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Abstract 

We investigate a three-echelon manufacturing and remanufacturing closed-loop 

supply chain (CLSC) constituting of a retailer, a manufacturer and a supplier. Each 

echelon, apart from its usual operations in the forward SC (FSC), has its own reverse 

logistics (RL) operations. We assume that RL information is transparent to the FSC, 

and the same replenishment policies are used throughout the supply chain. We focus 

on the impact on dynamic performance of uncertainties in the return yield, RL lead 

time and the product consumption lead time. Two outcomes are studied: order rate 

and serviceable inventory. The results suggest that higher return yield improves 

dynamic performance in terms of overshoot and risk of stock-out with a unit step 

response as input. However, when the return yield reaches a certain level, the classic 

bullwhip propagation normally associated with the FSC does not always hold. The 

longer remanufacturing and product consumption lead times result in a higher 

overshoot and a longer time to recover inventory, as well as more oscillation in the 

step response at the upstream echelons. We also study bullwhip and inventory 



variance when demand is a random variable. Our analysis suggests that higher return 

yield contributes to reduced bullwhip and inventory variance at the echelon level but 

for the CLSC as a whole the level of bullwhip may decrease as well as increase as it 

propagates along the supply chain. The reason for such behaviour is due to the 

interaction of the various model parameters and should be the subject of further 

analytical research. Furthermore, by studying the three-echelon CLSC, we produce a 

general equation for eliminating inventory offsets in an n-echelon CLSC. This is 

helpful to managers who wish to maintain inventory service levels in multi-echelon 

CLSCs. 
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1. Introduction 

Closed-loop supply chains (CLSCs) have been a popular research subject in the last 

three decades due to their recent adoption by industry. The key drivers for the 

industrial adoption of a CLSC are twofold: legislative pressure and economic benefit. 

Indeed, recently studies have demonstrated that new technology enables returns to be 

handled effectively, leading to an economic benefit (Atasu et al., 2008). However, 

uncertainties in the acquisition of used products/parts in terms of cost, quality, 

quantity and customer attitude are still the main barriers to achieving profitability 

(Wei et al., 2015; Seitz, 2007). Therefore, understanding the uncertainties and their 

impact on SC performance is critical for the success of a CLSC.  

According to Vahdani et al., (2012), uncertainties in the CLSC can be grouped into 

environmental and system categories. The former refers to the performance of each 



member–retailer, (re-)manufacturer and supplier–of a supply chain (SC). The latter is 

related to the managerial process at three levels of decision making: strategic, tactical 

and operational. Furthermore, Alexander et al., (2014) summarise decision making in 

sustainable SC management into 11 areas: pricing and cost, inventory, network, 

supplier selection, logistics, environmental management, risk management, 

performance management, life-cycle analysis, closed loop, and product recovery and 

recycling. This research covers, 5 out of the 11 aforementioned areas (ibid), i.e. 

inventory and ordering performance management in a closed-loop SC that is involved 

in product recovery and recycling.  

We aim to explore the dynamics of a three-echelon CLSC constituting of a retailer, a 

manufacturer and a supplier. We focus on the dynamic performance of the whole 

CLSC. We assume that each echelon, apart from its usual operations in the forward 

SC, has its own reverse logistics or remanufacturing operations. These include the 

actions of collection, checking, sorting, product recovery and recycling, depending on 

the nature of the returns.  

Building on the existing body of knowledge, we model each echelon based on the 

single-echelon study undertaken by Tang and Naim (2004), who adopted the well-

established forward SC replenishment policy known as the Automated Pipeline, 

Inventory and Order Based Production Control System (APIOBPCS), from John et al. 

(1994). They coupled an APIOBPCS manufacturing model with a push-based 

remanufacturing process of the reverse SC. Hence, there is no feedback in the 

remanufacturing process as per the description by Van der Laan (1999), yielding a 

hybrid manufacturing–remanufacturing system commonly found in industry (Guide, 

2000). The pull based remanufacturing process was studied by Zhou et al. (2006) and, 

although is not the subject of this study, forms the basis of future research. 



In practice, there are many companies that have already adopted CLSC management 

approaches. As Jayaraman and Luo (2007) pointed out, a well-managed reverse 

logistics has become part of competitive advantages for companies. Major 

manufacturers of photocopy machines, such as Xerox and Canon, are remanufacturing 

their used products, claiming savings of several millions of US dollars (Jayaraman 

and Luo, 2007, Kainuma and Disney 2015). Likewise, HP launched a closed-loop 

cartridge recycling programme named ‘Planet Partners’, “which since its inception in 

1991 has taken back and reprocessed 566 million ink and toner cartridges worldwide, 

extending to over 50 countries and covering 90 per cent of cartridges sold” (Nichols, 

2014). According to the HP report, until 2014, “…HP’s solution has used over 108 

million pounds of recycled plastic from over 382 million HP ink cartridges…to (re-) 

manufacture over 2.5 billion closed-loop ink cartridges” and “More than 75% of HP 

ink cartridges and 24% of HP LaserJet toner cartridges contain recycled plastics” (HP, 

2014). The HP cartridge CLSC is illustrated in Figure 1. In the HP closed-loop 

cartridge recycling process at the retailer echelon, the retailer who sells cartridges to 

customers also accepts the returns from the customers for refilling ink, which is 

undertaking a recovering process in order to resell. We assume that refilled cartridges 

are as good as new – a common pronouncement by remanufacturers (e.g. see All-

Party Parliamentary Sustainable Resource Group, 2014).  Otherwise, the returns are 

sent to HP recycling depots to undertake remanufacturing operations. At the HP 

manufacturing echelon, apart from manufacturing new cartridges, used cartridges are 

put through a multiphase process for remanufacturing and reprocessing, including 

separating materials for later use when producing ‘new-like’ HP inkjet cartridges. 

Similarly, at the HP material supplier echelon, while raw materials can be purchased 

from elsewhere, the suppliers themselves also extract and refine materials from 



difference sources such as returned cartridges, plastic bottles, electronics, hangers, 

and so on. Each echelon has an information system that tracks returned parts in terms 

of yield and lead times at its immediate stage. The three echelons are connected 

through the orders placed to upstream echelons and returned parts that flow 

downstream. 

 

Although there are a number of papers studying CLSCs (Tang and Naim, 2004; Zhou 

and Disney, 2005; Zhou et al., 2006; Hosoda et al., 2015), the majority of them focus 

a manufacturer and a remanufacturer in a single SC echelon. There is little research 

studying multiple-echelon CLSCs. Chatfield (2013) argued that using a two stage 

decomposition-based models significantly underestimates the bullwhip effect in a SC 

which may result in wrong decision-making. Chatfield’s result suggests that to get 

more accurate dynamic insight a model of an entire SC must be considered. This 

justifies the need for this research which extends the single echelon two player model 

into a three echelon CLSC model.    

