectation of this

convergence constraint is that by converging horizontally, the routing would reduce area. The reality,

however, is that horizontal motion does little to reduce track height. Instead, routing solutions suffer

from large numbers of unnecessary bends as the routes aggressively follow the contour of adjacent

routes.

To reduce unnecessary bends, we strictly constrain routes to only shift horizontally during a

swap. In the absence of such a swap, this restriction results in straight vertical connections, as

depicted in Fig. 6.7b. While the routes cover more horizontal area, that area is already empty. In

addition, the overall track height generally remains the same or is often reduced, as will be seen

later.

The convergence constraint restricts the swap-sorting of the original routing technique. For

example, consider the channel problem instance in Fig. 6.8(a–b). In the first iteration, routes move

in the direction of their paired-routes, e.g., B and C swap on the bottom, and the top-route of C

moves left. In the second iteration, Fig. 6.8a, the bottom routes of A and C cannot swap; this would

violate the convergence constraint by forcing C to the right. The bottom route for A can only move

vertically. At this point routing stops, leaving the solution in an incomplete state. We therefore

introduce our second extension: horizontal spanning across vertical routes.

6.4.2 Horizontal Spans and Crossings

In Fig. 6.8a, the bottom route of A is blocked by C due to the convergence constraint. To

complete routing, such blocked routes must be allowed to cross each other without swapping. We

achieve this by allowing routes to cross using horizontal/vertical crossings (HV-crossings) under

certain conditions.

Vertical spans form naturally due to the convergence constraint as depicted in Fig. 6.8b. As

vertical spans form, a horizontal span is allowed in cases where crossing other routes does not result

in a sorting violation. Horizontal spans are also only allowed to cross vertical spans that traverse

two (2) or more tracks, to ensure that bends will not occur at the junction. This is depicted in
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Fig. 6.8b, where the horizontal crossing may not cross at track 1, but must instead cross at track 2.

Furthermore, to reduce the number of bends, routes may span horizontally only if they can make a

direct connection to the column of their respective paired route. The effect of this is that any given

net will only make one horizontal span within the channel. This can be observed in the channel

solution depicted in Fig. 6.7a.

6.4.3 Comparison with 2Swap

While the number of crossings is the same, channel solutions produced by 2SwapC have fewer

bends than 2Swap. This is evident in Fig. 6.6 where the 2Swap router produces many routes

that “zig-zag” throughout the routing region, whereas 2SwapC utilizes straight routes with few

or no bends. The net result is fewer bends, more vertical spans to permit horizontal cross-overs,

and retaining the ability for neighboring nets to cross diagonally—reducing tracks. Moreover,

the restrictions still retain the sorting mechanism of the other swap routers, ensuring crossing

minimality.

The 2SwapC router is applied to a number of benchmarks later in this chapter to evaluate its

performance. We also investigate incorporating crossing-aware constraints onto traditional left-edge

style routers, which we describe in the following section.

6.5 Left-Edge-Style Channel Routing
Traditional left-edge-style channel routers [48]–[50] represent the channel routing problem

using horizontal and vertical constraint graphs (HCG, VCG). An alternate representation of the

HCG is the zone representation, which is derived from the HCG, where every zone is defined by

a maximal clique. The number of signals in the largest zone is the lower bound on the number

of tracks needed for routing. These graphs encode constraints on how tracks may be assigned to

nets in the channel. Consider the channel routing problem depicted in Fig. 6.9a. The resulting

zone representation is depicted in Fig. 6.9b. Likewise, the VCG for the problem is represented in

Fig. 6.10a.

A net may be assigned to a track should it have no descendants on the VCG and have no

overlapping zone conflicts with previously assigned nets on a given track. Nets are removed from

the VCG as they are assigned to tracks. When a track cannot contain more nets, a new track is

created and the process is repeated until no more nets are left for assignment.

Multiple nets can be candidates for assignment to a given track, each with different horizontal

overlaps. Therefore, heuristics are used to choose which nets are assigned first. One of the simplest

is a greedy heuristic used in constrained left-edge channel routing [48], where the left-most available

nets in channel are assigned first to tracks. This can lead to suboptimal track-utilization; more
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sophisticated heuristics analyze the graph structure for better results, such as [50], which attempts

to reduce the longest path in the VCG for better track utilization. We refer to the class of track

assignment algorithms above generically as “left-edge-style” channel routing. The approach we

describe below can be incorporated into any such techniques.

6.5.1 Crossing-Constrained Track Assignment

Figure 6.11a depicts the output of a (VLSI) left-edge 2-layer channel router, and Fig. 6.11b,

a channel routing constrained for crossing-minimization. Both solutions are minimal in terms of

tracks; however, the total number of crossings in Fig. 6.11a is 10, compared to 8 in Fig. 6.11b. The

discrepancy in the number of crossings is attributed to the two crossing points caused by nets B

and C. By forcing C to appear below B, two crossings are avoided. However, transforming from

Fig. 6.11a to Fig. 6.11b is not as simple as moving net C below B, not if track height is to be

kept minimal. Crossing minimization must therefore be encoded into the routing process itself as

constraints.

We constrain the channel routing problem to favor crossing minimization. The VCG is modified

such that avoidable crossings impose vertical constraints on the net ordering. Only nets that share

zones have the possibility of crossing, and pairwise analysis takes place after the zones are derived.

A crossing constraint is only encoded into the VCG if a crossing can be avoided. For example,

the pair of nets in Fig. 6.12c would not normally be constrained in the VCG; however, a net crossing

can be avoided if B is assigned a track above A. Therefore, an edge connecting B to A is added to

the VCG. Conversely, the two nets in Fig. 6.12b cannot avoid crossing, and therefore no constraint

is added.

We introduce the concept of pin-rotation to detect avoidable crossings. If we were to map

the pins of nets on a unit circle, a crossing is unavoidable if rotating from one pin to the next is not

possible without first passing through the pin of another net. Consider the nets depicted in Fig. 6.12a.

Collapsing the shared horizontal region and considering the areas Fig. 6.12a(1) and Fig. 6.12a(2)

shows how pins of a given side rotate with respect to each other (clockwise/counter-clockwise)

around an axis fixed at the center. In the case of Fig. 6.12a(1), the rotation of the left pin of A to

the left pin of B is counterclockwise, and likewise the pins on the right-side also rotate in the same

counterclockwise direction. If the pins on both left and right terminals rotate in the same direction,

a crossing is unavoidable. More formally
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Xle f t
A,B,CW =

⎧⎨
⎩

Xle f t
B,top if Cle f t

A <Cle f t
B

¬Xle f t
A,top otherwise

(6.1)

Xright
A,B,CW =

⎧⎨
⎩

Xright
A,top if Cright

A <Cright
B

¬Xright
B,top otherwise

(6.2)

Xavoidable(A,B) =
(

Xle f t
A,B,CW � Xright

A,B,CW

)
(6.3)

where Cle f t/right
N is the integer-valued column-position of a pin of net N on a given side (left, right);

the Boolean variable Xle f t/right
N,top , using the same notation, denotes whether that pin resides on the top

side of the channel. Equation (6.1) and (6.2) utilize the horizontal relationships of pins and their

channel-sides (top/bottom) to determine the clockwise rotation (CW) of a given pair of le f t or right

pins for nets A and B, rotating from A to B. A crossing is avoidable only if left and right rotations

are not the same, the result of (6.3).

For example, in Fig. 6.12a, consider the left side of the shared span indicated by (1) in Fig. 6.12a:

• The variables Cle f t
A and Cle f t

B are the column positions of the respective left-terminals of nets

A and B. In the example, Cle f t
A = 1, Cle f t

B = 2.

• Cle f t
A <Cle f t

B implies Xle f t
A,B,CW = Xle f t

B,top from (6.1).

