11,755 research outputs found

    The impact of information sharing, random yield, correlation, and lead times in closed loop supply chains

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordWe investigate the impact of advance notice of product returns on the performance of a decentralised closed loop supply chain. The market demands and the product returns are stochastic and are correlated with each other. The returned products are converted into "as-good-as-new" products and used, together with new products, to satisfy the market demand. The remanufacturing process takes time and is subject to a random yield. We investigate the benefit of the manufacturer obtaining advance notice of product returns from the remanufacturer. We demonstrate that lead times, random yields and the parameters describing the returns play a significant role in the benefit of the advance notice scheme. Our mathematical results offer insights into the benefits of lead time reduction and the adoption of information sharing schemes.Japan Society for the Promotion of Scienc

    The impact of information sharing, random yield, correlation, and lead times in closed loop supply chains

    Get PDF
    We investigate the impact of advance notice of product returns on the performance of a decentralised closed loop supply chain. The market demands and the product returns are stochastic and are correlated with each other. The returned products are converted into “as-good-as-new” products and used, together with new products, to satisfy the market demand. The remanufacturing process takes time and is subject to a random yield. We investigate the benefit of the manufacturer obtaining advance notice of product returns from the remanufacturer. We demonstrate that lead times, random yields and the parameters describing the returns play a significant role in the benefit of the advance notice scheme. Our mathematical results offer insights into the benefits of lead time reduction and the adoption of information sharing schemes

    A unified theory of the dynamics of closed-loop supply chains

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordWe investigate the dynamics of a closed-loop supply chain with first-order auto-regressive (AR(1)) demand and return processes. We assume these two processes are cross-correlated. The remanufacturing process is subject to a random triage yield. Remanufactured products are considered as-good-as-new and used to partially satisfy market demand; newly manufactured products make up the remainder. We derive the optimal linear policy in our closed-loop supply chain setting to minimise the manufacturer's inventory costs. We show that the lead-time paradox can emerge in many cases. In particular, the auto- and cross-correlation parameters and variances of the error terms in the demand and the returns, as well as the remanufacturing lead time, all influence the existence of the lead-time paradox. Finally, we propose managerial recommendations for manufacturers.JSPS KAKENH

    The value of regulating returns for enhancing the dynamic behaviour of hybrid manufacturing-remanufacturing systems

    Get PDF
    Several studies have determined that product returns positively impact on the dynamics of hybrid manufacturing-remanufacturing systems, provided that they are perfectly correlated with demand. By considering imperfect correlation, we observe that intrinsic variations of returns may dramatically deteriorate the operational performance of these closed-loop supply chains. To cope with such added complexity, we propose a structure for controlling the reverse flow through the recoverable stock. The developed mechanism, in the form of a prefilter, is designed to leverage the known positive consequences of the deterministic component of the returns and to buffer the harmful impact of their stochastic component. We show that this outperforms both the benchmark push system and a baseline solution consisting of regulating all the returns. Consequently, we demonstrate that the operation of the production system is greatly smoothed and inventory is better managed. By developing a new framework for measuring the dynamics of closed-loop supply chains, we show that a significant reduction in the net stock, manufacturing, and remanufacturing variances can be achieved, which undoubtedly has implications both for stock reduction and production stabilization. Thus, the known benefits of circular economy models are strengthened, both economically and environmentally

    The impact of product returns and remanufacturing uncertainties on the dynamic performance of a multi-echelon closed-loop supply chain

    Get PDF
    We investigate a three-echelon manufacturing and remanufacturing closed-loop supply chain (CLSC) constituting of a retailer, a manufacturer and a supplier. Each echelon, apart from its usual operations in the forward SC (FSC), has its own reverse logistics (RL) operations. We assume that RL information is transparent to the FSC, and the same replenishment policies are used throughout the supply chain. We focus on the impact on dynamic performance of uncertainties in the return yield, RL lead time and the product consumption lead time. Two outcomes are studied: order rate and serviceable inventory. The results suggest that higher return yield improves dynamic performance in terms of overshoot and risk of stock-out with a unit step response as input. However, when the return yield reaches a certain level, the classic bullwhip propagation normally associated with the FSC does not always hold. The longer remanufacturing and product consumption lead times result in a higher overshoot and a longer time to recover inventory, as well as more oscillation in the step response at the upstream echelons. We also study bullwhip and inventory variance when demand is a random variable. Our analysis suggests that higher return yield contributes to reduced bullwhip and inventory variance at the echelon level but for the CLSC as a whole the level of bullwhip may decrease as well as increase as it propagates along the supply chain. The reason for such behaviour is due to the interaction of the various model parameters and should be the subject of further analytical research. Furthermore, by studying the three-echelon CLSC, we produce a general equation for eliminating inventory offsets in an n-echelon CLSC. This is helpful to managers who wish to maintain inventory service levels in multi-echelon CLSCs

    The bullwhip effect: Progress, trends and directions

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordThe bullwhip effect refers to the phenomenon where order variability increases as the orders move upstream in the supply chain. This paper provides a review of the bullwhip literature which adopts empirical, experimental and analytical methodologies. Early econometric evidence of bullwhip is highlighted. Findings from empirical and experimental research are compared with analytical and simulation results. Assumptions and approximations for modelling the bullwhip effect in terms of demand, forecast, delay, replenishment policy, and coordination strategy are considered. We identify recent research trends and future research directions concerned with supply chain structure, product type, price, competition and sustainability

    A unified theory of the dynamics of closed-loop supply chains

    Get PDF
    We investigate the dynamics of a closed-loop supply chain with first-order auto-regressive (AR(1)) demand and return processes. We assume these two processes are cross-correlated. The remanufacturing process is subject to a random triage yield. Remanufactured products are considered as-goodas- new and used to partially satisfy market demand; newly manufactured products make up the remainder. We derive the optimal linear policy in our closed-loop supply chain setting to minimise the manufacturer’s inventory costs. We show that the lead-time paradox can emerge in many cases. In particular, the auto- and cross-correlation parameters and variances of the error terms in the demand and the returns, as well as the remanufacturing lead time, all influence the existence of the lead-time paradox. Finally, we propose managerial recommendations for manufacturers

    On the Dynamics of Closed-Loop Supply Chains under Remanufacturing Lead Time Variability

    Get PDF
    Remanufacturing practices in closed-loop supply chains (CLSCs) are often characterised by highly variable lead times due to the uncertain quality of returns. However, the impact of such variability on the dynamic benefits derived from adopting circular economy models remains largely unknown in the closed-loop literature. To fill the gap, this work analyses the Bullwhip and inventory performance of a multi-echelon CLSC with variable remanufacturing lead times under different scenarios of return rate and information transparency in the remanufacturing process. Our results reveal that ignoring such variability generally leads to an overestimation of the dynamic performance of CLSCs. We observe that enabling information transparency generally reduces order and inventory variability, but it may have negative effects on average inventory if the duration of the remanufacturing process is highly variable. Our findings result in useful and innovative recommendations for companies wishing to mitigate the negative consequences of lead time variability in CLSCs
    corecore