Our contribution is to extend the research of Tang and Naim (2004) to a three-echelon 

CLSC and explore the dynamics of the order rate (ORATE) and actual inventories 

(AINV) at each echelon, as measured from three aspects:  

(a) the response to a step response, which gives us a rich picture of the system’s 

dynamic behaviour (John et al., 1994; Zhou et al., 2010);  

(b) the order and inventory variance amplification ratios when the demand is an 

i.i.d. random demand (Chen and Disney, 2007); and  

(c) the mitigation against AINV offsets that are a detriment to satisfying 

customer demand from stock (Disney and Towill, 2005). 



The paper is organised as follows. First, we review the relevant literature in Section 2. 

In Section 3, a model is described, and the corresponding continuous time, Laplace 

domain transfer functions of the CLSC against demand are derived. Section 4 

analyses the system dynamics, investigates system performance via the order and 

inventory responses to a step input, studies bullwhip and inventory variance 

amplification, and explores the impact of lead time interrelationships on system 

dynamics. Section 5 concludes.        

 

2.  Literature Review 

2.1.  System dynamic performance   

According to Chopra and Meindl (2001), ‘a SC is dynamic [system] and involves the 

constant flow of information, products and funds between different stages. Each stage 

of the SC performs different processes and interacts with other stages of the SC.’ SC 

dynamics consists of the interaction processes between departments and organisations 

(Higuchi and Troutt, 2004). It has both positive and negative aspects (Sarimveis et al., 

2008). The positive aspect is effective collaboration among players in the value chain, 

which may lead to higher performance. On the other hand, the negative facet is 

independent decision making, which may result in delays and forecasting error caused 

by demand uncertainty, lead-time uncertainty, and different management philosophies 

and objectives between players in the chain (Sarimveis et al., 2008). These 

characteristics may lead to the expensive bullwhip effect (Lee et al., 1997; Metters, 

1997; Wang and Disney, 2016).  

Hence, it is important to understand how uncertainties affect system dynamics. One of 

the possible approaches to gaining understanding is to use control theory.  

 



2.2.  Modelling SC system dynamics 

Forrester (1961) introduced system dynamics in the early 1960s as a modelling and 

simulation methodology for understanding long-term decision making in dynamic 

settings. A general discussion of dynamic simulation can be found in (Sterman, 2000). 

Towill et al. (1992) and Wikner et al., (1991), utilised system dynamics simulation to 

understand SC strategies for eliminating demand amplification. Other related studies 

can be seen in John et al. (1994), who studied the dynamic impact of work-in-progress 

(WIP) feedback on a single SC echelon using control theory techniques. The WIP 

information allowed for tighter control of the dynamics of the system, increasing 

stability and reducing the variance amplification effects in inventory and orders.  

Hwarng and Xie (2008) investigated the impact of various SC factors on system 

dynamics and chaotic behaviours. These factors include an exogenous factor, 

customer demand, and the endogenous factors of the ordering policy, information 

sharing and lead time. They conclude that the causes of system variability are not only 

exogenous and endogenous SC factors themselves, but also their interactions between 

them. Zhou et al. (2010) studied the three most commonly adopted strategies in an SC: 

Pass-Orders-Along, Demand Smoothing and Level Scheduling. They developed 

pragmatic rule-of-thumb guidelines for managers selecting and adopting a robust 

system for dealing with demand uncertainty. Fu et al. (2015) considered a four-

echelon SC consisting of a retailer, wholesaler, distributor, and a manufacturer. They 

introduced a model predictive control strategy into an ordering policy to mitigate 

bullwhip.     

     

2.3.  Research on dynamic modelling of closed-loop SC  



Early studies of inventory variance and bullwhip in CLSCs can be found in Tang and 

Naim (2004), Zhou and Disney (2005) and Zhou et al. (2006). Tang and Naim (2004) 

studied the impact of information transparency on system dynamics in a hybrid 

manufacturing/remanufacturing based on the APIOBPCS model (John et al., 1994). 

They assumed that the recovery process adopted a push policy (i.e. no inventory 

control policy at the recoverable stock site), concluding that information transparency 

improves the robustness of the system. Zhou et al. (2006) investigated the dynamic 

performance of the hybrid system by adopting the industrially prevalent Kanban 

policy in the remanufacturing loop. They studied dynamic performance based on 

criteria such as rise time, settling time and overshoot to find parameter settings for 

preferred nominal, fast and slow response systems. They highlighted that the 

remanufacturing process can improve the system’s dynamic performance, without 

degrading either the environment or the economics of the SC.  

Kenné et al. (2012) studied a manufacturer and remanufacturer closed-loop SC where 

three inventories were considered: manufacturing inventory, remanufacturing 

inventory and return inventory. In order to minimise inventory holding and backlog 

cost, both manufacturer and remanufacturer need to develop a policy to set the 

production rate of manufacturing and remanufacturing, respectively. In contrast, 

instead of just deciding the production rate, this paper examines the impact of the 

return rate on the dynamic performance at both the manufacturer and the 

remanufacturer.  

Hosoda et al. (2015) investigated the benefit of getting advance notice of returns in a 

decentralised closed-loop SC. They assumed that market demand and return rate were 

stochastic and correlated to each other and that a stochastic random yield was present 

in the remanufacturing activities. They showed that sharing return and yield 



information may reduce inventory variance, but could increase production variance. 

In addition, increasing return and yield rate may have a negative impact on the system. 

In this research, we assume that the return yield is proportional to the market demand 

and that the lead time of a product in the market place is exponentially distributed as 

in Zhou and Disney (2006).     

This literature review highlights that system dynamics simulation has been used to 

study various CLSCs. However, there appears to be no research on the dynamics of 

multi-echelon CLSCs. This motivates us to investigate a three-echelon CLSC to study 

the pattern of system behaviour that is exhibited by multiple-echelon CLSCs. 

 

3. Model Description 

We extend the single-echelon study of Tang and Naim (2004) to a three-echelon 

(retailer, manufacturer and supplier) CLSC, with each echelon adopting the same 

policy to maximise the benefits of transparency of remanufacturing flows at each 

echelon. Hence, information on the remanufacturing process, including the return 

yield, remanufacturing lead time and the product consumption lead time, is shared 

with the manufacturing process but limited to within the echelon. The connection 

between each echelon is solely through the orders placed to the nearest upstream 

echelon and the returns of end customer products.  