• The left pin of net B is not on the top side of the channel (Xle f t
B,top = false). Therefore, the left

side of the pair of nets is not rotating clockwise from A to B, i.e., Xle f t
A,B,CW = Xle f t

B,top = false.

• On the right side of the shared span (2) in Fig. 6.12a, Cright
A <Cright

B . This condition implies

that Xright
A,B,CW = Xright

A,top = false. The right side is therefore also not rotating clockwise from A

to B.

Having the same direction of rotation (Xle f t
A,B,CW = Xright

A,B,CW = false) implies that a crossing is

unavoidable, as determined by (6.3); this is reflected in the figure.

Applying crossing constraints to the problem depicted in Fig. 6.9a results in the VCG depicted

Fig. 6.10b. As compared to the original VCG Fig. 6.10a, the crossing-constrained VCG is more

heavily constrained, ensuring that unnecessary crossings do not occur, such as the double-crossing

of nets B and C in Fig. 6.11a.

6.5.2 Knock-Knee Track Sharing

Though the modified VCG is effective in preventing waveguide crossings, the additional

constraints can affect overall track height and may produce a worse solution in terms of number

of tracks. However, we observe that the bend geometry of optical waveguides can be exploited to

further reduce channel height. This is discussed below.

Consider the two nets in Fig. 6.13a. The endpoints of the two nets occupy the same column

and therefore net A should be placed above B in the VCG. However, given the same track, the two
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nets would intersect at a corner of each horizontal span—a knock-knee. In VLSI, this situation is

untenable, and different tracks would need to be assigned to each net. However, for waveguides, the

minimum grid spacing for a channel can permit knock-knees in the routing grid. This is depicted in

Fig. 6.13a, where a track is shared between the two nets without overlap.

A knock-knee occurs where one net ends and another begins, e.g., nets C and E in Fig. 6.13c.

During zone construction, at columns where knock-knees appear, the net that is beginning its

horizontal span is only added to the subsequent column set, rather than the current column set

under consideration. For example, in Fig. 6.13c knock-knee signals E, F , G, I, and J are removed

from the marked columns and only appear in the subsequent columns.

The effect of this column change on the resulting zones is demonstrated in Fig. 6.13b, where

there are six (6) zones rather than the five (5) from the previous zone analysis Fig. 6.9. Despite

containing an additional zone, the largest column set now contains one fewer net than the original,

resulting in the 4-track solution depicted in Fig. 6.13c.

Overall, the effect incorporating knock-knees into a routing solution is that two knock-knee nets

can now occupy separate zones and therefore can be placed on the same track. Additional zones

may be created; however, those zones are equal in size or smaller in terms of nets—potentially

reducing the lower bound on the number of tracks required for routing.

6.5.3 Cycles Induced by Crossing Constraints

Crossing constraints can induce cycles in the VCG. Consider the three nets depicted in

Fig. 6.14a. Without crossing constraints, nets A and B would be unconstrained, and no cycle would

occur; however, due to the constraint edge between B and A, such a cycle occurs. Cyclic constraints

cannot be routed without additional tracks and require “doglegging” to complete routing [49]. In

order to avoid crossings, the routes for A and B are converted into doglegging routes as depicted in

Fig. 6.14b, utilizing the same columns as the original. Unfortunately, this results in an additional

two (2) tracks being added to the routing solution should spare tracks not be available adjacent to

the cycle. However, in the presence of knock-knees, both the crossings, and the additional tracks

can be avoided, as depicted in Fig. 6.14c. The experimental results show that knock-knees can have

a marked difference in track utilization especially in the presence of cyclic constraints induced by

crossings.

6.6 Experimental Results
We evaluate our sorting-based router (2SwapC) and our crossing-aware left-edge router

(LE+KK) on a number of channel problem instances. We also compare against the Yoshimura-Kuh
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(YK) router [50] as a baseline. The original sort-based router [101], [102] is not compared as it

produces routing solutions that violate the original channel specifications.

Both 2SwapC and LE+KK routing techniques are implemented as compiled script-code.

Problem instances incorporating as many as 512 nets were tested, and routing completed in under

30 seconds. Most routings complete in under a second.

6.6.1 Channel Problem Instances

In the VLSI community, it is customary to evaluate routing techniques against benchmark suites

such as those described in [108]. However, such benchmarks are inapplicable to this work. The

VLSI routing benchmarks utilize multiple routing layers, with nets incorporating large amounts of

fan-out. This is due to the aggressive factorization-based logic decomposition/synthesis applied in

the VLSI domain.

Our investigations found these techniques to be inapplicable to photonic logic. Subsequently,

we proposed technology-specific netlist decomposition techniques specific to silicon photonics [2].

The channel routing instances are derived from relevant integrated optical designs.

Our channel problem instances are derived from the ACM/SIGDA (i.e., MCNC) logic synthesis

benchmark suites [79]. These designs are synthesized into waveguide-connected, optical switching

networks, utilizing our optical logic synthesis technique [2]. The optical netlist is then placed into

rows using a VLSI row-placer [93]. Crossing-aware global routing is performed subsequently,

utilizing an MILP-based approach on a set of candidate routes. After global routing completes,

the regions between rows are extracted as channel problem instances. Multiple channel routing

problems were derived using the above design flow.

6.6.2 Metrics

Channels are routed to evaluate their performance in terms of key metrics: 1) crossings, 2)

bend-loss, and 3) track utilization (area). In all problem instances, the number of crossings produced

by the 2SwapC and LE+KK routers is the same; that result is combined in Table 6.1. In our octilinear

grid, bends can be either 90◦ or 135◦, having different loss characteristics. Bend-loss αbend is

computed for each using (6.4) [109] as a function of radius of curvature (Fig. 6.15)

αbend(r) =C1 · exp(−C2 · r) (6.4)

where the constants C1 and C2 are dependent on the physical parameters of the waveguides. For

simplicity and convenience, we use a unit grid for calculating bend-radius and select C1 =C2 = 1.

This results in bends-loss for αbend({135◦,90◦}) = {0.135,0.368}. In addition to counting bends
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within the channel, we also include bends at the interface of the side of the channel to the first track

of each respective side.

6.6.3 Analysis of Results

The two routers, 2SwapC and LE+KK, are tested on a variety of channel problem instances. The

results of the routings are found in Table 6.1. Total time for both routers to complete all channel

problem instances was less than 10 seconds. Analysis of the results reveals that

• Crossings: Both 2SwapC and LE+KK perform equally well in terms of number of crossings.

Moreover, on average, both routers have 43% fewer crossings than the YK router.

• Bend loss: The LE+KK router produces nearly the same bend loss as YK router due to

the similiar track-assignment routing formulation. However, 2SwapC consistently produces

better results compared to LE+KK (5.6% less average bend loss).

• Tracks: LE+KK often utilizes fewer tracks than 2SwapC (8% less, on average). As expected,

both 2SwapC and LE+KK produce more tracks than the strictly track-optimizing YK router,

except in the two instances noted in the table. On average, the increase in tracks is 24% and

14% for 2SwapC and LE+KK, respectively.

In comparing 2SwapC and LE+KK, the 2SwapC router ultimately produces less bend loss.

We attribute this to 2SwapC’s use of a non-Manhattan grid, enabling waveguide bends with larger

curvature (e.g., 135◦ curves). This contrasts with nets routed by LE+KK, which always require 90◦

bends. In terms of tracks, LE+KK offers slightly better track utilization due to enforced 90◦ curves

and the single-track utilization model.

6.7 Conclusion
This chapter presents channel routing techniques for integrated optical waveguides fabricated on

a planar substrate. We identify our primary optimization objective as signal loss minimization—in

terms of waveguide crossings and bends-loss—with area as a secondary objective. We present

two distinct crossing-aware channel routing techniques for integrated optics: 2SwapC—a sorting-

based router based on a non-Manhattan routing grid, and LE+KK—a left-edge style router utilizing

crossing-aware graph-constraints. Both techniques are crossing-minimal and are constrained in a

technology-suitable fashion to reduce bend-loss.

