109 research outputs found

    A brief review of surface meshing in medical images for biomedical computing and visualization

    Get PDF
    A visual representation of the interior of a body is important for clinical analysis and medical intervention. The technique, process and art of creating this visual representation are called medical imaging. The images produced from medical imaging need to be analyses by using Finite Element Method (FEM) especially for intraoperative registration and biomechanical modeling of the tissues. This medical model ranges from the smallest vascular to bones and the complex brain. In order to use FEM, the images need to go through surface meshing generator. Although numerous mesh generation methods have been described to date, there is a few which can deal with medical data input. In this paper, a briefing review of surface meshing that can deal in medical images is presented especially in biomedical computing and visualization. Some automatic mesh generators software used in medical imaging is also discussed such as ScanIP, MIMICS, TETGEN, NetGen, BioMesh3D,CUBITMesh and Gmsh

    Phenomenological model of diffuse global and regional atrophy using finite-element methods

    Get PDF
    The main goal of this work is the generation of ground-truth data for the validation of atrophy measurement techniques, commonly used in the study of neurodegenerative diseases such as dementia. Several techniques have been used to measure atrophy in cross-sectional and longitudinal studies, but it is extremely difficult to compare their performance since they have been applied to different patient populations. Furthermore, assessment of performance based on phantom measurements or simple scaled images overestimates these techniques' ability to capture the complexity of neurodegeneration of the human brain. We propose a method for atrophy simulation in structural magnetic resonance (MR) images based on finite-element methods. The method produces cohorts of brain images with known change that is physically and clinically plausible, providing data for objective evaluation of atrophy measurement techniques. Atrophy is simulated in different tissue compartments or in different neuroanatomical structures with a phenomenological model. This model of diffuse global and regional atrophy is based on volumetric measurements such as the brain or the hippocampus, from patients with known disease and guided by clinical knowledge of the relative pathological involvement of regions and tissues. The consequent biomechanical readjustment of structures is modelled using conventional physics-based techniques based on biomechanical tissue properties and simulating plausible tissue deformations with finite-element methods. A thermoelastic model of tissue deformation is employed, controlling the rate of progression of atrophy by means of a set of thermal coefficients, each one corresponding to a different type of tissue. Tissue characterization is performed by means of the meshing of a labelled brain atlas, creating a reference volumetric mesh that will be introduced to a finite-element solver to create the simulated deformations. Preliminary work on the simulation of acquisition artefa- - cts is also presented. Cross-sectional and

    Towards Individualized Transcranial Electric Stimulation Therapy through Computer Simulation

