5,032 research outputs found

    Fully automatic worst-case execution time analysis for MATLAB/Simulink models

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”In today's technical world (e.g., in the automotive industry), more and more purely mechanical components get replaced by electro-mechanical ones. Thus the size and complexity of embedded systems steadily increases. To cope with this development, comfortable software engineering tools are being developed that allow a more functionality-oriented development of applications. The paper demonstrates how worst-case execution time (WCET) analysis is integrated into such a high-level application design and simulation tool MATLAB/Simulink-thus providing a higher-level interface to WCET analysis. The MATLAB/Simulink extensions compute and display worst-case timing data for all blocks of a MATLAB/Simulink simulation, which gives the developer of an application valuable feedback about the correct timing of the application being developed. The solution facilitates a fully-automated WCET analysis, i.e., in contrast to existing approaches the programmer does not have to provide path information

    The Beacon Calculus: A formal method for the flexible and concise modelling of biological systems.

    Get PDF
    Biological systems are made up of components that change their actions (and interactions) over time and coordinate with other components nearby. Together with a large state space, the complexity of this behaviour can make it difficult to create concise mathematical models that can be easily extended or modified. This paper introduces the Beacon Calculus, a process algebra designed to simplify the task of modelling interacting biological components. Its breadth is demonstrated by creating models of DNA replication dynamics, the gene expression dynamics in response to DNA methylation damage, and a multisite phosphorylation switch. The flexibility of these models is shown by adapting the DNA replication model to further include two topics of interest from the literature: cooperative origin firing and replication fork barriers. The Beacon Calculus is supported with the open-source simulator bcs (https://github.com/MBoemo/bcs.git) to allow users to develop and simulate their own models

    Ada (trademark) projects at NASA. Runtime environment issues and recommendations

    Get PDF
    Ada practitioners should use this document to discuss and establish common short term requirements for Ada runtime environments. The major current Ada runtime environment issues are identified through the analysis of some of the Ada efforts at NASA and other research centers. The runtime environment characteristics of major compilers are compared while alternate runtime implementations are reviewed. Modifications and extensions to the Ada Language Reference Manual to address some of these runtime issues are proposed. Three classes of projects focusing on the most critical runtime features of Ada are recommended, including a range of immediately feasible full scale Ada development projects. Also, a list of runtime features and procurement issues is proposed for consideration by the vendors, contractors and the government

    Design of an integrated airframe/propulsion control system architecture

    Get PDF
    The design of an integrated airframe/propulsion control system architecture is described. The design is based on a prevalidation methodology that uses both reliability and performance. A detailed account is given for the testing associated with a subset of the architecture and concludes with general observations of applying the methodology to the architecture

    Definition of avionics concepts for a heavy lift cargo vehicle. Volume 1: Executive summary

    Get PDF
    A cost effective, multiuser simulation, test, and demonstration facility to support the development of avionics systems for future space vehicles is examined. The technology needs and requirements of future Heavy Lift Cargo Vehicles (HLCVs) are analyzed and serve as the basis for sizing of the avionics facility, although the lab is not limited in use to support of HLCVs. Volume 1 provides a summary of the vehicle avionics trade studies, the avionics lab objectives, a summary of the lab's functional requirements and design, physical facility considerations, and cost estimates

    Space Station Freedom data management system growth and evolution report

    Get PDF
    The Information Sciences Division at the NASA Ames Research Center has completed a 6-month study of portions of the Space Station Freedom Data Management System (DMS). This study looked at the present capabilities and future growth potential of the DMS, and the results are documented in this report. Issues have been raised that were discussed with the appropriate Johnson Space Center (JSC) management and Work Package-2 contractor organizations. Areas requiring additional study have been identified and suggestions for long-term upgrades have been proposed. This activity has allowed the Ames personnel to develop a rapport with the JSC civil service and contractor teams that does permit an independent check and balance technique for the DMS

    Functional Validation of AADL Models via Model Transformation to SystemC with ATL

    No full text
    6 pagesInternational audienceIn this paper, we put into action an ATL model transformation in order to automatically generate SystemC models from AADL models. The AADL models represent electronic systems to be embedded into FPGAs. Our contribution allows for an early analytical estimation of energetic needs and a rapid SystemC simulation before implementation. The transformation has been tested to simulate an existing video image processing system embedded into a Xilinx Virtex5 FPGA
    • …
    corecore