The block diagram of the three-echelon CLSC is shown in Figure 2. In order to ensure 

consistency and benchmarking with previous studies, in particular the work of Tang 

and Naim (2004) which we are extending, we utilise the Laplace transform for our 

control engineering analysis coupled with simulation modelling. As highlighted by 

Zhou et al. (2006), by studying the system in the Laplace ‘s’ domain, we focus on the 

time-varying characteristics of the system and the impact of shock and random stimuli. 



In deriving transfer functions in the ‘s’ domain, we exploit the classic step input as it 

helps to develop insights into dynamic behaviour, which is then supplemented by 

exploring responses to the i.i.d. random demand.  

 

In figure 2 the solid lines represent the traditional forward operations in the SC such 

as selling at a retailer, manufacturing in a plant, and purchasing raw materials and 

delivery from a supplier. The dashed lines represent the additional reverse logistics 

operations such as product recovering process by the retailer, remanufacturing process 

by the manufacturer and material extracting/refining process by the supplier, denoted 

as REM1, REM2 and REM3 respectively. The APIOBPCS model (John et al., 1994) 

of this hybrid system can be expressed as follows: the order placed is based on the 

forecast of customer demand (AVCON) plus a fraction (1/Ti) of the discrepancy 

between actual (AINV) and desired (DINV, set as 0) serviceable inventory levels plus 

a fraction (1/Tw) of the discrepancy between actual working-in-process (WIP) and 

target ( pT AVCON ) WIP levels minus the completion rate of recycled/remanufactured 

products (REM). In other words: 

i

w

Desired Inventory Actual Serviceable InventoryORATE Demand Forecast
T

Target WIP Actual WIP Remanufactured Products
T

 (1) 

Where iT  and wT  are controllable decision variables which are made by each echelon 

forward SC. If we set ‘desired inventory’ as 0; target WIP is related to forecasted 

demand multiplied by pT , an adjustable decision variable, then we have:   

1

i

p

w

ORATE Demand Forecast Actual Serviceable Inventory
T

T Demand Forecasting Actual WIP
Remanufactured Products

T

 (2) 



Note, the demand forecasts are created with the exponential smoothing method. 

Figure 2 shows the duration of the forward SC operations (i.e. selling at retailer, 

production at manufacturer, purchasing and delivering at supplier) and the reverse SC 

operations (i.e. product recovering at retailer, disassembly and reprocessing at 

remanufacturer, material recovery and refining at supplier) are assumed to be drawn 

from an exponential distribution. In addition, all remanufactured products are 

assumed to be as-good-as-new.     

In the remanufacturing process, we adopt a push-based system that assumes there is 

no control of the recoverable inventory. This assumption has often been made in the 

CLSC literature, for example see Van der Laan et al. (1999), Tang and Naim (2004) 

and Hosoda et al. (2015). Items are pushed into the reverse logistics operations 

process as soon as they are returned. It is noted that the WIP must account for the 

items in both manufacturing and remanufacturing processes. In addition, the orders 

cascades along the SC from the customer to suppliers. 

As previously described, the retailer, manufacturer and supplier all have the capability 

to deal with returns at various levels, i.e. product, part and/or component, and material. 

Meanwhile each echelon also places new orders to the nearest upstream echelon. Both 

manufactured and remanufactured items are used to satisfy customer demand.  

The following set of notation is used:   

CONS (C) consumption or sales rate from the customer 

CONS (R) consumption rate from the retailer 

CONS (M) consumption rate from the manufacturer 

AVCON average consumption in the forward pipeline 

ORATE order rate placed for new products 

COMRATE completion rate in the conventional pipeline 



AINV actual inventory of serviceable stock 

DINV desired inventory 

WIP work-in-process in the combination of forward and reverse pipeline 

j index variable denoting the SC echelon. j=1 refers to retailer; j=2, 

manufacturer; j=3, supplier. 

Taj time to average consumption, exponential smoothing parameter 

Tij time to adjust inventory 

Twj time to adjust WIP 

Tmj actual forward/manufacturing pipeline lead time 

Tpj estimated pipeline lead time, a decision parameter that determines 

the inventory-offset error 

Tcj Time period that the products/parts/materials are held before they 

enter the reverse logistics operations 

Trj actual reverse process/remanufacturing pipeline lead time 

RAVCON average consumption in the remanufacturing pipeline 

RCOMRATE recoverable rate from the remanufacturing pipeline 

s Laplace operator 

αj return yield at echelon j, 0 1j   

The focus of this research is to examine how the return yield , remanufacturing lead 

time rT  and the consumption lead time cT influence the system dynamics. We 

investigate two key variables: order rate and actual serviceable inventory level. The 

corresponding Laplace transform transfer functions at each echelon are derived in 

Appendix A. It should be noted that as initial conditions are assumed to be zero in the 

frequency domain, the actual responses will indicate a deviation from some initial 

absolute value (see Nise, 2011). 



( )O j
j

ORATEG s
CONS

          (3) 

( )A j
j

AINVG s
CONS

         (4) 

We assume that each echelon adopts the same policy which means the decision 

variables are ij iT T  and wj wT T . In addition, as our focus is on the uncertainties in 

reverse logistics, we assume that the lead times in the forward SC at each echelon are 

the same, i.e. mj mT T .   

Appendix A indicates that the transfer function of echelon j is the function of echelon  

1j  combined with echelon j related parameters: ,  ,  andrj cj jT T . Therefore, the 

upstream echelon has no influence on, but is affected by, the downstream echelon, 

and the uncertainty of demand and returns increases as we move up the CLSC.     

We start by testing the initial- and final-values of the transfer functions. These checks 

are made to ensure that the initial conditions (via the Initial Value Theorem) and long-

term behaviour (via the Final Value Theorem) behave as desired (Rasof, 1962). For 

ORATE and AINV, the initial values are 

( ) lim ( )O j Os
I s G s  and ( ) lim ( )A j As

I s G s , 

and the final values are, 

0
( ) ( )O j O j s

F s G s  and 
0

( ) ( )A j A j s
F s G s . 

The initial and final values for ORATE and AINV at each stage are shown in Table 1.  

 

It can be noted that the final values of ORATE are only affected by return yield j ; 

while for AINV, the consumption lead time cjT  has no impact on its final value. From 



Table 1, we can deduce the final value for the nth-echelon in this CLSC as proved in 

Appendix B:  

1

1
n

j
jj n

ORATE
CONS

        (5) 

1

1 1

1 1
n n

n n
i

j m j p n r
j jj n w

AINV T T T T
CONS T

    (6) 

Subject to: 
1

0
n

j
j

. 