    Get PDF
    Transkranielle Elektrostimulation (tES) beschreibt eine Gruppe von Hirnstimulationstechniken, die einen schwachen elektrischen Strom ĂŒber zwei nicht-invasiv am Kopf angebrachten Elektroden applizieren. Handelt es sich dabei um einen Gleichstrom, spricht man von transkranieller Gleichstromstimulation, auch tDCS abgekĂŒrzt. Die allgemeine Zielstellung aller Hirnstimulationstechniken ist Hirnfunktion durch ein VerstĂ€rken oder DĂ€mpfen von HirnaktivitĂ€t zu beeinflussen. Unter den Stimulationstechniken wird die transkranielle Gleichstromstimulation als ein adjuvantes Werkzeug zur UnterstĂŒtzung der mikroskopischen Reorganisation des Gehirnes in Folge von Lernprozessen und besonders der Rehabilitationstherapie nach einem Schlaganfall untersucht. Aktuelle Herausforderungen dieser Forschung sind eine hohe VariabilitĂ€t im erreichten Stimulationseffekt zwischen den Probanden sowie ein unvollstĂ€ndiges VerstĂ€ndnis des Zusammenspiels der der Stimulation zugrundeliegenden Mechanismen. Als SchlĂŒsselkomponente fĂŒr das VerstĂ€ndnis der Stimulationsmechanismen wird das zwischen den Elektroden im Kopf des Probanden aufgebaute elektrische Feld erachtet. Einem grundlegenden Konzept folgend wird angenommen, dass Hirnareale, die einer grĂ¶ĂŸeren elektrischen FeldstĂ€rke ausgesetzt sind, ebenso einen höheren Stimulationseffekt erfahren. Damit kommt der Positionierung der Elektroden eine entscheidende Rolle fĂŒr die Stimulation zu. Allerdings verteilt sich das elektrische Feld wegen des heterogenen elektrischen LeitfĂ€higkeitsprofil des menschlichen Kopfes nicht uniform im Gehirn der Probanden. Außerdem ist das Verteilungsmuster auf Grund anatomischer Unterschiede zwischen den Probanden verschieden. Die triviale AbschĂ€tzung der Ausbreitung des elektrischen Feldes anhand der bloßen Position der Stimulationselektroden ist daher nicht ausreichend genau fĂŒr eine zielgerichtete Stimulation. Computerbasierte, biophysikalische Simulationen der transkraniellen Elektrostimulation ermöglichen die individuelle Approximation des Verteilungsmusters des elektrischen Feldes in Probanden basierend auf deren medizinischen Bildgebungsdaten. Sie werden daher zunehmend verwendet, um tDCS-Anwendungen zu planen und verifizieren, und stellen ein wesentliches Hilfswerkzeug auf dem Weg zu individualisierter Schlaganfall-Rehabilitationstherapie dar. Softwaresysteme, die den dahinterstehenden individualisierten Verarbeitungsprozess erleichtern und fĂŒr ein breites Feld an Forschern zugĂ€nglich machen, wurden in den vergangenen Jahren fĂŒr den Anwendungsfall in gesunden Erwachsenen entwickelt. Jedoch bleibt die Simulation von Patienten mit krankhaftem Hirngewebe und strukturzerstörenden LĂ€sionen eine nicht-triviale Aufgabe. Daher befasst sich das hier vorgestellte Projekt mit dem Aufbau und der praktischen Anwendung eines Arbeitsablaufes zur Simulation transkranieller Elektrostimulation. Dabei stand die Anforderung im Vordergrund medizinische Bildgebungsdaten insbesondere neurologischer Patienten mit krankhaft verĂ€ndertem Hirngewebe verarbeiten zu können. Der grundlegende Arbeitsablauf zur Simulation wurde zunĂ€chst fĂŒr gesunde Erwachsene entworfen und validiert. Dies umfasste die Zusammenstellung medizinischer Bildverarbeitungsalgorithmen zu einer umfangreichen Verarbeitungskette, um elektrisch relevante Strukturen in den Magnetresonanztomographiebildern des Kopfes und des Oberkörpers der Probanden zu identifizieren und zu extrahieren. Die identifizierten Strukturen mussten in Computermodelle ĂŒberfĂŒhrt werden und das zugrundeliegende, physikalische Problem der elektrischen Volumenleitung in biologischen Geweben mit Hilfe numerischer Simulation gelöst werden. Im Verlauf des normalen Alterns ist das Gehirn strukturellen VerĂ€nderungen unterworfen, unter denen ein Verlust des Hirnvolumens sowie die Ausbildung mikroskopischer VerĂ€nderungen seiner Nervenfaserstruktur die Bedeutendsten sind. In einem zweiten Schritt wurde der Arbeitsablauf daher erweitert, um diese PhĂ€nomene des normalen Alterns zu berĂŒcksichtigen. Die vordergrĂŒndige Herausforderung in diesem Teilprojekt war die biophysikalische Modellierung der verĂ€nderten Hirnmikrostruktur, da die resultierenden VerĂ€nderungen im LeitfĂ€higkeitsprofil des Gehirns bisher noch nicht in der Literatur quantifiziert wurden. Die Erweiterung des Simulationsablauf zeichnete sich vorrangig dadurch aus, dass mit unsicheren elektrischen LeitfĂ€higkeitswerten gearbeitet werden konnte. Damit war es möglich den Einfluss der ungenau bestimmbaren elektrischen LeitfĂ€higkeit der verschiedenen biologischen Strukturen des menschlichen Kopfes auf das elektrische Feld zu ermitteln. In einer Simulationsstudie, in der Bilddaten von 88 Probanden