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Abstract

Biological systems are made up of components that change their actions (and interactions)

over time and coordinate with other components nearby. Together with a large state space,

the complexity of this behaviour can make it difficult to create concise mathematical models

that can be easily extended or modified. This paper introduces the Beacon Calculus, a pro-

cess algebra designed to simplify the task of modelling interacting biological components. Its

breadth is demonstrated by creating models of DNA replication dynamics, the gene expres-

sion dynamics in response to DNA methylation damage, and a multisite phosphorylation

switch. The flexibility of these models is shown by adapting the DNA replication model to fur-

ther include two topics of interest from the literature: cooperative origin firing and replication

fork barriers. The Beacon Calculus is supported with the open-source simulator bcs (https://

github.com/MBoemo/bcs.git) to allow users to develop and simulate their own models.

Author summary

Simulating a model of a biological system can suggest ideas for future experiments and

help ensure that conclusions about a mechanism are consistent with data. The Beacon

Calculus is a new language that makes modelling simple by allowing users to simulate a

biological system in only a few lines of code. This simplicity is critical as it allows users the

freedom to come up with new ideas and rapidly test them. Models written in the Beacon

Calculus are also easy to modify and extend, allowing users to add new features to the

model or incorporate it into a larger biological system. We demonstrate the breadth of

applications in this paper by applying the Beacon Calculus to DNA replication and DNA

damage repair, both of which have implications for genome stability and cancer. We also

apply it to multisite phosphorylation, which is important for cellular signalling. To enable

users to create their own models, we created the open-source Beacon Calculus simulator

bcs (https://github.com/MBoemo/bcs.git) which is easy to install and is well-supported by

documentation and examples.
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This is a PLOS Computational Biology Methods paper.

Introduction

The ability to quickly create flexible and concise models of biological systems makes mathe-

matical modelling more practical, enables rapid hypothesis testing, and increases the likeli-

hood that modelling will be used to ensure that conclusions drawn from experiments are

consistent with data. Process calculi (or process algebras) are valuable tools for assessing the

performance, reliability, and behaviour of a system. Each component in a system is abstracted

as a process that can perform actions. Communication actions allow processes to interact with

one another to perform coordinated behaviours. The semantics of a process calculus sets rigor-

ous rules that govern which actions that processes can perform, enabling formal reasoning

about whether a system is ever capable of performing (or not performing) a certain sequence

of actions. While process calculi have been historically developed to formally reason about pro-

grams and algorithms, they are applicable to any concurrent system (such as biological

systems).

There have been many process calculi developed in recent decades: The calculus of commu-

nicating systems (CCS) [1] and communicating sequential processes (CSP) [2] are early and

foundational examples of process calculi where “reachability”, or whether a system can ever

perform a certain set of actions, can be determined using the language’s structural operational

semantics. Performance Evaluation Process Algebra (PEPA) assigned a rate to each action so

that the system could be mapped onto a continuous time Markov chain (CTMC) [3, 4]. Once

expressed as a CTMC, the system can be simulated by generating random paths through the

CTMC’s states. It also becomes possible to determine the probability that a behaviour occurs

within a specified amount of time, and the system’s asymptotic behaviour can be determined

using the CTMC’s stationary distribution [5]. Tools have been developed to map the PEPA

language onto a CTMC and perform this analysis, including the PEPA workbench [6], the

PEPA Eclipse plug-in [7], and a PEPA-to-PRISM compiler [8].

PEPA has been expanded in a number of ways: Bio-PEPA [9] is an extension for the simula-

tion and verification of biochemical networks and can be analysed via the accompanying

Eclipse plugin or the Bio-PEPA workbench [10]. PEPAk is an extension of PEPA that includes

process parameters and gated actions [11, 12]. PEPA has also been used as an inscription lan-

guage for stochastic Petri nets, providing a natural framework for modelling mobile systems

[13].

The π-calculus encodes models of concurrent processes using a notion of naming, whereby

processes can use channels to communicate channel names to dynamically change which pro-

cesses can communicate with one another [14]. The stochastic π-calculus is an extension of the

π-calculus that has been used for performance modelling in a number of biological applica-

tions [15]. SPiM is a stochastic π-calculus simulator for large numbers of interacting biological

molecules [16]. In addition, several studies have use the stochastic π-calculus to model regula-

tory networks in biology, for example [17–20].