Our new 2SwapC router addresses and overcomes the shortcomings of previous sort-based

routers through the use of two-sided swap routing. We have further improved the router through

additional routing constraints as well as innovative extensions that enable routes to utilize horizontal

spans while reducing bends. Bend-losses are markedly improved as demonstrated in tests on many
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channel routing instances, and 2SwapC demonstrates that it is superior in terms of bend-loss than

the LE+KK router.

The LE+KK router we present builds upon traditional constraint-graph based (“left-edge style”)

routers to produce a crossing-minimal channel routing solution. This router incorporates additional

constraints to ensure crossing minimality by analyzing pairs of nets using the concept of pin

rotation. We also exploit waveguide curves to enable knock-knees to improve track utilization

as well as to enable crossing-constrained doglegging, improving the solution quality.

Our channel routers provide effective means for automating optical waveguide routing with

signal loss as a primary metric. When applied to channels derived from optical designs, 2SwapC

and LE+KK both produce comparable results. In terms of our primary signal loss metric, however,

we choose the 2SwapC router as its ability to utilize non-Manhattan grids gives it greater potential

in reducing overall signal loss. The LE+KK router is still a good choice in cases where area is most

important.
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Fig. 6.1 Channels for detailed routing

Fig. 6.2 Track-optimized channel solution

(a) (b) (c)

Fig. 6.3 Channel routing performed by sorting indices. Circled indices
denote a pair that is reordered (sorted): (a) Swap-sorted net indices
(b) Swap-sorted solution (c) Bubble-sorted solution.
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Algorithm 3 2Swap: Main Swap Router

function TWOSWAPROUTER(channel)
Tsol := [ ] /* (solution tracks for channel) */
repeat

for each side S of the channel do
Tsrc := copy of current track of src side
Tdest := copy of current track of dest side
Assign all D-net nets in Tdest to /0
Tunsorted := array of net-indexes of Tsrc with respect to Tdest
Tsorted := SWAPSORT (Tunsorted)
Add Tsorted to Tsol
Remove completed S-nets from Tsorted
Set current track for S to Tsorted

end for
until (all B-nets and T-nets are routed) and (all X-nets are sorted with respect to each other)
return POSTSORTROUTING(Tsol)

end function

function SWAPSORT (T as array of indexes)
for i = 1 . . .sizeOf(T ) do

if T (i) � /0 and T (i+1) � /0 and T (i)> T (i+1) then
SWAPVALUES(T (i),T (i+1))
/* Additional increment to skip to next pair */
i := i+1

end if
end for
return T

end function

Algorithm 4 2SwapC: Main Swap Router

function TWOSWAPCONSTRAINEDROUTER(channel)
Tsol := [ ] /* (solution tracks for channel) */
Hsol := [ ] /* (horizontal spans for channel) */
repeat

for each side S of the channel do
t := sizeOf(T src

sol )
Tsrc := T src

sol [t] /* copy of current track of src side */
Tdest := T dest

sol [t] /* copy of current track of dest side */
Assign all D-net nets in Tdest to /0
Tunsorted := net-indexes of Tsrc with respect to Tdest
Ty−1 := T src

sol [t −1] /* previously routed track */
Ty := Tunsorted /* currently routed track */
/* next routed track: */
Ty+1 := CONSTRAINEDSWAPSORT (Tunsorted)
Hspans := HORIZONTALSPANS (Ty, Ty+1, Ty−1)
Remove h-span-completed S-nets from Ty+1
Add Hspans to Hsol ; Add Ty+1 to Tsol
Set current track for S to Ty+1

end for
until (all B-nets and T-nets are routed) and (all X-nets are sorted with respect to each other)
return COMBINEDROUTINGSOLUTION(Tsol ,Hsol)

end function
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Algorithm 5 2SwapC: Swap sort and horizontal spanning functions.

function CONSTRAINEDSWAPSORT (T as array of indexes)
for i = 1 . . .sizeOf(T ) do

if T (i) = /0 or T (i+1) = /0 then
continue

end if
/* Swap constraints for T (i) and T (i+1) */
xa

i := COLUMNOF(T (i))
xb

i := COLUMNOF(other route of T (i))
xa

i+1 := COLUMNOF(T (i+1))
xb

i+1 := COLUMNOF(other route of T (i+1))

condi :=

{
true (xb

i − xa
i )> 0

false otherwise

condi+1 :=

{
true (xb

i+1 − xa
i+1)< 0

false otherwise
if condi and condi+1 then

SWAPVALUES(T (i),T (i+1))
i := i+1

end if
end for
return T

end function

function HORIZONTALSPANS (Ty+1,Ty,Ty−1 as arrays of indexes)
/* Detects horizontal spans for track Ty */
Hspans := [ ] /* (output spans) */
for i = 1 . . .sizeOf(Ty) do

xa
y := COLUMNOF(Ty(i))

xb
y := COLUMNOF(other route of Ty(i))

/* Determine whether we can span between xa
y and xb

y */
condhorz := true
for j = (xa

y +1) . . .(xb
y −1) do

condsort := (Ty( j)> Ty(i)) /* sorting condition */
/* Test for gap or two-track vertical spans */

condvert :=

⎧⎨
⎩

true Ty( j) = /0
true Ty( j) = Ty+1( j) = Ty−1( j)
false otherwise

condhorz := condhorz ∧ condsort ∧ condvert
if condhorz = false then

break from for-loop
end if

end for
if condhorz then

Add (xa
y ,x

b
y) to Hsol

i := i+(xb
y − xa

y) /* Skip span region */
end if

end for
return Hsol

end function
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Fig. 6.4 A swap-router channel solution. Shaded region denotes columns
outside the initial channel bounds
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(a)

(b)

(c)

Fig. 6.5 Postsort routing for 2Swap solution: (a) Sorted, but not fully-routed
solution (b) After postsort routing (c) Horizontal gap spanning
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(a) (b)

Fig. 6.6 Routing solutions for the same channel instance: (a) 2-sided swap
(2Swap) (b) Constrained 2-sided swap (2SwapC)

(a) (b)

Fig. 6.7 Effect of constraining route movement: (a) 2SwapC allowing
convergence towards other pins (12-tracks)
(b) 2SwapC fully-constrained (12-tracks)
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(a) (b)

Fig. 6.8 Horizontal connections to complete routing: (a) Net A cannot cross
B or C diagonally (b) Horizontal connection across nets

(a) (b)

Fig. 6.9 Horizontal constraints and zone representation: (a) Five maximal
subsets of signals (b) Resulting five zones
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(a) (b)

Fig. 6.10 Crossing-constraints modifications to the VCG: (a) Original VCG
(b) With crossing constraints

(a) (b)

Fig. 6.11 Channel routing solutions under differing constraints:
(a) Track-optimized (5 tracks, 10 crossings)
(b) Crossing-constrained (5 tracks, 8 crossings)
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(a)

(b) (c)

Fig. 6.12 Crossing detection via rotation from A to B: (a) Rotation direction
with respect to pin locations (b) Same rotation direction ⇒
unavoidable crossing (c) Opposite rotation directions ⇒ avoidable
crossing
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(a)

(b)

(c)

Fig. 6.13 VCGs for Fig. 6.9a and knock-knee extension: (a) Knock-knee
implementation (b) Knock-knee-constrained zone representation
(c) 4-track routing solution utilizing knock-knees
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(a) (b) (c)

Fig. 6.14 Cycles induced by crossing constraints: (a) Vertical cyclic
constraints (b) Dog-leggingavoids crossings (c) Knock-knees avoid
additional tracks

(a) (b)

Fig. 6.15 Radius of curvature for grid bends: (a) 90◦ curve with r = 1
loss/bend = 0.368 (b) 135◦ curve with r = 2 loss/bend = 0.135
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Table 6.1 Routing benchmark comparison between Yoshimura-Kuh, Constrained 2Swap, and Left-
edge + Knock-Knee routers.