einflossen, wurde die Auswirkung der verĂ€nderten Hirnfaserstruktur auf das elektrische Feld dann systematisch untersucht. Es wurde festgestellt, dass sich diese GewebsverĂ€nderungen hochgradig lokal und im Allgemeinen gering auswirken. Schließlich wurden in einem dritten Schritt Simulationen fĂŒr Schlaganfallpatienten durchgefĂŒhrt. Ihre großen, strukturzerstörenden LĂ€sionen wurden dabei mit einem höheren Detailgrad als in bisherigen Arbeiten modelliert und physikalisch abermals mit unsicheren LeitfĂ€higkeiten gearbeitet, was zu unsicheren elektrischen FeldabschĂ€tzungen fĂŒhrte. Es wurden individuell berechnete elektrische Felddaten mit der Hirnaktivierung von 18 Patienten in Verbindung gesetzt, unter BerĂŒcksichtigung der inhĂ€renten Unsicherheit in der Bestimmung der elektrischen Felder. Das Ziel war zu ergrĂŒnden, ob die Hirnstimulation einen positiven Einfluss auf die HirnaktivitĂ€t der Patienten im Kontext von Rehabilitationstherapie ausĂŒben und so die Neuorganisierung des Gehirns nach einem Schlaganfall unterstĂŒtzen kann. WĂ€hrend ein schwacher Zusammenhang hergestellt werden konnte, sind weitere Untersuchungen nötig, um diese Frage abschließend zu klĂ€ren.:Kurzfassung Abstract Contents 1 Overview 2 Anatomical structures in magnetic resonance images 2 Anatomical structures in magnetic resonance images 2.1 Neuroanatomy 2.2 Magnetic resonance imaging 2.3 Segmentation of MR images 2.4 Image morphology 2.5 Summary 3 Magnetic resonance image processing pipeline 3.1 Introduction to human body modeling 3.2 Description of the processing pipeline 3.3 Intermediate and final outcomes in two subjects 3.4 Discussion, limitations & future work 3.5 Conclusion 4 Numerical simulation of transcranial electric stimulation 4.1 Electrostatic foundations 4.2 Discretization of electrostatic quantities 4.3 The numeric solution process 4.4 Spatial discretization by volume meshing 4.5 Summary 5 Simulation workflow 5.1 Overview of tES simulation pipelines 5.2 My implementation of a tES simulation workflow 5.3 Verification & application examples 5.4 Discussion & Conclusion 6 Transcranial direct current stimulation in the aging brain 6.1 Handling age-related brain changes in tES simulations 6.2 Procedure of the simulation study 6.3 Results of the uncertainty analysis 6.4 Findings, limitations and discussion 7 Transcranial direct current stimulation in stroke patients 7.1 Bridging the gap between simulated electric fields and brain activation in stroke patients 7.2 Methodology for relating simulated electric fields to functional MRI data 7.3 Evaluation of the simulation study and correlation analysis 7.4 Discussion & Conclusion 8 Outlooks for simulations of transcranial electric stimulation List of Figures List of Tables Glossary of Neuroscience Terms Glossary of Technical Terms BibliographyTranscranial electric current stimulation (tES) denotes a group of brain stimulation techniques that apply a weak electric current over two or more non-invasively, head-mounted electrodes. When employing a direct-current, this method is denoted transcranial direct current stimulation (tDCS). The general aim of all tES techniques is the modulation of brain function by an up- or downregulation of brain activity. Among these, transcranial direct current stimulation is investigated as an adjuvant tool to promote processes of the microscopic reorganization of the brain as a consequence of learning and, more specifically, rehabilitation therapy after a stroke. Current challenges of this research are a high variability in the achieved stimulation effects across subjects and an incomplete understanding of the interplay between its underlying mechanisms. A key component to understanding the stimulation mechanism is considered the electric field, which is exerted by the electrodes and distributes in the subjects' heads. A principle concept assumes that brain areas exposed to a higher electric field strength likewise experience a higher stimulation. This attributes the positioning of the electrodes a decisive role for the stimulation. However, the electric field distributes non-uniformly across subjects' brains due to the heterogeneous electrical conductivity profile of the human head. Moreover, the distribution pattern is variable between subjects due to their individual anatomy. A trivial estimation of the distribution of the electric field solely based on the position of the stimulating electrodes is, therefore, not precise enough for a well-targeted stimulation. Computer-based biophysical simulations of transcranial electric stimulation enable the individual approximation of the distribution pattern of the electric field in subjects based on their medical imaging data. They are, thus, increasingly