This paper introduces the Beacon Calculus, which makes it simple and concise to encode

models of complex biological systems. It is a tool that builds upon the intuitive syntax of PEPA

and mobility in the π-calculus to produce models that are shorter, simpler, and more flexible

than they would be if they were encoded in either of these languages. The following section

gives a description of the language by way of examples (a formal description of the language is

given in S1 Text). To demonstrate breadth, results are presented for Beacon Calculus models

of three different biological systems from the literature, each of which highlights one of the
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language’s main features: a model of DNA replication dynamics that fits replication timing

data, a model of the gene expression response to DNA methylation damage in which the

model qualitatively matches single-cell tracking experiments, and a stochastic version of an

established deterministic multisite phosphorylation model from the literature.

Results

This section begins with an introduction to the Beacon Calculus by way of examples. Usage

is demonstrated by gradually building upon a simple model of a bimolecular reaction

A + B$ AB, leading to a complex yet concise model that uses many of the language’s features.

(An additional introductory example describing kinesin stepping down a microtubule is pro-

vided in S1 Text). In addition to the Beacon Calculus itself, a contribution of this paper is bcs,

an open-source Beacon Calculus simulator (https://github.com/MBoemo/bcs.git). To make it

clear how to translate theory to practice, all examples are given in bcs source code so that they

can be simulated and experimented with. A more formal and precise specification of the lan-

guage and its semantics is given in S1 Text. Following an outline of the language, the Beacon

Calculus is then applied to three diverse areas of biological research: DNA replication, DNA

damage response, and multisite phosphorylation.

Language overview

Models are written in the Beacon Calculus by representing components in a system as pro-

cesses that can perform actions. Processes can make an exclusive choice between multiple

actions, execute multiple actions in parallel, and perform actions in a sequence. These three

simple but powerful combinators are common amongst many process algebras and are used in

CCS, PEPA, the π-calculus, and others [21]. The Beacon Calculus is a stochastic process calcu-

lus where each action is specified as an ordered pair together with the rate at which it is per-

formed. The ordered pairs {a,ra} and {b,rb} specify rates for actions a and b,

respectively. The following three examples of process definitions show how each combinator is

used:

• P = {a,ra}.{b,rb} uses the unary prefix operator “{a,ra}._” to denote a sequence

of actions whereby action a is performed at rate ra and, once it has finished, action b is per-

formed at rate rb.

• P = {a,ra} + {b,rb} uses the choice operator “+” to denote the exclusive choice

between performing action a and rate ra and performing action b at rate rb. The probabil-

ity of choosing action a is ra
raþrb, and the probability of choosing action b is rb

raþrb.

• P = {a,ra} || {b,rb} uses the parallel operator “||” to denote that actions a and b
are performed in parallel at their respective rates.

Prefix binds stronger than choice, and choice binds stronger than parallel execution. For

example, in the following process

P ¼ fa;ragjjfb;rbg:fc;rcg þ fd;rdg:fe;reg

process P makes an exclusive choice between performing action b at rate rb and performing

action d at rate rd. If b is chosen, P then performs action c at rate rc while if action d is cho-

sen, P performs action e at rate re. All the while, P can perform action a at rate ra in parallel.

A process can have a finite sequence of parameters which, in practice, is often used to encode

the process’s location, a quantity, or a state (though there are many other uses as well). A pro-

cess P with parameters i1,i2,. . .,in is denoted using the notation P[i1, i2,. . .,in].
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Processes can change their parameters through recursion. This is often used when a process

moves (if the parameter models a location), modifies how much of something it has (if the

parameter models a quantity), or otherwise changes state in some way that should influence the

process’s later behaviour. For example, the following model describes a process that successively

increments i by one and doubles j:

1 r = 1; // define a rate

2
3 // process definition

4 A[i,j] = {changeParameters ,r}.A[i+1,j*2];

5
6 //give the initial state of the system

7 A[0,1];

In this model, process A has the two parameters i and j. The system begins with one copy

of A with values i=0 and j=1 (Line 7). Each time A performs the action changePara-
meters at rate r, the value of i is increased by one and the value of j is doubled.

If this model were run in bcs, A would continue changing the values of i and j until it hit

the maximum number of transitions allowed by the software. To create effective models, it is

often necessary to specify that a process should only perform an action if the parameter values

meet a certain condition. A process can change its behaviour according to its parameter values

by using a gate, which is a condition that must be satisfied for a process to perform an action.