Eq. (5) implies that the final value of ORATE could be negative. This might be 

meaningless in reality, but mathematically it holds. Eq (6) indicates that the final 

value of actual inventory at the nth echelon is decided by the pipeline lead time and 

return yield. It can be adjusted through the variables ,   and i w pT T T . We note that aT  

has no impact on the final value but the forecasting parameter does have an influence 

on system performance. This is in line with previous research on forward SC e.g. 

Dejonckheere et al., 2002. 

The potential offset in the inventory levels can be avoided by adjusting the parameter 

jpT  as shown in Table 2. We should note here that Tang and Naim (2004) derived an 

expression for Tpj but only for a single echelon. Historically for forward SC Tpj is 

equated to Tm, that is, there is an assumption that the estimated lead time equals the 

actual lead time (John et al., 1994). Tang and Naim (2004) showed, however, that for 

a hybrid manufacturing-remanufacturing system, Tpj is now a control parameter used 

to eliminate inventory off-sets. 

 



From Table 2, we extend the result for Tang and Naim (2004) so we can use 

mathematical induction to predict the resultant value of Tpj to eliminate inventory 

offsets at the nth echelon, as shown in Appendix B. Hence,  

1
1

1

1

1

n

n

n

j m n r
j

p n

j
j

T T
T .         (7) 

In the following analysis, pT  is adjusted according to Eq (7).  

 

4. The Dynamic Impact of Product Returns and Lead Times 

There are 24 variables in the system, which makes it difficult to derive analytical 

solutions of the complete parameter space. In order to simplify the analysis and 

highlight the impact of uncertainties, we start from adopting the parameter setting 

suggested by Tang and Naim (2004); that is, 8, 8,  = 8 and 16i m w aT T T T  at all 

echelons (unless otherwise stated), while p jT  has been set according to Eq (7). As the 

product consumption lead-time, cT , is generally longer than the manufacturing lead 

time, and the remanufacturing lead-time, rT , is generally shorter than the 

manufacturing lead-time mT , we have started our numerical investigation from 8mT ,  

32cT  and 4rT . The value of 0.3ja  was selected as it is representative of 

returns of PET bottles in the USA, Hosoda et al (2015). 

 

4.1. Dynamic performance with step input  

We use the step response to assess the system’s ability to cope with a sudden change. 

The step response is powerful, as from this simple shock input, the size and duration 

of the subsequent stock-out and the quantity of the ensuing overshoot in orders can be 



readily determined, providing a rich understanding of the qualitative dynamics of the 

CLSC. 

 

4.1.1  Impact of the return yield     

To understand the impact of the return yield we consider the following two scenarios: 

Scenario 1: Equal return yields, 1 2 3 . 

First we assume that each echelon shares the same return yield, 1 2 3 . We 

use this scenario as a benchmark to understand the influence of j in general.    

Scenario 2: Convex decreasing return yield, 1 2 3, / 2, / 3 . 

This scenario refers to the case when return quality is good; for instance, within the 

product warranty period the returned product might be resold after repair or 

refurbishment and the product has a much higher chance of being remanufactured in 

the downstream echelons. For instance, in the case of HP closed-loop cartridge 

recycling program, the sold cartridges are returned to retailers at a return yield α of,  

say 80%, where half of them, α/2=40%, could be good enough to refill ink and directly 

resell, and α/3=26.66% of products will be recycled into plastic.  

As shown in Figure 3, we start from setting all 0i , meaning that no returns are 

present in the CLSC, that is, a classic forward SC. It provides us with a benchmark to 

assess the influence of the returns on the CLSC.  

 

Observation of ORATE suggests the following:  

 The retailer’s order rate is the least sensitive to the return yield, and higher 

echelons become increasingly more sensitive. This is because the accumulated 

pipeline lead time increases the uncertainty in the SC. To respond to this 



challenge the upstream echelons have to first over-order, then under-order to 

the demand.   

 The ORATE overshoot ranges from 33% at the retailer echelon to 250% at the 

supplier echelon, implying that the amplification phenomenon seems to be 

inevitable in a CLSC. However, others have shown that it could be alleviated 

if the planning system is carefully designed (Hosoda et al., 2015; Zhou et al., 

2010). 

 The classic cascade of increased peak orders as they are transmitted from one 

echelon to the next in a traditional forward SC does not always occur. With 

higher value of return yield there are cases where the behaviour results in 

complex interactions between echelons resulting in peak orders, say, for 

Scenario 1, α = 0.6, at the manufacturer being both lower than that at the 

retailer and the supplier. Similar complex behaviours also result with regards 

to the rise and settling times.  

 When the return yield reaches 50%, the supplier echelon starts suffering from 

large oscillations in orders and inventory levels. When  is above 50%, both 

the manufacturer’s and supplier’s ORATE become negative, because their 

final values 2 1 2( ) 1 0OF s  and 3 1 2 3( ) 1 0OF s . This 

means that with increasing returns, each echelon will mainly undertake a 

remanufacturing process and reduce the output of newly manufactured items. 

Therefore, orders placed onto the upstream echelon are reduced. 

 

Figure 4 suggests that increasing the return yield to a certain level can reduce the risk 

of a stock-out. However, in general, the impact of on the retailer’s inventory 

performance is not significant. While the retailer would welcome more high-quality 



returns, the upstream echelons need to be cautious about how many returns to accept 

because of the chaos caused by high volume of returns that leads to higher risk of 

stock-out and overstock. 

From the second echelon, all echelons’ inventory overshoot the target (of zero), which 

rarely happens in a conventional SC when w iT T . This results from the increased the 

complexity of the CLSC. Hence, the system needs extra capacity to cope with the 

uncertainties and to enable the system to return to its steady state within a reasonable 

time. This implies that carefully setting the parameters ,   andp w iT T T  may improve 

dynamic performance.   

It can be noted again that complex behaviours departing from the classic forward SC 

inventory variance phenomenon occurs with higher return yields. There is also the 

noticeable swing in inventory at the supplier echelon. Apart from taking longer to 

cope with the undershoot, the supplier has to hold a larger inventory for longer to 

meet customer demand, which is costly.               

To summarise, suitable allocation of the returns among the actors in a CLSC helps to 

achieve better dynamic performance. This means that when designing a return 

network careful consideration should be given to how returns flow to the upstream 

echelons.  But care is needed in understanding the complex behaviours with respect to 

higher return yields. We will address this further with our bullwhip and inventory 

variance analysis and in our discussions.  

 

4.1.2 Impact of the remanufacturing lead time, rT   



To investigate the influence of the lead time, rT , we assume that all return yields 

equal 0.2, in total 0.6, as in Zhou et al. (2006). The varying rT  changes from 2, 4, 8, 

16 to 32 while other parameters remain unchanged.   