employed for the planning and verification of tDCS applications and constitute an essential tool on the way to individualized stroke rehabilitation therapy. Software pipelines facilitating the underlying individualized processing for a wide range of researchers have been developed for use in healthy adults over the past years, but, to date, the simulation of patients with abnormal brain tissue and structure disrupting lesions remains a non-trivial task. Therefore, the presented project was dedicated to establishing and practically applying a tES simulation workflow. The processing of medical imaging data of neurological patients with abnormal brain tissue was a central requirement in this process. The basic simulation workflow was first designed and validated for the simulation of healthy adults. This comprised compiling medical image processing algorithms into a comprehensive workflow to identify and extract electrically relevant physiological structures of the human head and upper torso from magnetic resonance images. The identified structures had to be converted to computational models. The underlying physical problem of electric volume conduction in biological tissue was solved by means of numeric simulation. Over the course of normal aging, the brain is subjected to structural alterations, among which a loss of brain volume and the development of microscopic alterations of its fiber structure are the most relevant. In a second step, the workflow was, thus, extended to incorporate these phenomena of normal aging. The main challenge in this subproject was the biophysical modeling of the altered brain microstructure as the resulting alterations to the conductivity profile of the brain were so far not quantified in the literature. Therefore, the augmentation of the workflow most notably included the modeling of uncertain electrical properties. With this, the influence of the uncertain electrical conductivity of the biological structures of the human head on the electric field could be assessed. In a simulation study, including imaging data of 88 subjects, the influence of the altered brain fiber structure on the electric field was then systematically investigated. These tissue alterations were found to exhibit a highly localized and generally low impact. Finally, in a third step, tDCS simulations of stroke patients were conducted. Their large, structure-disrupting lesions were modeled in a more detailed manner than in previous stroke simulation studies, and they were physically, again, modeled by uncertain electrical conductivity resulting in uncertain electric field estimates. Individually simulated electric fields were related to the brain activation of 18 patients, considering the inherently uncertain electric field estimations. The goal was to clarify whether the stimulation exerts a positive influence on brain function in the context of rehabilitation therapy supporting brain reorganization following a stroke. While a weak correlation could be established, further investigation will be necessary to answer that research question.:Kurzfassung Abstract Contents 1 Overview 2 Anatomical structures in magnetic resonance images 2 Anatomical structures in magnetic resonance images 2.1 Neuroanatomy 2.2 Magnetic resonance imaging 2.3 Segmentation of MR images 2.4 Image morphology 2.5 Summary 3 Magnetic resonance image processing pipeline 3.1 Introduction to human body modeling 3.2 Description of the processing pipeline 3.3 Intermediate and final outcomes in two subjects 3.4 Discussion, limitations & future work 3.5 Conclusion 4 Numerical simulation of transcranial electric stimulation 4.1 Electrostatic foundations 4.2 Discretization of electrostatic quantities 4.3 The numeric solution process 4.4 Spatial discretization by volume meshing 4.5 Summary 5 Simulation workflow 5.1 Overview of tES simulation pipelines 5.2 My implementation of a tES simulation workflow 5.3 Verification & application examples 5.4 Discussion & Conclusion 6 Transcranial direct current stimulation in the aging brain 6.1 Handling age-related brain changes in tES simulations 6.2 Procedure of the simulation study 6.3 Results of the uncertainty analysis 6.4 Findings, limitations and discussion 7 Transcranial direct current stimulation in stroke patients 7.1 Bridging the gap between simulated electric fields and brain activation in stroke patients 7.2 Methodology for relating simulated electric fields to functional MRI data 7.3 Evaluation of the simulation study and correlation analysis 7.4 Discussion & Conclusion 8 Outlooks for simulations of transcranial electric stimulation List of Figures List of Tables Glossary of Neuroscience Terms Glossary of Technical Terms Bibliograph