Crossings Bend Loss Tracks
Design Nets Width YK (new) YK 2SwapC LE+KK YK 2SwapC LE+KK

alu4.0 104 283 214 128 76.54 63.20 76.54 10 12 10
alu4.1 150 337 258 140 110.40 101.11 110.40 * 11 10 8
alu4.2 171 372 663 417 125.86 116.71 125.86 18 20 18
alu4.3 169 368 555 277 124.38 117.18 124.38 12 15 13
alu4.4 164 368 703 397 120.70 118.43 120.70 15 19 19
alu4.5 167 370 747 441 122.91 118.06 122.91 14 20 17
alu4.6 186 389 752 434 136.90 134.90 136.90 15 16 15
alu4.7 144 349 598 424 105.98 101.63 105.98 13 17 17
alu4.8 157 354 856 480 115.55 112.59 115.55 19 21 28
alu4.9 153 348 819 393 112.61 107.71 112.61 16 20 22
alu4.10 179 368 1082 600 131.74 129.60 131.74 22 24 23
alu4.11 151 355 404 230 111.14 105.97 111.14 10 13 13
alu4.12 154 362 530 252 113.34 113.70 113.34 11 13 11
alu4.13 157 364 520 276 115.55 112.79 115.55 11 18 20
alu4.14 130 324 243 147 95.68 87.91 95.68 8 10 8
alu4.15 155 340 373 207 114.08 103.47 114.08 11 14 14
alu4.16 146 359 296 170 107.46 100.31 107.46 10 12 11
alu4.17 151 362 238 126 111.14 105.07 111.14 9 11 9
alu4.18 140 351 485 259 103.04 96.01 103.04 10 13 11
alu4.19 126 338 214 128 92.74 87.50 92.74 8 11 9
alu4.20 143 350 340 184 105.25 99.69 105.25 11 16 15
alu4.21 141 347 277 145 103.78 97.36 103.78 9 11 10
alu4.22 133 342 236 108 97.89 93.14 97.89 8 9 8
alu4.23 157 351 561 335 115.55 112.10 117.02 11 15 13
alu4.24 147 349 418 194 108.19 105.40 108.19 9 12 11
alu4.25 140 341 562 316 103.04 100.99 103.04 14 17 16
alu4.26 156 366 504 240 114.82 109.55 114.82 15 17 15
alu4.27 141 353 486 228 103.78 99.49 103.78 15 17 16
alu4.28 91 274 103 59 66.98 56.36 66.98 7 8 7
alu2.0 93 278 279 157 68.45 56.46 68.45 17 18 17
alu2.1 142 338 311 159 104.51 100.99 104.51 7 10 8
alu2.2 178 366 780 440 131.01 125.18 131.01 19 24 24
alu2.3 147 355 415 253 108.19 97.97 108.19 10 14 13
alu2.4 178 388 592 316 131.01 130.33 131.01 11 13 12
alu2.5 177 381 762 462 130.27 126.21 130.27 12 20 18
alu2.6 149 352 329 199 109.66 102.39 109.66 8 11 10
alu2.7 175 375 589 363 128.80 127.68 128.80 12 17 13
alu2.8 160 362 298 200 117.76 109.97 117.76 11 13 11
alu2.9 91 273 108 62 66.98 52.21 66.98 6 8 6
ex5p.0 119 343 244 142 87.58 73.95 87.58 10 13 11
ex5p.1 145 402 211 129 106.72 97.60 106.72 * 11 12 10
ex5p.2 207 458 755 399 152.35 145.64 152.35 18 24 23
ex5p.3 183 427 926 598 134.69 127.22 134.69 18 22 18
ex5p.4 190 439 912 490 139.84 136.69 139.84 18 20 20
ex5p.5 209 457 1362 832 153.82 145.72 153.82 18 21 19
ex5p.6 183 437 634 342 134.69 127.31 134.69 15 16 15
ex5p.7 195 437 1061 603 143.52 138.82 143.52 18 23 20
ex5p.8 175 433 550 320 128.80 124.76 130.27 12 19 13
ex5p.9 173 425 622 318 127.33 120.91 127.33 11 15 14
ex5p.10 120 340 231 143 88.32 72.58 88.32 9 10 10

N = # nets; Width = channel width
YK = Yoshimura-Kuh; 2SwapC = Constrained 2Swap; LE+KK = Left-edge + Knock Knees
(new) = Either 2SwapC or LE+KK; crossing counts were equal for both routers.
* = indicates YK router performed worse than new routers



CHAPTER 7

THERMAL-AWARE RESYNTHESIS OF

PHOTONIC RING RESONATORS

Multicore and network-on-chip architectures comprising multiple disparate subsystems are fast

becoming the norm in large system integration. As these systems introduce greater levels of

parallelism at the system level, the need for high-speed, high-bandwidth communications becomes

a critical factor in overall system operations. Integrated optics will play an important role in such

communication fabrics, providing a high-bandwidth, high-fidelity transport layer for inter- and

intrachip communications.

A key component of many optical network architectures is wavelength division multiplexing

(WDM), enabling multiple channels of data to be transported along the same waveguide. A WDM

network operates by assigning (multiplexing) individual channels of data to select wavelengths to

be transported via the same data transmission system. Consider a high-level overview of a WDM

network depicted in Fig. 7.1a. Channels are assigned to specific wavelengths of light. Wavelength-

tuned multiplexing devices—ring resonators in this case—are used to modulate this light, enabling

signals (data) to be injected into the waveguide. The light is then routed through the communications

fabric. At the endpoints, a demux operation selects for particular wavelengths of light and the signals

they carry. This light is then detected at the endpoints by an optical receiver.

At the core of many optical WDM network architectures is the photonic ring resonator. The ring

resonator acts as a filter and is used to modulate/multiplex and demultiplex signals on waveguides

as depicted in Fig. 7.1a. The device is particularly suited for this application because of the its

high Q-factor, providing a high degree of wavelength selectivity. This enables ring-resonator-based

WDM systems to support large numbers of channels on the same waveguide.

The filtering response of a ring resonator is periodic with respect to wavelength. Qualitatively,

the wavelength range between resonant (filter) peaks is the free spectral range (FSR). The upper

limit on the number of channels is determined by 1) the Q-factor of the ring and 2) the free spectral

range (FSR) of the ring resonator. In general, the smaller the ring, the greater the FSR; however,

losses in ring can contribute to a lower Q-factor, so a balance must be struck. The ring resonators
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of a WDM network are usually designed with the same FSR to allow consistent channel spacing

without overlap. This channel-wavelength assignment is depicted in Fig. 7.1b.

A major drawback in using ring-resonators for mux/demux operations is their extreme sensi-

tivity to refractive index changes [110]. Process variation, geometric variations, and also thermal

effects can shift a ring’s resonance off its designed wavelength. Silicon-based ring resonators are

especially susceptible to temperature-induced changes to refractive index [111] due to silicon’s

large thermo-optic coefficient of dn/dT = 1.86×10−4/◦K. In highly integrated systems integrating

silicon photonic WDM networks such as those depicted in Fig. 7.2a, heat sources within the chip can

cause ring resonators to fall out of resonance. Furthermore, the locality of heat sources means that

different rings will be subjected to different temperature conditions such as depicted in Fig. 7.2b.

Such external thermal gradients pose significant operational challenges to ring-resonator-based

WDM networks.

Contemporary literature proposes active compensation for such refractive index variations (e.g.,

microheaters [112], carrier-injection based tuning [113] and/or WDM channel remapping [83]);

however, these are costly in terms of power and area. Passive-compensation and athermal designs

also exist, but require material-level modification or processes [110]. In this work we present a

thermal-aware resynthesis approach for ring-resonator compensation.