 

As shown in Figure 5, the results suggest the following: 

 Longer remanufacturing lead times ( rT ) increase the overshoot in the order 

rate. This leads to more uncertainties in the system, such as changes in demand, 

resource allocation, transport issues, production (re-)scheduling etc. Therefore, 

quick recycling improves dynamic performance.  

 The settling time also increases in rT  and more oscillation occurs in the 

upstream echelons. In particular, for the inventory, it increases the risk of both 

stock-out and overstock causing significant cost. This observation shows that 

shorter lead time results in better performance – a rule of thumb that works 

well in conventional SCs as well as CLSCs. Therefore, it is worth examining 

which other guidance in traditional SCs (Zhou et al., 2010) could be extended 

to CLSCs and how.        

 When r mT T , the impact of rT  on dynamic performance reduces. For 

example a 100% change in rT  (from 2 to 4 or from 4 to 8), induces less than 

20% change in order rate overshoot and inventory undershoot. When r mT T , 

the system becomes more sensitive to rT . That is, a 100% change in rT  results 

in more than 60% change in both ORATE and AINV, and higher echelons 

exhibit even worse dynamic performance. This can be explained by the two 

production lead times mT and rT  – the longer lead time dominates the other 

one. In our case, reducing the lead time will generally lead to better dynamic 



performance; that is, less undershoot and overshoot, and shorter settling times.  

Complex lead-time issues were also noticed in Hosoda et al (2015), but the 

behaviour of their model is significantly different to this model.  

 

4.1.3  Impact of product consumption lead time cT   

As shown in Figure 6, the impact pattern of cT is similar to rT . However, we argue 

that the consumption lead time – that is, the period that the product spends in the 

market place – tends to reflect the macro environment beyond the CLSC itself, such 

as it is affected regulation, policy and market attitudes. 

 

Figure 6 suggests that shorter cT  results in better performance; that is, less undershoot 

and overshoot as well as quicker response times. This means that a short product life 

is preferable to a long product life, as it potentially leads to a system with less inertia. 

Based on the analysis of  and rT , we recognise the need to control the return 

volume and manage the remanufacturing lead time. Indeed, rT  may be closely related 

to the return quality: the better the quality, the less time is required to reprocess it. In 

both cases, cT  has a direct or indirect influence. For instance, to encourage prompt 

product returns, a retailer may offer a trade-in incentive, to reduce cT , increase and, 

as better-quality products are returned, allows the SC to reduce rT .       

 

4.2. Dynamic performance with random input  

We now study the impact of uncertainties, i.e. the return yield, return lead-time and 

remanufacturing lead-time, on dynamic performance when an independent and 

identically distributed (i.i.d.) random demand is present. Dynamic performance is 



measured as bullwhip and inventory variance amplification (Chen et al., 2000; Lee et 

al., 1997b);  

2

2
( )

orate

demand C

Bullwhip ,         (8) 

2

2
( )

ainv

demand C

VarAINV .     (9) 

Both bullwhip and inventory variance amplification have been well studied in the last 

three decades. It is widely accepted that bullwhip and inventory variance induce 

unnecessary costs (Naim, 2006). Therefore, it is important for practitioners to have an 

in-depth understanding of bullwhip and inventory variance. However, to obtain an 

accurate system dynamics performance related financial figure, a clear cost structure 

must be in place first (Das and Dutta, 2013; Robotis et al., 2012). This is beyond the 

scope of this paper.  

Inventory variance determines the stock levels required to meet a given target 

customer service level. The higher the variance of inventory levels, the more stock 

will be needed to maintain customer service at the target level (Churchman et al., 

1957). Both inventory variance and bullwhip directly affect SC economics (Zhou and 

Disney, 2006). Thus, avoiding or reducing bullwhip and inventory variance has a very 

real and important impact on the performance of a SC.  

 

4.2.1 Impact of the return yield,   

Table 3 presents some numerical results from a simulation study Matlab/Simulink® 

over a 1000 time unit horizon. The simulation stops at 0.6 , because this is 

sufficient to deduce the impact pattern. 

 



Observing Table 3, the results suggest the following:  

Horizontally, a higher return yield reduces both bullwhip and AINV variance. This 

verifies the finding regarding the order rate: the higher the returns, the higher the 

remanufacturing and the smaller the production of new items, reducing the orders 

placed upstream.  

Vertically, similar to our interpretation of the graphs in Figures 3 and 4, the classic 

forward SC behaviour, i.e. bullwhip and inventory variance increases from echelon to 

echelon, does not always hold true. Bullwhip at the manufacturer echelon may at 

times be less than that at the retailer, and in the case of Scenario 2, α = 0.6, bullwhip 

decreases from one echelon to the next.  There is clearly some interesting interplay 

regarding the various values of return yield vis-à-vis order placed at each echelon that 

determines the extent to the level of manufactured goods are required.  

Note, when 0.5, the result at supplier echelon becomes infinite mathematically 

due to a zero occurring in the denominator of 
3pT  as shown in Table 2.  

 

4.2.2 Impact of lead times of rT  and cT   

 

Analysing Figure 7, short lead times generally (but not always) lead to less bullwhip 

and lower inventory variances at each echelon. In more detail, Figure 7(a) shows that 

when 8r mT T , the manufacturer experiences the least bullwhip effect. When 

r mT T , bullwhip amplifies when moving to the upstream echelons. Figure 7(b) 

indicates that inventory variance amplification always exists, and that rT  has a very 

insignificant impact on the retailer’s inventory variance.  



The impact of cT is less significant compared to rT . Within the same lead time change 

range 2, 32 , bullwhip changes from 0.08 to 0.23 for cT compared to the bullwhip 

change range 0.15, 0.8  for rT . In the same fashion, the impact of cT on inventory is 

less sensitive than that of rT . Figure 7(c) shows that when r mT T and 2c mT T the 

retailer has the most bullwhip, and the manufacturer again has the least bullwhip. 

When 2c mT T the supplier has the most bullwhip. Figure 7(d) suggests that when 

r mT T and c mT T the manufacturer benefits the most. When c mT T the inventory 

variance increases in upstream echelons. Therefore, there is a potential opportunity for 

coordination of lead time between echelons to result in better dynamic performance as 

a whole in terms of bullwhip and inventory variance.     

Overall, from Figure 7 we learn that shortening lead times often helps to reduce 

bullwhip and inventory variances. The relationship between lead times, 

andr m c mT T T T , plays an important role in deciding the value of bullwhip and 

inventory variance, which leads to the next section exploring how the lead-times 

relationship affects the system dynamics.     