    High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: manual segmentation to automatic atlas

    Get PDF
    Available online 4 May 2017The amygdala is composed of multiple nuclei with unique functions and connections in the limbic system and to the rest of the brain. However, standard in vivo neuroimaging tools to automatically delineate the amygdala into its multiple nuclei are still rare. By scanning postmortem specimens at high resolution (100–150 ”m) at 7 T field strength (n = 10), we were able to visualize and label nine amygdala nuclei (anterior amygdaloid, cortico-amygdaloid transition area; basal, lateral, accessory basal, central, cortical medial, paralaminar nuclei). We created an atlas from these labels using a recently developed atlas building algorithm based on Bayesian inference. This atlas, which will be released as part of FreeSurfer, can be used to automatically segment nine amygdala nuclei from a standard resolution structural MR image. We applied this atlas to two publicly available datasets (ADNI and ABIDE) with standard resolution T1 data, used individual volumetric data of the amygdala nuclei as the measure and found that our atlas i) discriminates between Alzheimer's disease participants and age-matched control participants with 84% accuracy (AUC=0.915), and ii) discriminates between individuals with autism and age-, sex- and IQ-matched neurotypically developed control participants with 59.5% accuracy (AUC=0.59). For both datasets, the new ex vivo atlas significantly outperformed (all p < .05) estimations of the whole amygdala derived from the segmentation in FreeSurfer 5.1 (ADNI: 75%, ABIDE: 54% accuracy), as well as classification based on whole amygdala volume (using the sum of all amygdala nuclei volumes; ADNI: 81%, ABIDE: 55% accuracy). This new atlas and the segmentation tools that utilize it will provide neuroimaging researchers with the ability to explore the function and connectivity of the human amygdala nuclei with unprecedented detail in healthy adults as well as those with neurodevelopmental and neurodegenerative disorders.This work was supported by the PHS grant DA023427 and NICHD/ NIH grant F32HD079169 (Z.M.S); Feodor Lynen Postdoctoral Fellowship of the Alexander von Humboldt Foundation (D.K.); R21(MH106796), R21 (AG046657) and K01AG28521 (J.C.A.), the National Cancer Institute (1K25CA181632-01) as well as the Genentech Foundation (M.R.); the European Union's Horizon 2020 Marie Sklodowska-Curie grant agreement No 654911 (project ”THALAMODEL”) and ERC Starting Grant agreement No 677697 (project “BUNGEE-TOOLS”); and the Spanish Ministry of Economy and Competitiveness (MINECO) reference TEC2014-51882-P (J.E.I.); and the NVIDIA hardware award (M.R. and J.E.I.). Further support for this research was provided in part by the National Institute for Biomedical Imaging and Bioengineering (P41EB015896, R01EB006758, R21EB018907, R01EB019956, R01- EB013565), the National Institute on Aging (5R01AG008122, R01AG016495), the National Institute of Diabetes and Digestive and Kidney Diseases (1-R21-DK-108277-01), the National Institute for Neurological Disorders and Stroke (R01NS0525851, R21NS072652, R01NS070963, R01NS083534, 5U01NS086625), the Massachusetts ADRC (P50AG005134) and was made possible by the resources provided by Shared Instrumentation Grants 1S10RR023401, 1S10RR019307, and 1S10RR023043. Additional support was provided by the NIH Blueprint for Neuroscience Research (5U01-MH093765), part of the multi-institutional Human Connectome Project. In addition, BF has a financial interest in CorticoMetrics, a company whose medical pursuits focus on brain imaging and measurement technologies. BF's interests were reviewed and are managed by Massachusetts General Hospital and Partners HealthCare in accordance with their conflict of interest policies. The collection and sharing of the ADNI MRI data used in the evaluation was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2- 0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Alzheimer's Association; Alzheimer's Drug Discovery Foundation; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www. fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California