Gated actions are written using the notation

½<condition>�� > fa;rg

where action a can only be performed if the condition is true. The Beacon Calculus simulator

supports the following operators in the expression for the gate condition:

• <=, less than or equal to,

• <, less than,

• >=, greater than or equal to,

• >, greater than,

• ==, equal to,

• !=, not equal to,

• &, logical and,

• |, logical or,

• ~, logical not.

For example, suppose A should continue while i<5 and j<10. This can be expressed as

follows:

1 r = 1; // define a rate

2
3 // process definition

4 A[i,j] = [i<5 & j<10] -> {changeParameters ,r}.A[i+1,j*2];

5
6 //give the initial state of the system

7 A[0,1];
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Once the condition specified in the gate no longer holds, A can no longer perform the

action changeParameters. When a process can no longer perform any actions, it is said

to be deadlocked and is removed from the system. If all processes in the system are deadlocked,

the simulation stops. In this case, the simulation will stop when A has parameter values i=4
and j=16.

In order for the Beacon Calculus to be useful for biological applications, a process must be

able to react in some way to the actions of other processes; they must be able to communicate

with one another via special actions. Handshakes are a common type of synchronous commu-

nication in many process algebras whereby two separate processes each perform an action at

the same time. In the Beacon Calculus, two processes handshake when the following two

actions are performed together:

• A handshake send is written {@c![i],rs}; it denotes a handshake that is offered on

channel c that transmits parameter i.

• A handshake receive is written {@c?[Ω](x),rr}; it denotes a handshake that can be

received on channel c so long as the parameter from the sending handshake is a member of

the set Ω. The particular parameter received is bound to the variable x and can be used sub-

sequently by the process.

A handshake always occurs between exactly two processes at a rate equal to the product of

the handshake receive rate and the handshake send rate. A handshake send and a handshake

receive must always be performed together. If a process is ready to send a handshake but there

is no other process that can receive the handshake, then the first process must wait until

another process is ready to perform the handshake receive. There is no crosstalk between

channels, meaning two processes cannot handshake by performing actions {@c|[i],rs}
and {@d?[Ω](x),rr} because the channel names do not match. The following example

shows how two reactants A and B undergo one-dimensional diffusion where they can react via

a handshake when they are in the same position:

1 r = 1; // define the rate for movement

2 rr = 2; // define a reaction rate

3
4 // process definitions

5 A[x] = {moveLeft , r}.A[x-1] + {moveRight , r}.A[x+1]

6 + {@react ![x], 1};

7 B[x] = {moveLeft , r}.B[x-1] + {moveRight , r}.B[x+1]

8 + {@react ?[x], rr}.AB[x];

9 AB[x] = {unbind , r}.(A[x+1] || B[x -1]);

10
11 // initial state of the system

12 A[5] || B[-5];

This model has two reactants, A and B, undergoing one-dimensional diffusion. A starts at

position i=5 and B starts at i=-5 (Line 12). Both processes make a choice between stepping

left at rate r or stepping right at rate r (Line 5,7). The rates are equal so the diffusion is unbi-

ased, but biased diffusion could be introduced by making the rate for one direction higher

than the other. When both A and B are at the same position, their parameters match and a

handshake is possible over channel react at rate rr�1=rr (Lines 6,8). The probability of the

handshake is rr
4�rþrr. If the handshake is chosen, A and B react to form AB (Line 8). Once formed,

AB unbinds to reform A and B at rate r (Line 9).

In the previous model, some of the code is redundant: processes A and B behave similarly,

yet the moveLeft and moveRight actions are typed out in each case. The code can be

made more concise by using parameters so that there is a reactant process R at position given

by parameter x with an identity encoded by parameter i. Process A becomes reactant R with
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i=0 and B becomes reactant R with i=1. This can be expressed as follows, which is equivalent

to the previous model:

1 r = 1; // define the rate for movement

2 rr = 2; // define a reaction rate

3
4 // process definitions

5 R[x,i] = {moveLeft , r}.R[x-1,i] + {moveRight , r}.R[x+1,i]

6 + [i==0] -> {@react ![x], 1}

7 + [i==1] -> {@react ?[x], rr}.AB[x];

8 AB[x] = {unbind , r}.(R[x+1,0] || R[x-1 ,1]);

9
10 // initial state of the system

11 R[5,0] || R[-5,1];

Here, the reactant R undergoes one-dimensional diffusion (Line 5). If it has parameter i=0
(Line 6) then it can react with a reactant that has parameter i=1 to form AB (Line 7).