 

4.2.3. Exploring the impact of lead-times relationship on system dynamics  

The above analyses are based on the assumptions: 8iT , 8wT , 16aT , 8mT ,

32cT , 4rT , 0.2 (unless otherwise stated). In particular, 8mT is the 

benchmark against the other two physical lead-times: Tc and Tr. However, in practice, 

the lead-times may vary. We therefore need to look at how three physical lead-times 

interactively affect the system dynamics. By changing the benchmarking lead-time, 



Tm, from 2 to 16 representing the relationship of Tr/Tm from 2 to 1/4, and Tc/Tm from 

16 to 2. The simulation results are summarised in Table 4.   

 

Table 4 reveals: first, at the entire CLSC level: 

(a) the CLSC dynamic performance does not always benefit from reverse logistics, i.e. 

the total variance with RL operations sometimes is bigger than without RL operations. 

This contradicts the findings of many, such as Zhou and Disney (2005), Zhou et al., 

(2006) and others who claimed that reverse logistics contributes to smooth bullwhip 

and inventory variance in a two stage one echelon CLSC. But it verifies the argument 

(Chatfield, 2013) that we cannot assume that the result from one echelon holds true in 

an entire SC.  

(b) to be more specific, when remanufacturing lead time is long, e.g. 2r mT T , the 

CLSC overall performance reduces. This reflects reality as when reverse logistics 

lead-times increase, there will be no financial benefit to the corporation. For instance, 

if refilling a returned cartridge takes much longer than producing a new cartridge, 

neither retailer nor manufacturer would undertake this operation for the sake of profit. 

Because a longer lead time results in higher a labour cost, while remanufactured 

products are usually cheaper than the products produced from new materials. So, 

taking the manufacturing lead-time as a benchmark, the remanufacturing lead-time 

becomes critical to the decision whether or not to undertake reverse logistics. This 

also suggests that investment in technology to process returns in a more effective and 

efficient manner (i.e. to reduce rT ), is certainly worthwhile.  



(c) In general, a well-coordinated CLSC requires total SC lead-times to be minimised 

as short lead-times induce better dynamic performance. 

Second, at the echelon level:  

(a) cT  has an insignificant impact on system dynamics. This makes intuitive sense 

because the time that a product is held by a consumer is so long compared to 

production lead time and remanufacturing lead time that it can be ignored when 

considering its impact on dynamics. However, if a better return quality could be 

obtained from a shorter cT , it should be encouraged from system dynamics viewpoint.  

(b) in a fast to moderate speed system, i.e. 2,8mT  and 2,8rT , there are 

opportunities for a manufacturer to be the highest beneficiary of best dynamic 

performance as highlighted in grey in Table 4. This might be explained in that the 

forward logistics operations have been managed effectively, hence the lead time mT  is 

short. Therefore, the manufacturer can enjoy the extra ‘incoming supplies’ from 

reverse logistics provided it is not too complicated to handle, i.e. rT is relatively short.  

(c) Having said this, nevertheless, a very interesting and also important phenomenon 

we find in the CLSC is related to that previously highlighted in Sections 4.1.1 and 

4.2.1 wherein bullwhip and inventory variance does not always increase from one 

echelon to the next but may in fact decrease, as shown in italic underlined font in 

Table 4. This only occurs in the ‘fast’ systems, i.e. 4r mT and T , and 16cT . This 

finding certainly creates hope for upstream echelons to achieve better performance 

than downstream echelons.  

 



5. Conclusion 

We investigated a three-echelon CLSC consisting of a retailer, manufacturer and 

supplier. We assumed that an APIOBPCS model is adopted by all three echelons in 

their manufacturing process, and a push-based policy in their remanufacturing process. 

We focused on the impact of the return yield, recycling process/remanufacturing lead 

time and product consumption lead time on the system’s dynamic performance. Two 

variables were studied, order rate and serviceable inventory.  

Our findings suggest that a higher return yield does in itself result in decreased 

bullwhip. But the degree to which it decreases, and the propagation between echelons, 

is clearly a complex interplay between control parameter settings, the degree of return 

yield at each echelon and the lead-times in the system.  

However, the returns do contribute to less bullwhip and inventory variance overall. 

Return yield is typically uncontrollable and with government legislation, (such as the 

automotive industry’s end-of-life responsibilities), there is a requirement for vehicle 

manufacturers to ensure that all products are disposed of safely or remanufactured. 

Therefore, while there is potential for rationally allocating the return yield, that is, the 

number of used products, to each echelon in order to get better overall performance of 

the CLSC, regulatory constraints might restrict such a possibility.  

The impact of the remanufacturing lead time, rT , has less impact than the return yield 

on the system dynamics. Larger rT  leads to a higher overshoot and a longer time to 

recover inventory levels, as well as more oscillation in the upstream echelons. The 

product consumption lead time, cT , has a similar influence. However, in some 

situations cT could be a controllable parameter through marketing and promotion. In 

terms of bullwhip and inventory variance, longer lead times generally increase 

bullwhip and inventory variance. Nevertheless, an important result is that, due to the 



interaction between the various lead times, namely Tm, Tr, and Tc, bullwhip does not 

always amplify along a CLSC as would be expected in a traditional forward SC. This 

has considerable ramifications with regard to the generalised expectations governing 

the bullwhip effect. 

Given the regulatory constraints and physical uncertainties pertaining to the return 

process, our most significant contributions in this study are  

(1) the ability to ensure customer service levels through maintaining inventory at an 

appropriate level. Hence, our general finding ensures that inventory offsets are 

eliminated for an n-echelon CLSC.  

(2) Analysing the variances of order rate and inventory under random demand 

suggests that manufacturing lead time can be a good benchmark for the supplier who 

wishes to achieve a better performance. In particular, shortening the remanufacturing 

lead times results in a better dynamic performance for both step input and i.i.d. 

random input.  

(3) Systematic study of the relationship of lead-times in an entire CLSC provides a 

fuller picture for corporations to understand the risks and benefits of embedding 

reverse logistics into a traditional forward SC. If reverse logistics operations’ lead 

time is much longer than forward SC lead time, this will result in worse overall 

system dynamics performance.  

(4) The finding that bullwhip and inventory variance in the CLSC may actually be 

reduced when propagated along the SC suggests some interesting complex interplays 

between model parameters, which should inspire further analytical study in order to 

understand root causes and to allow strategy development for upstream echelons who 

are typically in a disadvantageous position in traditional SC.         



Our research has been limited to exploring the impact of hybrid manufacturing–

remanufacturing on the dynamics of a multi-echelon CLSC. We have not attempted to 

design solutions for mitigating the bullwhip effect or inventory variance. Instead, we 

have obtained a generalised rule for avoiding inventory offset. Hence, future research 

is required to identify ‘optimum’ policies. We have also only considered a push-based 

remanufacturing policy. It may be worth examining a CLSC with other policies. 