Our approach utilizes a template-based ring-resonator design that enables process-compatible

resynthesis to compensate for a predetermined or worst-case temperature gradient. While our

approach is not an alternative to active tuning, it complements active tuning. Some amount of

active tuning will certainly be required; however, our redesign will ensure lower power/heat for

carrier injection or microheater based tuning.

7.1 Ring Resonators
Optical ring resonators are wavelength filtering devices with a notch-filter-type response curve

centered around a resonant wavelength. These devices rely on a resonance condition, which causes

light within the ring to destructively interfere with light on the coupling waveguides. Alternatively,

with two straight waveguides coupled to a single ring, a ring resonator can be used to couple specific

wavelengths into or out of a waveguide in a 2x2-switch type operation.

Consider the ring resonator structure depicted in Fig. 7.3a, where a ring of radius r is coupled

to a straight waveguide. The coupler is assumed to be symmetrical, and also lossless, implying that

the coupling coefficient κ is related to the transmission coefficient t by

κ2 + t2 = 1 (7.1)

The ring has an overall length of L = 2πr, and round-trip loss coefficient α .
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A block diagram for the ring resonator structure is depicted in Fig. 7.3b. The electric field

amplitude Eb2 is the sum of the input electric field Ea1 coupled into the ring with coefficient κ , and

the round-trip feedback of the ring Ea2 coupled back into the ring with coefficient t. Likewise, Eb1

is the sum of the t-coupled input signal Ea1 and the κ-coupled signal Ea2 . These are expressed as

Eb2 =
− jκEa1

1− tαe− jφ (7.2)

Ea2 = Eb2αe− jφ (7.3)

Eb1 = tEa1 − jκEa2 (7.4)

where φ = βL is the phase produced by the round-trip traversal of the ring from b2 to a2. The − j

factor attached to κ is the result of coupling from one waveguide to another: the latter signal always

lags the former by a 90◦ phase shift.

Combining (7.2)–(7.4) and squaring the result to determine power results in

Pb1

Pa1

=

∣∣∣∣Eb1

Ea1

∣∣∣∣
2

=
α2 + |t|2 −2α |t|cos(φ)
1+α2|t|2 −2α |t|cos(φ)

(7.5)

The value of (7.5) drops to zero (0) when two conditions are met: 1) critical coupling and 2) the

resonance condition for the ring.

The first condition, critical coupling, occurs when losses in the ring α equal those of the

transmission coefficient, i.e., α = |t|. Ideally, the ring is considered lossless, i.e., α ≈ 1, implying

that t = 1 and from (7.1) that κ = 0. This produces a paradoxical situation where no energy would

couple into the ring in the first place—and could never leave the ring if it did. In practice, however,

the curves of the coupler between the ring and straight waveguide are imperfect (κ � 0), enabling

the ring resonator to operate as an effective, even if imperfect, filter at the resonant wavelength.

The second condition, denoted the resonance condition, constrains the round-trip phase of the

ring:

φ = β ·L = 2π ·m (7.6)

where m is an integer. This causes the term cos(φ) = 1 and in conjunction with critical coupling

Pb1/Pa1 = 0. The dependence of φ on β implies that resonance is wavelength and waveguide (i.e.,

effective index) dependent. A useful relationship is derived:

β ·L =
2πneff

λ0
·L = 2π ·m ⇒ neff ·L = m ·λ0 (7.7)
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7.1.1 Free Spectral Range

As noted earlier, ring resonators have a free spectral range (FSR), the Δλ between resonance

peaks depicted in Fig. 7.1b. More formally, the FSR is defined as

FSR =
λ 2

0

ngL
(7.8)

where ng is the dispersion-dependent group index of the waveguide

ng = neff −λ
∂neff

∂λ
(7.9)

7.2 Thermal Compensation for Ring Resonators
Consider the reference ring resonator structure depicted in Fig. 7.4. This ring resonator is a

4-port structure, enabling the ring to demultiplex light entering from the input-port to the drop-

port at the same resonant wavelength(s) as the 2-port ring; nonresonant wavelengths pass to the

through-port. We define neff,0 as the effective index of the waveguide in the absence of a thermal

variation, i.e., T = T0. A change in temperature ΔT results in a change to the effective index due to

the thermo-optic properties of the waveguide materials, notably in the waveguide’s silicon guiding

layer. This change in refractive index, in turn, causes a change to the waveguide’s propagation

constant. Let neff,ΔT and βΔT , respectively, denote the effective index and propagation constant in

the presence of a temperature change T = T0 +ΔT :

neff,0

∣∣∣
ΔT

= neff,ΔT β0

∣∣∣
ΔT

= βΔT (7.10)

The change in propagation constant causes the ring to shift out of resonance as governed by

(7.6). This shift can be compensated in multiple ways: 1) active compensation using external effects,

such as heat, electric fields, etc.; 2) material-level compensation; and 3) geometric changes to the

device structure or waveguide.

7.2.1 Active Compensation

Active compensation (tuning) utilizes external effects to change the optical properties of

materials. For SOI ring resonators, active tuning is usually implemented via microheaters [112]—

exploiting silicon’s relatively large thermo-optic coefficient of 1.86× 104/◦K. Tuning can also be

performed by using carrier injection by applying a DC-bias to the ring [113]. In all such active

compensation methods, outside energy and feedback are required to prevent resonance wavelength

drift and offset.

Channel-remapping approaches [83] have been proposed as a means to reduce active power.

These approaches reassign WDM channels to different rings depending on their perturbed resonance
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conditions and require active tuning power. The drawback to this approach is that a larger number

of rings are necessary to enable channel remapping, and rings may conflict should their filtering

response be similar.

7.2.2 Material-Level Passive Compensation

Permanent compensation can be achieved by manipulating the optical properties of a waveg-

uide’s materials—i.e., “trimming.” Trimming is often performed by affecting the waveguide’s

cladding layer through stress or additional material layers [114], [115] or by introducing materials

that counteract the thermo-optic coefficient of silicon, such as polymers on narrowed waveguides

[116]. Such methods require additional materials and lithographic processes that increase the cost

and complexity of fabrication. In addition, materials such as polymers on narrowed waveguides can

affect mode confinement, disallowing sharp bends [110].

7.2.3 Geometric Compensation

Our emphasis is on manipulations to the geometry of the device or waveguide structure—

geometric compensation. This is an attractive option because modifications to devices can be

performed without special process steps, materials, or relying on active compensation. For ring

resonators, this involves changes to parameters such as the ring length, or the profile-dimensions of

the ring’s waveguide.

7.2.3.1 Compensation using ring length

Consider the racetrack (ring) resonator depicted in Fig. 7.5. The racetrack structure is designed

to be equivalent to that of Fig. 7.4 in terms of its resonant wavelength λ and total ring length

L. The structure, however, incorporates two compensation regions of length Lcomp such that L =

2(πrcomp +Lcomp) satisfies (7.6). By varying the parameter Lcomp, facilitating a ring-length change,

we can compensate for changes in refractive index.