While the handshake receive in the previous example could only receive a single value,

handshake receives can accept a set of possible values. A set is specified in the Beacon Calculus

simulator using the following operations. Examples are written for each to show the set (right)

encoded by each Beacon Calculus expression (left). Note that set subtraction binds more

strongly than set intersection, which in turn binds more strongly than set union.

• .., range,

• 0..3� {0, 1, 2, 3}

• -1..2� {−1, 0, 1, 2}

• U, set union,

• 0..3 U 6..7� {0, 1, 2, 3, 6, 7}

• -1 U 0..3� {−1, 0, 1, 2, 3}

• I, set intersection,

• 0..10 I 8..15� {8, 9, 10}

• 0..2 U 8..15 I 4..9� {0, 1, 2, 8, 9}

• \, set subtraction.

• 0..5\3� {0, 1, 2, 4, 5}

• 0..5\8� {0, 1, 2, 3, 4, 5}

If a handshake receive can accept multiple values, the receiving process can bind the value it

receives to a variable for later use. The process may, for instance, use this value in a rate expres-

sion or as a parameter. The binding variable can be used in the rate expression to indicate how

different values can be received at different rates; it can bias which value in the set is received.

For example, suppose it is more likely that two kinesin motors impede each other as they get

closer to one another. The two definitions for kinesin below, B1 and B2, are equivalent.

1 B1[x] = {@react ?[x-2..x+2](p), rr*p};

2 B2[x] = {@react ?[x-2], rr*(x-2)}

3 + {@react ?[x-1], rr*(x-1)}

4 + {@react ?[x], rr*x}

5 + {@react ?[x+1], rr*(x+1)}

6 + {@react ?[x+2], rr*(x+2)};
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While handshakes allow two processes to perform a coordinated action simultaneously,

beacons provide the means for asynchronous communication. In practice, beacons can be

used to communicate the state change of a process globally to all other processes in the system.

Using beacons, a process can efficiently indicate to a number of other processes that a task has

been accomplished (shown in the following example) or keep track of tasks that have been

done over time (shown in the DNA replication example to follow). A process can launch a bea-

con on a channel that transmits a parameter; the beacon stays active until it is explicitly killed

by a process. While active, the beacon can be received any number of times by any process

(including the process that launched it). Processes can also check whether a particular beacon

is active and only carry on if there is no active beacon with a given channel and parameter.

• A beacon launch is written {c![i], rs}; it denotes a beacon that is launched on channel

c that transmits parameter i.

• A beacon kill is written {c#[i], rs}; it denotes an action that kills a beacon on channel

c transmitting parameter i if one exists. If one does not exist, the action is still performed

but the set of active beacons does not change. Once a beacon is killed, it can no longer be

received unless it is re-launched by a process.

• A beacon receive is written {c?[Ω](x), rs}; it denotes an action that can only be per-

formed if there is an active beacon on channel c transmitting a parameter i in Ω. The

parameter received is bound to x and can be used subsequently in the process.

• A beacon check is written {~c?[Ω], rs}; it denotes an action that can only be performed

if there is no active beacon on channel c transmitting a parameter in Ω.

In the following example, a “clock” process C changes between two states, 1 and 2, at rate

rs. When the process changes state, it launches a beacon on channel state with the value

corresponding to the new state (Line 10). The unbinding rate of AB depends on the value of

the parameter transmitted by the beacon: process AB uses the range operator to receive a value

of either 1 or 2 on channel state and binds that value to s (Line 11). The value of s is used

in the rate of the beacon receive so that if C is in state 1, AB dissociates at rate r�1. Likewise,

AB dissociates at rate r�2 if C is in state 2. This allows C to autonomously change its state and,

in doing so, easily affect the behaviour of other processes.