Additionally, in the current system we assume that there is a linear relationship 

between input and output. To more closely reflect reality, further study could explore 

non-linear closed-loop SC models. 
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Appendix A: The derivation of the transfer functions of the model 

There is one input, i.e. customer demand denoted as CONS, and two outputs that are 

being investigated, i.e. order rate (ORATE) and inventory (AINV). Their transfer 

functions with respect to customer demand are: 

( )O j
ORATEG s
CONS

 and ( )A j
AINVG s
CONS

  

where j  refers to the thj  echelon in the CLSC, 1,j n . 

Let us start from the first echelon, i.e. the retailer. 

11

1 1 1 1

1 1
1 1 11 11 1

1 1
rp

a w a i

ORATE COMRATE
REM REM TCONS TCONS AINVORATE REM

sT T sT s T
           (A1) 

We can derive ORATE1’s transfer function with respect to CONS, COMRATE1, 

REM1 and AINV1 from 

1

11
1 m

ORATECOMRATE
sT

        (A2) 

1

1

1
1 1c r

CONSREM
sT sT

        (A3) 

And 

1 11 COMRATE REM CONSAINV
s

               (A4)   

By substituting Eq. (A2) and Eq. (A3) into Eq. (A4), then into Eq. (A1), and solving 

the equation, 1( )OG s is derived  
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           (A5) 



Substituting Eq. (A2), Eq. (A3) and Eq. (A5) back into Eq. (A4), yields 

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1
1

1 1 1 1 1 1 1 1
1

1 1 1
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)
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T sT T T s T T sT T T
T

sT sT
AINVG s
CONS sT T sT T T sT T

  

           (A6)  

To simplify the analysis so that the impact of the uncertainties we want to analyse can 

be better understood, we assume that 1 2m m mT T TmT ; 1 2a a aT T TaT ; 

1 2i i iT T TiTi ; 1 2w w wT T TwT ; 1 2p p pT T TpT  .  

Therefore, Eq.(A5) and Eq.(A6) can be rewritten as 

1 1 1
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           (A7) 

and  

1 1 1
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From the second echelon, using the same process we can derive  

2

2 2
1 2 1 21 1 22 2

1 1
p r

a w a i

ORATE COMRATE
ORATE T REM T REMORATE AINVORATE REM

sT T sT s T

           (A9) 

Note that compared to the first echelon Eq. (A1), in Eq. (A9) on the right-hand side 

(RHS), ORATE1 has replaced CONS in the first and second items. 
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2 2 12 COMRATE REM ORATEAINV
s

                          (A12) 

Again, note that in Eq. (A12), CONS is replaced by ORATE1, where 

11 ( )OORATE G s CONS   

Substituting Eq. (A10) and Eq. (A11) into Eq. (A12), then into Eq. (A9), and solving 

the equation, the second echelon 2( )OG s  is derived.  
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Substituting Eq. (A13) back into Eq. (A10), and substituting Eq. (A11), Eq. (A12) 

becomes 
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The same process is applied to the third echelon, but we have to omit the result of 

3( )OG s and 3( )AG s due to the large size of the final results, which can be supplied on 

request.  

Applying the same steps, we can derive the nth-echelon ( )O nG s and ( )A nG s : 

  

11
11

1 1

n n

n r n nn pn n
n n

a w a i

ORATE COMRATE

REM T REMORATE TORATE AINVORATE REM
sT T sT s T

                              (A15) 

1
n

n
ORATECOMRATE

sTm
                            (A16) 

1 1
n

n
c r n

CONSREM
sT sT

                             (A17) 

1n n n
n

COMRATE REM ORATEAINV
s

                          (A18) 

As long as can be 1nORATE  is derived, then ( )O nG s  and ( )A nG s  are obtainable.  

 
  



Appendix B: Proof by mathematical induction (Henkin, 1960). 

Proof that the multi-echelon CLSC final values of ORATE and AINV deduced from 

the three-echelon CLSC are true. 

1. ORATE final value 

1

( ) 1
n

j n j
j

F O          (B1) 

Proof: when 1j ,  1 1( ) 1jF O  holds; 

When 2j , 2 1 2( ) 1jF O  holds; 

Assume that when j k , 
1

( ) 1
k

j k j
j

F O  is true; 

Then 1 2
1

( ) 1 1
k

j k j k
j

F O k  is also true.  

Hence, when 1j k ,  

1

1 1 2 1
1

( ) 1 1
k

j k k k j
j

F O k  is also true. 

Therefore, Eq. (B1) must hold.  

 

2. AINV final value 

1

1 1

( ) 1 1
n n

n n
i

j n j m j p n r
j jw

TF A T T T
T

    (B2) 

Proof. When 1j  , 1 1 1 1 1( ) 1i
j m p r

w
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T

 holds; 

When 2j , 2 1 2 1 2 2 2( ) 1 1i
j m p r

w

TF A T T T
T

 holds; 

Assume that j k , 
1

1 1

( ) 1 1
k k

k k
i

j k j m j p k r
j jw

TF A T T T
T

 is true; 



Thus, 1 2 1 2 1( ) 1 1i
j k k m k pk k rk

w

TF A T T T
T
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holds. 

Therefore, Eq. (B2) must hold.  

 

3. To derive pnT at the nth-echelon in order to avoid inventory offset. 

To inventory avoid offset, let  

1

1 1

( ) 1 1 0
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Table 1. Initial and final value of the three-echelon CLSC system 

Measures  Initial value Final value 

1j

ORATE
CONS

 0 11  

1j

AINV
CONS

 0 1 1 1 11 m p r
i

w

T T T
T

T
 

2j

ORATE
CONS

 0 1 21  

2j

AINV
CONS

 0 1 2 1 2 2 21 1m p r
i

w

T T T
T

T
 

3j

ORATE
CONS

 0 1 2 31  

3j

AINV
CONS

 0 1 2 3

1 2 3 3 3

1

1
m

p r

TTi
Tw T T

 

 
 
 
 
 
 
 
 