Incorporating the above L into (7.7) we have

mλ0 = 2(πrcomp +Lcomp)

(
neff,0 +

dn
dT

ΔT

)
(7.11)

where dn/dT is the thermo-optic coefficient of the waveguide structure, which is on order of that

of the guiding silicon layer ( dn
dT = 1.86×10−4/◦K). Rearranging for Lcomp gives us

Lcomp =
mλ0

2
(
neff,0 +

dn
dT ΔT

) −πrcomp (7.12)
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From (7.12) we wish to determine the change in Lcomp as a function of temperature change. This

leads to the expression

ΔLcomp =
mλ0

2
(
neff,0 +

dn
dT ΔT

) −πrcomp −
(

mλ0

2neff,0
−πrcomp

)
(7.13)

=
mλ0

2

(
1

neff,0 +
dn
dT ΔT

− 1
neff,0

)
(7.14)

Equation (7.14) implies that while values of ΔT produce small differential quantities, and likewise

small changes to ΔLcomp, these variations can be multiplied in effect by increasing the ring length

through parameter m. For example, consider a ring resonator constructed using a waveguide with

dimensions 400 nm×180 nm, with neff,0 = 1.9065 at the resonant wavelength λ0 = 1550 nm. If this

waveguide undergoes a change in temperature ΔT = 10◦K we have

ΔL =
m ·1550 nm

2
·
(

1
1.9065+10◦K ·1.86×10−4/◦K

− 1
1.9065

)
(7.15)

= m · (−0.39620 nm) (7.16)

The effect of the temperature change is therefore so small that ring length must amplify its effects in

order for compensation to be effective. If we assume the lithographic process can fabricate features

on order of ≈ 10 nm, the minimum value of m is ≈ 25, implying L ≈ 20.3 μm, for compensation at

relatively coarse 10◦K increments.

Modifying the ring length does have drawbacks. Ensuring precision requires that L must

have a minimum length, possibly impacting ring specifications such as FSR, which is inversely

proportional to L. Also, in changing the length of the ring, the dimensions of the entire ring structure

must be changed. This in turn does not lend itself to a template-based methodology.

7.2.4 Compensation Using Waveguide Width

The guiding properties of a waveguide are dependent on both materials and geometry of the

waveguide profile. As light propagates down a waveguide, variations to this dielectric profile,

as a function of length, affects the propagation parameters of guided light within the structure.

By introducing perturbations to the waveguide structure, a designer can exploit this mechanism

to control the transmission and reflection properties of the waveguide. Purposely introduced

waveguide perturbations are usually used in the context of creating resonant structures of periodic

dielectric variations. For example, structures such as Bragg gratings [117] control for the width and

spacing of these periodic perturbations to provide wavelength filtering.

We control for the waveguide width for a fixed compensation length (denoted a “notch”) in order

to introduce a perturbation that enables ring-resonator tuning. This is depicted in a 3D representation
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of a waveguide in Fig. 7.6b. The novelty of this approach is that we can control and tune for

round-trip phase within a ring by changing the propagation properties—via the waveguide width—

in a short subsection of the ring. Also, by controlling for only this subsection of the overall ring

length, we have greater control over the phase tuning. This is important for ensuring that waveguide

width tuning remains feasible for semiconductor process resolutions. Finally, for rings of a given

resonant wavelength, we construct a single template ring. Tuning is performed only by modifying

the width of the compensation region without requiring additional resynthesis procedures over the

other segments of the ring.

We propose a ring (racetrack) resonator template to enable thermal compensation using 2D

lithographic methods. Consider the racetrack (ring) structure depicted in Fig. 7.6a. The racetrack

waveguide contains a single section of length Lcomp as its compensation region. This section of

waveguide is varied in width to offset temperature-induced changes to refractive index. In effect,

we counteract material changes with geometric changes. The resonator template is bound by three

conditions:

• Resonance Condition: The overall structure and effective index must satisfy the resonance

condition (7.6).

• Compensation Region Length: The notch must minimize reflections to avoid signal loss.

• Process Manufacturability: Variations to the width must be feasible in current processes.

7.2.4.1 Resonance condition

Satisfying the resonance condition for the ring is implicit as this ensures that the ring is tuned

for a specific wavelength. As the ring is broken down into sections, the phase term for the ring is

the integral of the refractive index changes around the ring:

φ = 2πm =
∫ L

0
β (z)dz (7.17)

= βΔT (2πrcomp +Lcomp)+βcompLcomp (7.18)

where βcomp = 2πneff,comp/λ0 in the compensation waveguide length Lcomp.

7.2.4.2 Notch effects and reflection minimization

The waveguides in our devices, such as Fig. 7.6b, are 3D in nature, but do not vary in height.

Viewed from the top-down, we consider device structures such as ring resonators as 2D waveguide

structures waveguide composed of three material regions (“layers”) as depicted in Fig. 7.6b. We

denote the guiding structure layer as n f , and the substrate layers ns, where n f > ns. By varying the

width of a waveguide, the effective index of the waveguide profile is altered.



100

Consider the structure depicted in Fig. 7.7, an “unrolled” representation of the ring structure

depicted in Fig. 7.6a and a 2D representation of Fig. 7.6b. In place of a single effective index

term for a region of the waveguide, the waveguides of the ring are now described in terms of their

constituent materials’ n f and ns refractive indexes and width and length parameters. We denote the

compensation waveguide region as a dielectric “notch” of width wcomp and length Lcomp. This notch

is defined as the region of width wcomp extracted from the unperturbed waveguide. Therefore, the

width of the notch-region waveguide is w−wcomp; the width of the noncompensated regions is w. In

terms of the z-dimension, the notch begins at z =−a and ends at z = a for a total length Lcomp = 2a.

The notch changes the properties of the original neff,ΔT waveguide, representing a perturbation

on the waveguide structure. The effect of this perturbation is such that when forward-moving,

guided light strikes the notched region, energy is coupled into different modes. These modes can

be a combination of 1) the same mode, but with changes to properties such as phase, 2) intermode

coupling, if the waveguide supports additional modes, or 3) a combination of (1) and (2) reflected

into modes of the backwards wave.

We analyze Fig. 7.7 under the assumption that guided modes are TE in nature and that our

waveguide is single-mode. This simplifies our analysis to consider only coupling to the forward

and backwards traveling waves of the waveguide, A+ and A−, respectively. Further analysis of

perturbations on multimode waveguides can be found in [38].

The notch causes a polarization perturbation in the waveguide: the product of the change in

dielectric constant and the electric field of the forward wave. This perturbation only occurs over the

notched region, and therefore

Ppert =

{
ΔεEy within notch

0 otherwise
(7.19)

Δε = ε0
(
n2

s −n2
f

)
(7.20)

This perturbation causes coupling between modes of the waveguide. In this single-mode

waveguide, coupling will occur to the same mode of the forward-traveling wave and/or reflect into

the same mode of the backwards traveling wave. For the forward wave, we have

E(z) =
A+(−a)

2
e− j(β+κ)z for −a < z < a (7.21)

where κ is a coupling constant produced by the perturbation. In effect, the perturbation effects a

phase change in the resulting wave—the effect we exploit for the purposes of compensation.

The notch also causes a reflection into the backward wave A−. The amplitude of this wave,

derived in [38], is dependent on the length a:

A−(−a) =
− jκA+

β
sin(2βa) (7.22)
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We wish to minimize reflections, and we note that (7.22) is periodically minimized as a function of

a. Therefore, when setting A−(−a) = 0 we have

2βa = qπ (7.23)

a =
qπ
2β

(7.24)

where q is an integer. Given β = 2πneff/λ0 and λ = λ0/neff, (7.24) implies that the length a = qλ/4.