1 r = 1; // define the rate for movement

2 rr = 2; // define a reaction rate

3 rs = 0.1; // define a clock rate

4 fast = 1000; //fast rate

5
6 // process definitions

7 R[x,i] = {moveLeft , r}.R[x-1,i] + {moveRight , r}.R[x+1,i]

8 + [i==0] -> {@react ![x], rr}

9 + [i==1] -> {@react ?[x], rr}.AB[x];

10 C[] = {state ![2], fast }.{ state #[2], rs}.{ state ![1], fast }.{ state #[1], rs}.C[];

11 AB[x] = {state ?[1..2](s), r*s}.(R[x+1,0] || R[x-1 ,1]);

12
13 // initial state of the system

14 R[5,0] || R[-5,1] || C[];

Thus far, these examples have used strings as handshake or beacon channel names which

transmitted a single parameter value. These names can also be comma-separated lists, where

each entry is an expression of parameters and/or global variables. This allows a process to

dynamically change the channel name, and therefore the other processes it can interact with.

Likewise, rather than transmitting a single value and receiving a set of values, handshakes and

beacons can transmit a comma-separated list of values and receive a comma-separated list of

The Beacon Calculus: A method for the flexible and concise modelling of biological systems

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007651 March 9, 2020 7 / 22

https://doi.org/10.1371/journal.pcbi.1007651


sets. To illustrate with a two-process model where the only possible action is a handshake:

1 // process definitions

2 P[x,y] = {@x+1,y/2![x,y+1], 1};

3 Q[i,j] = {@j*2+1,j*4?[i-1..i+1,j+8](a,b), 1};

4
5 // initial state of the system

6 P[2,8] || Q[1 ,1];

Processes P and Q will handshake over the channel name 3,4 because P transmits the val-

ues 2,9 such that 2 lies within the range i-1..i+1 (where i=1) and 9 is equal to j+8
(where j=1). Process Q will then bind the value 2 to variable a and the value 9 to variable b.

However, if the handshake send by process P were changed to {@x+2,y/2![x,y+1], 1}
or {@x+1![x,y+1], 1}, the handshake no longer takes place as the channel names do not

match. Likewise, {@x+1,y/2![x,y+1,x], 1} would also not result in a handshake as

the comma-separated list of parameters must be of the same length between the handshake

send and handshake receive.

The ability to use comma-separated lists of values and expressions for handshakes and bea-

cons is particularly important for models where multiple dimensions are considered. The fol-

lowing example returns to the bimolecular reaction A+ B$ AB:

1 r = 1; // define the rate for movement

2 rr = 2; // define a reaction rate

3 rs = 0.1; // define a clock rate

4 fast = 1000; //fast rate

5
6 // process definitions

7 R[x,y,m] = {moveLeft , r}.R[x-1,y,m] + {moveRight , r}.R[x+1,y,m]

8 + {moveUp , r}.R[x,y+1,m] + {moveDown , r}.R[x,y-1,m]

9 + {@modify ![0], r}.R[x,y,m+1]

10 + [m>0] -> {@unmodify ![0], r}.R[x,y,m-1]

11 + {@m?[x-2..x+2,y-2..y+2], rr}.AB[m]

12 + {@m![x,y], rr};

13 M[i] = [i==0] -> {@unmodify ?[0] ,1}.M[i] + [i==1] -> {@modify ?[0] ,1}.M[i];

14 C[] = {state ![2], fast }.{ state #[2], rs}.{ state ![1], fast }.{ state #[1], rs}.C[];

15 AB[m] = {state ?[1..2](x), r*x}.(R[x+1,y,m] || R[x-1,y,m]);

16
17 // initial state of the system

18 10*R[0,0,0] || 10*R[5,5,0] || 10*R[0,5,0] || 10*R[5,0,0] || C[] || M[0] || M[1];

In this model, a reactant R has x- and y-coordinates defined by its parameters x and y, as

well as a number of times it was modified m. There is a process M with parameter i that will

remove a modification from R if i=0 and add a modification to R if i=1 (Line 13). A reactant

R can diffuse (Lines 7-8), and it can be modified or unmodified via a handshake with M which

increments or decrements the value of its parameter m (Lines 9-10). The value of m is used as a

channel name to transmit the x- and y-values of R so that only reactants that are nearby and

have the same number of modifications can react to create AB (Lines 11-12).

The models in this subsection were necessarily arteficial to introduce the Beacon Calculus

by way of simple examples, but the following three subsections show the Beacon Calculus

applied to three different areas of biological research: DNA replication, DNA damage

response, and multisite phosphorylation ultrasensitivity. These diverse examples demonstrate

the breadth of applications for the Beacon Calculus and each example showcases a key feature.