Table 2. pT  for no inventory offset 

       Measures  To avoid inv. off-set 

1j

AINV
CONS

 
1 1 1 11p m rT T T  

2j

AINV
CONS

 
2

1 2 2 2

1

1
1

m r
p

T T
T  

3j

AINV
CONS

 
3

1 2 3 3 3

1 2

1
1

m r
p

T T
T  

 
Table 3. Bullwhip and AINV variance amplification 



 Scenario α 0 0.1 0.2 0.3 0.4 0.5 0.6 

B
ul

lw
hi

p 

1 

Retailer 0.1875 0.1788 0.1705 0.1626 0.1552 0.1474 0.1414 

Manufacturer 0.1979 0.1762 0.1557 0.1362 0.1173 0.0967 0.0789 

Supplier 0.3047 0.2568 0.2104 0.1622 0.0987 NA* 0.1965 

2 

Retailer 0.1875 0.1788 0.1705 0.1626 0.1552 0.1474 0.1414 

Manufacturer 0.1979 0.1862 0.1728 0.1579 0.1412 0.1227 0.1014 

Supplier 0.3047 0.2865 0.2654 0.2389 0.207 0.1633 0.0315 

In
ve

nt
or

y 
V

ar
ia

nc
e 1 

Retailer 7.333 7.295 7.258 7.22 7.183 7.143 7.11 

Manufacturer 10.06 9.422 8.817 8.242 7.695 7.133 6.729 

Supplier 16.84 14.86 12.96 11.11 9.604 NA* 10.97 

2 

Retailer 7.333 7.295 7.258 7.22 7.183 7.143 7.11 

Manufacturer 10.06 9.53 9.004 8.48 7.955 7.43 6.911 

Supplier 16.84 15.88 14.77 13.49 12.01 10.24 13.32 

*: The special case that 3ORATE  and 3AINV  become infinite expression due to a 

zero occurring in the denominator of 
3pT .   

8; 8; 8; 16; 32; 4i m w a c rT T T T T T  

 

Table 4. The impact of the lead-times and their relationships on system dynamics   

Tm Var. Echelon 
Tr Tc 

2 4 8 16 32 2 4 8 16 32 

2 

B
W

 

Retailer 0.12 0.13 0.13 0.15 0.18 0.09 0.10 0.11 0.12 0.13 

Manufacturer 0.08 0.09 0.10 0.13 0.20 0.05 0.05 0.06 0.07 0.09 

Supplier 0.08 0.09 0.11 0.18 0.36 0.05 0.05 0.05 0.07 0.09 

V
ar

IN
V

 

Retailer 4.31 4.29 4.26 4.26 4.68 4.17 4.18 4.21 4.25 4.29 

Manufacturer 3.06 3.17 3.37 3.88 5.91 2.21 2.29 2.54 2.88 3.17 

Supplier 3.04 3.28 3.84 5.44 12.34 1.94 1.86 2.09 2.68 3.28 

Total (α=0.2) 10.07 11.05 11.82 14.04 23.67 8.51 8.52 9.05 10.06 11.05 



Total (α=0) 11.80 

4 

B
W

 
Retailer 0.14 0.14 0.15 0.17 0.20 0.10 0.11 0.12 0.13 0.14 

Manufacturer 0.10 0.11 0.12 0.16 0.24 0.06 0.06 0.07 0.09 0.11 

Supplier 0.11 0.12 0.15 0.23 0.47 0.07 0.06 0.07 0.09 0.12 

V
ar

IN
V

 

Retailer 5.53 5.53 5.51 5.51 5.91 5.15 5.24 5.35 5.46 5.53 

Manufacturer 4.80 4.99 5.34 6.11 8.66 3.27 3.44 3.88 4.50 4.99 

Supplier 5.43 5.87 6.85 9.38 18.85 3.26 3.19 3.67 4.48 5.87 

Total (α=0.2) 16.11 16.76 18.12 21.56 34.33 11.92 12.09 13.17 14.75 16.76 

Total (α=0) 18.51 

8 

B
W

 

Retailer 0.17 0.17 0.18 0.20 0.24 0.13 0.14 0.15 0.16 0.17 

Manufacturer 0.15 0.16 0.18 0.22 0.32 0.09 0.09 0.11 0.13 0.16 

Supplier 0.19 0.21 0.26 0.38 0.73 0.12 0.11 0.13 0.17 0.21 

V
ar

IN
V

 

Retailer 7.23 7.26 7.26 7.23 7.49 6.47 6.65 6.89 7.12 7.26 

Manufacturer 8.49 8.82 9.42 10.59 13.87 5.62 5.96 6.79 7.93 8.82 

Supplier 12.08 12.96 14.90 19.93 34.09 7.70 7.15 8.34 10.72 12.96 

Total (α=0.2) 28.30 29.57 32.18 38.55 56.74 20.13 20.10 22.41 26.23 29.57 

Total (α=0) 34.92 

16 

B
W

 

Retailer 0.24 0.24 0.25 0.28 0.32 0.19 0.20 0.22 0.23 0.24 

Manufacturer 0.29 0.31 0.34 0.41 0.58 0.19 0.20 0.23 0.27 0.31 

Supplier 0.51 0.56 0.66 0.92 1.64 0.35 0.35 0.39 0.48 0.56 

V
ar

IN
V

 

Retailer 9.21 9.28 9.32 9.27 9.27 7.89 8.18 8.60 9.03 9.28 

Manufacturer 16.18 16.72 17.69 19.32 23.48 11.00 11.67 13.14 15.15 16.72 

Supplier 32.73 34.68 38.87 48.11 72.83 20.55 21.27 24.36 29.82 34.68 

Total (α=0.2) 59.16 61.79 67.14 78.31 108.12 40.17 41.87 46.94 54.98 61.79 

Total (α=0) 81.79 

32 

B
W

 

Retailer 0.42 0.42 0.44 0.47 0.53 0.35 0.37 0.39 0.41 0.42 

Manufacturer 0.88 0.92 0.99 1.15 1.50 0.67 0.70 0.77 0.85 0.92 

Supplier 2.55 2.73 3.13 4.04 6.40 1.97 2.01 2.20 2.50 2.73 

V
ar

IN
V

 Retailer 11.14 11.26 11.38 11.37 11.16 9.14 9.53 10.12 10.78 11.26 

Manufacturer 33.40 34.25 35.78 38.31 43.27 24.50 25.72 28.24 31.61 34.25 



Supplier 112.80 117.70 128.00 149.20 199.10 81.85 84.74 93.14 106.50 117.70 

Total (α=0.2) 161.18 167.28 179.73 204.55 261.96 118.48 123.07 134.86 152.65 167.28 

Total (α=0) 263.50 

 





Figure 2. Block diagram of a three echelon CLSC
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Figure 3. The impact of return yield j on ORATE 
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Figure 4. The impact of return yield j on AINV 
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Figure 5. The impact of remanufacturing lead time rT  
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Figure 6. The impact of product consumption lead time cT  
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0.2; 16; 8; 8; either 4 or 32.a i m r cT T T T T .

Figure 7. The impact of lead times of rT  and cT