Recall that the notch length Lcomp = 2a. Our reflection-minimizing notch-length is therefore

Lcomp =
qπ
β

=
qλ
2

(7.25)

The radius of the curved regions of the template, rcomp, is derived by substituting (7.25) into

(7.18) and assuming that β = βΔT ≈ βcomp

φ = 2πm = β
(

2πrcomp +
qπ
β

)
+β

qπ
β

(7.26)

= 2π (β rcomp +q) (7.27)

rcomp =
m−q

β
(7.28)

7.2.4.3 Process manufacturability

Lithographic processes have resolution limitations that prevent the fabrication of exact widths

for notches. We therefore perform additional design space exploration for compensation with

respect to process manufacturability. Let wprocess be the minimum unit width that may be fabricated

by the lithographic process. The unit Δλ shift for the compensation-enabled ring will therefore be

defined by

wunit
comp = floor

(
Δwcomp

wprocess

)
·wprocess (7.29)

Though reflections are minimized with respect to notch length, a notch will still cause reflections

if it is too deep. Therefore, in order to enable compensation over wide temperature ranges, the

compensation region must be lengthened by a multiple of the minimum unit compensation length

λ/2. A benefit of longer compensation lengths is that each λ/2 subsection of the compensation

lengths may be varied independently to effect compensation in a more precise manner. In addition, a

longer compensation region reduces the need for deeper notches, which can affect loss. Also, while

the ring depicted in Fig. 7.6a only uses a single compensation region, the template ring already

includes two possible compensation regions.
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7.2.5 Methodology and Demonstration for a WDM Ring Resonator

We demonstrate how thermal compensation is achieved by designing a template ring resonator

device for a WDM network. This particular resonator structure is designed to filter λ0 = 1550 nm.

Each channel of the WDM network utilizes a ring with a specific resonance wavelength λ0, with

sufficient FSR for multiple channels. In this example, we choose an FSR of approximately 15 nm.

The system utilizes an SOI ridge waveguide, 400 nm wide and 180 nm in height. For the waveguide

profile, we measure ng ≈ 4.63 using a mode solver [118]. This leads to a desired ring length

LFSR =
(1550 nm)2

4.63 ·15 nm
(7.30)

≈ 34.6 μm (7.31)

Using a mode-solver, we measure an effective index and β for the waveguide profile to be

neff = 1.9065 (7.32)

β =
2πneff

λ0
= 7728317.9/ m (7.33)

From the value of β we derive a ring length L ≈ LFSR that satisfies the resonance condition (7.6):

m = floor

(
βLFSR

2π

)
= 42 ⇒ L =

42 ·2π
β

= 34.15 μm (7.34)

The total length L enables us to construct a ring resonator structure incorporating a compensation

region. We choose a compensation length Lcomp = 3λ/2, three (3) times the minimum notch length

(λ/2), in order to magnify the effects of the perturbation produced by the notch narrowing.

We construct and simulate a 3D material representation of our designed ring resonator using an

FDTD-type simulator such as Lumerical MODE Solutions or FDTD Solutions. Light is injected into

the input of the structure over a range of wavelengths, and the transmission response is measured at

the through- and drop-ports of the structure. In Fig. 7.8, we plot the filtering response (measured at

the through-port) of the reference ring, where ΔT = 0,wcomp = 0 nm, reflecting the baseline resonant

wavelength for this structure.

On the same plot, we also show the wavelength response as a function of 1) different

temperatures (T = 300◦K +ΔT for ΔT = 0,20,40,60◦K) and fixed wcomp = 0 nm and 2) width-

narrowing of the waveguide in the compensation region by a particular amount (wcomp), for

fixed ΔT = 0◦K. Observe how temperature increases cause a positive resonant wavelength shift.

Conversely, narrowing the width of the compensation region’s waveguide—by increasing wcomp—

results in a negative wavelength shift. We can therefore compensate for a static temperature change

by narrowing the waveguide of the compensation region.

The template-ring is compensated for arbitrary temperature changes by deriving two sets of

sampled values—ΔT vs. Δλ , and wcomp vs. Δλ—and coupling these two to derive wcomp from ΔT .
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The two tables are derived independently. For ΔT vs. Δλ , we fix wcomp = 0 nm and simulate the ring

under different ΔT . Over the device structure, the ΔT is multiplied by each material’s thermo-optic

coefficient, changing the refractive indexes of the waveguide structures and effecting wavelength

shifts that we sample at the output ports over the range input wavelengths.

Likewise, we simulate the ring under different values of notch-narrowing wcomp while fixing

ΔT = 0, to determine wcomp vs. Δλ . For the example ring, these tables are presented in Table 7.1.

From the tables, wcomp is derived from an arbitrary ΔT by: 1) interpolating the wavelength shift

ΔλΔT using Table 7.1(a) and 2) using ΔλΔT to interpolate a value of wcomp from Table 7.1(b). With

even a sparse number of sampled points, meaningful thermal compensation can be performed.

For example, if we assume a temperature differential of ΔT = 27◦K, the predicted interpolated

ΔλΔT is calculated to be

ΔλΔT = 2.1080 nm+(3.0132 nm−2.1080 nm)
(27−20)◦K
(30−20)◦K

= 2.7417 nm (7.35)

We compensate for this positive wavelength shift with an equal negative wavelength shift by

interpolating wcomp from Table 7.1(b):

wcomp = 40 nm+(50−40) nm
(2.7417+2.5021) nm
(−3.2012+2.5021) nm

= 43.4265 nm (7.36)

This yields wcomp ≈ 40 nm. The wavelength response comparing of the compensated system with

the reference system is depicted in Fig. 7.9. By inspection, the two response curves are in very close

agreement.

This example and supporting methodology demonstrate that we can compensate for temperature-

induced resonant-wavelength shifts in ring-resonators by varying the width of waveguides in

subsections of the ring. The benefit of this approach is that a single template can be constructed

that accommodates a wide range of temperature variations, while remaining relatively precise. The

example also only uses one of the possible compensation regions, and the precision of compensation

could be further improved by varying subsections of each compensation length.

7.3 Conclusion
We have presented a methodology for constructing a compensation-enabled ring resonator

template. Process-compatible modifications to the waveguide structure enable this template

structure to counteract the effects of temperature changes across the ring. This template requires

only minimal changes to effect meaningful temperature compensation, and can be applied to a

wide range of temperature offsets with useful precision. Such thermal-aware resynthesis reduces

the amount of active compensation required to tune ring resonators. This, in turn, will save power

required for integration into opto-electronic hybrid systems.
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(a) (b)

Fig. 7.1 WDM network overview and channel assignments: (a) Modulation
and demultiplexing/detection (b) Channel wavelengths within the
FSR of a WDM ring resonator

Table 7.1 Wavelength shifts due to ΔT and wcomp for example ring.

ΔT Δλ
0 ◦ K 0 nm

10 ◦ K 1.1035 nm
20 ◦ K 2.1080 nm
30 ◦ K 3.0132 nm
40 ◦ K 4.0202 nm
50 ◦ K 5.0285 nm
60 ◦ K 5.9371 nm

(a) ΔT vs Δλ

wcomp Δλ
0 nm 0 nm

10 nm -0.5011 nm
20 nm -1.1019 nm
30 nm -1.8023 nm
40 nm -2.5021 nm
50 nm -3.2012 nm
60 nm -3.9995 nm

(b) wcomp vs Δλ
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(a)

(b)

Fig. 7.2 Integration of ring-resonator networks: (a) Photonic interconnect
layer in an integrated chip design (b) On-chip heat sources creating
thermal gradients across an optical substrate
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(a) (b)

Fig. 7.3 Structure of an Optical Ring Resonator: (a) Ring resonator
(b) Block diagram

Fig. 7.4 Original uncompensated ring
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Fig. 7.5 Racetrack (ring) resonator

(a) (b)

Fig. 7.6 Racetrack (ring) resonator with compensation region: (a) Racetrack
(ring) resonator with compensation region (b) 3D representation of a
waveguide with notch; 2D regions of material indexes
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Fig. 7.7 An unrolled view of a ring resonator

Fig. 7.8 Wavelength shifts due to changes in ΔT and wcomp

Fig. 7.9 Compensation for ΔT = 27◦K with wcomp = 40 nm vs. unaffected
reference ring



CHAPTER 8

CONCLUSION

This dissertation presents design automation for integrated optic system design. We demonstrate

that design automation, in the manner of VLSI, is possible through a building-block methodology

requiring technology-specific constraints and objectives. This building-block methodology is

incorporated into an EDA-inspired, integrated optics design flow, which is broken down into

behavioral and physical synthesis stages. In each of these stages we provide techniques and

methodologies enabling automated synthesis of optical networks.