In the DNA replication model, replication forks use beacons to efficiently coordinate which

parts of the chromosome have and have not been replicated. The DNA damage model uses

parameters to keep count of damage and repair proteins, showing how to model a population

of cells that grows and changes over time. The multisite phosphorylation model shows how
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receiving a set of possible values in a handshake receive can reduce the number of process defi-

nitions required in a model.

DNA replication

The mechanisms underlying DNA replication are detailed in a recent review [22] and are

briefly summarised here to provide the necessary background for the model. In budding yeast

(S. cerevisiae), DNA replication initiates during S-phase of the cell cycle from discrete sites on

the chromosome known as origins of replication. To maintain genomic integrity, the genome

must be fully replicated exactly once per cell cycle. The regulatory mechanism responsible for

maintaining this integrity uses an origin recognition complex that binds to the origin and

recruits additional proteins to form a pre-replicative complex (pre-RC) in late M-phase and

G1-phase when cyclin-dependent kinase (CDK) levels in the cell are low. By the the end of G1,

CDK levels have risen (and remain high for the remainder of the cell cycle) so that no new ori-

gins can assemble a pre-RC. Those origins that have assembled a pre-RC by S-phase are said to

be licensed. The chromosome is replicated when these licensed origins “fire” during S-phase to

create bidirectional replication forks that travel along the chromosome in opposite directions

from the origin. Forks terminate when they meet a fork travelling in the opposite direction or

reach the end of a chromosome.

A random subset (but typically not all) of a chromosome’s origins initiate replication in S-

phase and multiple forks can be active at the same time (Fig 1a). The probability with which

origins are licensed is not uniform; some origins are more likely to assemble a pre-RC than

others. In addition, of those origins that are licensed, some fire characteristically early in S-

phase while others tend to fire late. Therefore, DNA replication is a stochastic process: the set

of active origins and the origins responsible for replicating each position on the chromosome

will differ from cell-to-cell. Despite this heterogeneity, DNA replication is a remarkably reli-

able process where errors such as replication fork collapse are rare.

The stochastic nature of DNA replication makes it well-suited to modelling with the Beacon

Calculus: the difference in behaviour between simulations mirrors the heterogeneity between

replicating cells, and communication via beacons enables origins and forks to keep track of

which chromosomal positions have been replicated. DNA replication is simulated using the

Beacon Calculus model in Fig 1b. The model is comprised of three process definitions: right-

ward-moving forks FR, leftward-moving forks FL, and origins of replication ORI. The chro-

mosome is of length L, and each of these three processes have a single parameter i which is

taken to be a position on the chromosome between 1 and L. Origins have two additional

parameters: a licensing probability q and a firing rate fire. The processes keep track of

which chromosomal positions have already been replicated by using beacons: When a fork

replicates position i, it launches a beacon on channel chr with parameter i.

The behaviour of an ORI process is encoded on Line 6 of Fig 1b. An origin is licensed

or not licensed, which is modelled by the choice between the actions licensed and

nlicensed. If the origin is not licensed, the origin can perform no further actions; it is said

to be deadlocked. If the origin is licensed, it fires by performing a beacon check action on

channel chr at its position i to ensure that it only fires if that chromosomal position has not

yet been replicated by another fork. Once the origin fires, the ORI process continues on as two

parallel processes: a rightward-moving fork (FR, Line 8) and a leftward-moving fork (FL, Line

9). The forks first launch a beacon on channel chr with their position to indicate to all other

forks and origins that the position has been replicated. After launching the beacon, forks use a

gate to ensure they have not yet reached the end of the chromosome. If they have not, the forks

verify that the position ahead has not yet been replicated by performing a beacon check on
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that position. If there is no active beacon at that location, the position has not yet been repli-

cated and the fork moves forward by increasing (for FR) or decreasing (for FL) the position

parameter i. Like all processes in the Beacon Calculus, fork movement is stochastic, but forks

will tend to the same average velocity over long timescales. Replication has finished when all

processes have deadlocked. The initial processes in the system (Line 12) are all ORI processes

with positions corresponding to 34 known origin locations on S. cerevisiae chromosome II

[23]. As shown in Fig 1c, when the initial processes in the system are set to be origins with the