    Optimisation of a Wearable Neuromodulator for Migraine Using Computational Methods

    Get PDF
    Migraine is the third most common neurological disorder and the sixth cause of disability. It may be characterized by a headache, nausea, vomiting, photo- phobia and phonophobia. Available pharmaceutical treatments of migraine are not completely effective and have troublesome side-effects. Thus, there is a need for alternative treatments such as neuromodulation. Neuromodulation may be delivered invasively; however, this exposes the patients to the associated risks. Transcutaneous electrical nerve stimulation is a non-invasive technique that is widely used to relieve pain. A significant number of migraine sufferers complaint the symptoms of pain originating in the frontal region of the head. Thus, mi- graine may be associated with the supraorbital nerve and supratrochlear nerve which passes below the frontal bone exits from the orbital rim and penetrates the corrugator and frontalis muscles. Transcutaneous frontal nerve stimulation has been applied on a large group of patients who have episodic migraine us- ing a device called Cefaly. This study produced mixed results (50% response rate). A post–marketing survey led to 53% satisfaction while the most limiting factor is reported to be paraesthesia and painful sensation. The possible causes of these inconclusive results may be associated with neuroanatomical variations, patient compliance and neurophysiological effects. The most plausible cause may be related to the neuroanatomical variations across different subjects. The neu- roanatomical variations may lead to excessively high current levels being required. Since this solution is patient–operated, these relatively high required levels are not applied. In addition, as the electrodes are positioned near pain–sensitive structures, pain may be induced even at low current levels, further limiting the efficacy of the solution. There has been no robust investigation identifying the underlying causes of ineffi- cacy. This is partly due to the physical limitations of studying the neuroanatomy of each subject and different settings of electrode arrangements. Computational models may enable researchers to estimate current stimulation thresholds in neu- romodulation therapy and investigate the effects of various parameters. Such computational models are composed of a volume conductor model and an ad- vanced Hodgkin–Huxley–type model of neural tissue referred to as a hybrid model. Once the human head anatomy, the human nervous system and available solu- tions for migraine are detailed, the computational model of the human head is generated. A highly detailed human head model based on magnetic resonance imaging (MRI) studies, microscopic structure of the skin(including sweat ducts, keratinocytes and lipid) and those of a simplified head model (which built from geometric shapes) are compared based on neural excitation to assess the usabil- ity of geometrically realistic(simplified) human head models in the subsequent studies to save computations cost. The induced electric field due to an electrode setting is simulated in the volume conductor model and the resulting electric potential values along the nerve are passed on to the neural model to simulate nerve’s response. It is shown that a simplified model may be used with a marginal error (≈2%) in the subsequent work when assessing the effect of neuroanatomical variations on the efficacy of the target solution and possible ensuing optimiza- tions. The first step is to identify if neuroanatomical variations had any effect on the required stimulus current levels using state of the art computational bio–models. Ten realistic human head models are developed by varying thirteen neuroanatom- ical features including human head size, thicknesses of the tissue layers and vari- ations in the courses of the nerve by considering their respective statistical distributions as reported in the literature. A novel algorithm is developed to account for the variations of the nerve in different individuals and mimic statistically relevant large population. In each case, the required stimulus current levels are simulated. The findings show that the combined neuroanatomical variations have a significant effect on the neural response for the electrode setting used in Cefaly device. Therefore, a potential improvement is to align the axis of electrodes with the target nerve, so that the electrical potential along the trajectory of the nerve changes polarity. This may lead to lower required stimulus current levels. Align- ing electrodes with the nerve, the required current may be reduced by at least 60%. This new orientation reduces current density near pain– sensitive struc- tures by diverting the current away from them, which may lead to a higher level of patient compliance, further improving the efficacy of the solution. Using an electrodes array arrangement, the required current levels is further reduced due to incorporating multiple electrodes array elements to maximise the variations of the electrical field in the simulation of the fibres in one phase. The findings of this thesis indicate that the highly detailed human head model can be simplified while minimally affecting the outcome. Additionally, it is shown that neuroanatomical variations have a significant impact on the stimulus current thresholds but it is not possible to conclude if these thresholds solely depend on a specific neuroanatomical variation. The relatively high required levels of the stimulus currents are beyond the current capabilities of existing device and pos- sible pain thresholds. Furthermore, the proposed new electrode arrangement has multiple benefits including the reduction of the stimulus current levels and diver- sion of current spread from possible pain–sensitive structures. This improvement, based on modelling, can potentially improve the clinical outcome of the neuro- modulator substantially if confirmed in the subsequent clinical studies

    Noninvasive optical estimation of CSF thickness for brain-atrophy monitoring

    Get PDF
    Dementia disorders are increasingly becoming sources of a broad range of problems, strongly interfering with normal daily tasks of a growing number of individuals. Such neurodegenerative diseases are often accompanied with progressive brain atrophy that, at late stages, leads to drastically reduced brain dimensions. At the moment, this structural involution can be followed with XCT or MRI measurements that share numerous disadvantages in terms of usability, invasiveness and costs. In this work, we aim to retrieve information concerning the brain atrophy stage and its evolution, proposing a novel approach based on non-invasive time-resolved Near Infra-Red (tr-NIR) measurements. For this purpose, we created a set of human-head atlases, in which we eroded the brain as it would happen in a clinical brain-atrophy progression. With these realistic meshes, we reproduced a longitudinal tr-NIR study exploiting a Monte-Carlo photon propagation algorithm to model the varying cerebral spinal fluid (CSF). The study of the time-resolved reflectance curve at late photon arrival times exhibited peculiar slope-changes upon CSF layer increase that were confirmed under several measurement conditions. The performance of the technique suggests good sensitivity to CSF variation, useful for a fast and non-invasive observation of the dementia progression.Comment: 32 pages, double spaced, 11 figure

    Effect of nerve variations on the stimulus current level in a wearable neuromodulator for migraine: A modeling study

    Get PDF
    Migraine is a socioeconomic burden, whose pharmaceutical and invasive treatment methods may have troublesome side-effects. A wearable neuromodulator targeting frontal nerve branches of trigeminal nerve may provide an effective solution to suppress or treat migraine. Such solutions have had limited efficacies. In this paper, using computational models, the relationship of this lack of efficacy to some neural variations is investigated. The results indicate that due to neuro-anatomic variations, different current levels may be required to achieve a sufficient level of neural stimulation. Thus, an optimized design should consider such variations across the patient group
    • 

    corecore