In behavioral synthesis, we model optical switching devices as logical building-blocks in the

form of crossbar gates. For these gates, a Boolean logic function composition methodology is

presented—“virtual gates”— enabling the synthesis of arbitrary factored Boolean expressions.

For our optical device model, multi-output expression sharing is not possible using conventional

factorization-based synthesis. We therefore invent a new XOR-based decomposition technique,

enabling common subexpression extraction. This expression sharing minimizes devices counts,

reducing signal loss.

Subsequent to behavioral synthesis, optical devices must be placed and interconnected using

global and detailed routing. We utilize a row-based placer in a standard-cell methodology for

integrated optic device placement. This placement gives rise to routing channels. Routing is

performed in two stages where a global routing solution is proposed to derive a net-routing topology

that minimizes crossings, bends, and congestion. This gives rise to channel definitions that are then

solved using channel routing techniques for integrated optics.

We present two techniques for signal-loss-constrained channel routing for integrated optics.

Our first channel router is based on sorting, whereas another is based on constrained left-edge

style routing. Experimental results demonstrate that a sorting based router produces loss-optimized

solutions at a slight expense of area. On the other hand, our constrained left-edge style channel

router, incorporating technology-specific extensions, produces area-optimized solutions. Therefore,

the routers can be leveraged based on the optimization desired.
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Integrated optics will also be leveraged in hybrid opto-electronic systems, especially for optical

communication networks. Electronic switching may create temperature-hotspots that will interact

with the optical substrate, producing a thermal gradient. Optical devices such as ring resonators,

used in many optical network architectures, are extremely sensitive to temperature-induced changes

in refractive index. This causes their resonant wavelength to shift out of spec, affecting their

designed operation. To overcome this problem, we present a thermal-aware, physical resynthesis

template that exploits perturbation theory applied to waveguide dimension changes. We provide an

automated approach that analyzes simulated data over an uncompensated ring and derive redesign

parameters to enable and achieve thermal compensation.

Overall, using this design flow, we have demonstrated that optical design can be taken from

the behavioral level to the physical level within an automated framework. We have also presented

resynthesis techniques enabling integration into hybrid systems. Our techniques are applied to our

own designs as well as conventional VLSI benchmarks, and we have fabricated a silicon photonic

design implementing our own optical logic. Design automation for integrated optics is therefore not

only feasible, but a necessary step in the development of the technology and its applications.

8.1 Future Work
This work has only touched upon a small portion of what is possible in design automation

for integrated optics. Tremendous opportunities abound in future research in this area, enabling

integrated optics to reach its full potential as a communications and computation technology.

8.1.1 Thermal-Aware Placement and Analysis

While this dissertation demonstrates the use of EDA-style methodologies and makes contribu-

tions at the logic and routing levels, optical device placement is a problem that requires significant

amounts of further research. More importantly, thermal constraints must be incorporated into the

placement models. There has been substantial research in the VLSI domain on thermal-aware

placement; however, the integrated optics problem is different. The thermal-placement problem for

VLSI optimizes a layout to evenly spread out the heat sources as a means to mitigate temperature

hotspots. In integrated optics, however, heat sources are generally external, affecting the optics

layers and creating integration challenges. Though we have proposed solutions for thermal

compensation of preplaced devices, external thermal constraints must be analyzed and incorporated

into the placement models themselves.

The first step in an integrated placement approach is to derive the temperature gradient as it

affect the optical layer. We can assume a 3D die-stacking scenario whereby a mixed or multicore

system is integrated with a photonic communications or routing layer. A thermal analysis will be
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performed based on the workload and circuit-activity characteristics of the system cores, producing

temperature hotspot information. The temperature gradient itself is a function of both heat sources

and sinks and the materials between them. In our model of the ring resonator, we assumed a single

temperature across the entire ring. However, additional analysis can be performed to characterize

optical devices in terms their constituent material thermal properties, especially for nonuniform

gradients. For example, in SOI optical devices, cladding materials are constructed of thermal

insulators as compared, whereas the guiding layers are highly thermally conductive. The movement

of heat through such a device may affect how it may be placed.

With such thermal characterization in place, we can utilize this information to drive optimization

techniques. Our ring resonator resynthesis approach demonstrates that resynthesis is a viable

method for compensating for the effects of a static temperature change. However, in placement

we have the flexibility of choosing or avoiding certain temperature conditions. We can speculate on

the optimization criteria such thermal-aware placement techniques may employ.

At the most basic level, seeking out areas of low temperature may be desirable as a means to

reduce the effects of high temperatures on optical devices, e.g., thermal expansion, losses, or outside

power needed for compensation. However, given the ability to resynthesize devices, it may be more

useful to seek out areas of consistent temperature values or even areas with stable temperatures—

reducing the temperature range over which active tuning must be performed. Overall, with sufficient

data, a combination of thermal interactions can be utilized provided the underlying optimization

techniques support them.

Thermal gradients and optimization criteria must then be coupled into a placement framework.

Here we may borrow from conventional EDA placement techniques while incorporating thermal

constraints and optimization goals into the model. In a force-directed placement approach such

as [119], the thermal gradient map and/or hot spots serve as attractive or repulsive forces within the

framework. This will be in addition to forces that ensure locality to endpoints (e.g., a filter near its

receiver device) and forces that prevent overlap and obstacle avoidance. Thermal constraints can

also be incorporated into a coordinated place and route type framework [120] by utilizing a thermal

gradient map in place of congestion maps for placing and routing optical GCells. Finally, thermal

placement is amenable to simulated annealing based placement approaches. In effect, the idea is

to use the 2D thermal gradient itself as a cost in the annealing schedule to optimally place devices

within the system. What will be interesting is how this technique is adapted to thermal maps, where

the optimization criteria is not simply minima or maxima, but also regions of constant temperature,

fluctuation maps, activity-based thermals, etc. Overall, the main research objective in all these
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approaches is in the incorporation of thermal constraints in place of, or supplementing, VLSI-type

constraints such as wire length and congestion.

8.1.2 Global Routing for Integrated Optics

Though we have presented effective techniques for detailed routing, we note that the global

routing model presented in Chapter 5 is a rudimentary attempt at best. The presented MILP

approach does, however, capture many of the important aspects required of an optical global router,

notably how crossings and bends are modeled in a graph. What it lacks, however, is scalability.

Contemporary VLSI global routers have the ability to route problem instances many orders

of magnitude more complex than the optical designs routed in our work. Though MILP-based

approaches are utilized in VLSI routers, many are integrated into approaches that iteratively grow

the routing regions to ensure tractability [46]. This iterative approach must also be adopted for

our MILP-based approach to enable scalability. This will also benefit solution quality in that by

reducing the number of nets under consideration, we can consider more candidate routes per net.

Finding good candidate routes is also an important part of creating a successful global router. In

our MILP technique, candidate routes are selected based on the shortest routes available, which is

justified by the relatively dense grid resulting from our row-based placement. In sparse placements

with poorly defined grids, more traditional shape-based (e.g., Z or L) routing candidate nets may

be more appropriate—provided they can still account for crossings and bends. With simpler shape-

based MILP routing, a solution may not be found, requiring alternative approaches for routing.

A crossing- and bend-aware maze router is therefore needed to supplement the other techniques,

possibly even allowing for smoother bend transitions.

We also note that global routing and placement are increasingly becoming more integrated as

they both affect each other. A coordinated place and route incorporating both the optical global

routing as well as the placement of such devices may be the ultimate solution in optical network

synthesis. Such an approach combines thermal placement with crossing- and bend-aware routing,

ultimately to reduce power usage in the optical layer. For this to occur, the optical routing performed

by such a framework needs to transition to a more iterative-friendly rather than constraint-solving

methodology.
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