Fig 1. Replication timing from Beacon Calculus simulations. (a) Diagram of ongoing DNA replication in the same chromosome segment of three

different cells. Replication can begin from four discrete locations (origins of replication). Each cell successfully replicates its DNA despite having

different patterns of origin activation. (b) DNA replication model written in the Beacon Calculus. (c) Curves showing the mean time at which each

position on S. cerevisiae chromosome II was replicated, taken from the Beacon Calculus model where each origin has a licensing probability and

firing time from [24] (blue), the Beacon Calculus model where all origins are licensed and have the same firing rate of 0.015 (red), and experimental

data from [25] (grey). The Beacon Calculus results are averaged over 500 simulations and shaded regions show the standard error of the mean. The

system line has been truncated for clarity (see S1 Text).

https://doi.org/10.1371/journal.pcbi.1007651.g001

The Beacon Calculus: A method for the flexible and concise modelling of biological systems

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007651 March 9, 2020 10 / 22

https://doi.org/10.1371/journal.pcbi.1007651.g001
https://doi.org/10.1371/journal.pcbi.1007651


positions, licensing probabilities, and firing rates from the literature [24], simulations of the

Beacon Calculus model in Fig 1b give good agreement (R2 = 0.76) with established replication

timing profiles [25].

The simplicity of the DNA replication model in the Beacon Calculus makes it quick and

simple to test biological hypotheses. For example, the licensing probability, affinity for firing

factors, and the spatial distribution of origins across the chromosome will all have an effect on

the replication timing profile; the model can be easily modified to investigate the effect of the

spatial distribution of origins alone. The red curve in Fig 1c shows the timing profile for a

modified version of the model where all origins are licensed and the firing rate of all origins is

set to the same value. While the timing profile does not match the data as well (R2 = 0.49), the

main features of the replication profile are still captured. This suggests that the primary factor

influencing the replication timing profile is the spatial distribution of origins, and that an ori-

gin’s affinity for licensing and firing factors play a more minor role. As will be shown subse-

quently, making other minor modifications to the the Beacon Calculus model in Fig 1b allows

for modelling cooperative origin firing and replication fork progression through fork barriers.

More broadly, this modelling strategy is applicable to coordinated movement by biological

components within a reference frame.

Cellular response to DNA damage

To show how the Beacon Calculus can be used to model systems at the population level, this

section models the E. coli DNA methylation damage system studied in [26]. The effective iden-

tification and repair of DNA damage is essential to genome integrity. Unrepaired methylation

damage is particularly cytotoxic and mutagenic [27]. In E. coli, DNA methylation damage is

repaired by the Ada methyltransferase protein: Ada repairs the damage by transferring a

methyl group from O6-Methylguanine or O4-Methylthymidine to itself [28]. The resulting

methylated Ada (meAda) significantly upregulates transcription of the ada gene, creating a

positive feedback loop that increases Ada levels. This leads to a spike in Ada level following

DNA repair which is reduced back to basal levels over generations by successive cell divisions

(Fig 2a).

A cell keeps Ada levels low in order to perform a delicate balancing act: Excessive Ada levels

are thought to be cytotoxic [29], but the cell must still produce enough Ada to repair DNA

methylation damage in a timely fashion. This is accomplished by expressing the ada gene at

very low levels such that on average only one Ada protein is produced per generation [26].

Such a low rate of production means that due to stochasticity, DNA damage may go unre-

paired for one or more generations before an Ada protein is produced to repair it (Fig 2a).

A stochastic model can provide insight into this repair system by showing the Ada response

in rare but important situations where DNA methylation damage has gone unrepaired for sev-

eral generations (see, for example, the complementary model in [30]). By varying the DNA

damage rate, a model can also predict how the repair system responds to both high and low

rates of DNA methylation damage. The Beacon Calculus makes modelling this system straight-

forward by representing an E. coli cell as a process that can repair DNA damage and divide

into two daughter cells (Fig 2b). The cell process keeps track of DNA damage and Ada levels

using parameters and the value of these parameters can scale the rate at which the process per-

forms certain actions.

The process CELL is defined on Line 9 of the Beacon Calculus model in Fig 2b. CELL has

parameters that keep track of three quantities: the number of Ada molecules (A), the number

of methylated Ada molecules (mA), and the number of sites where DNA has been damaged

(d). The cell can generate an Ada molecule with action generate_Ada (Line 9). The
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Fig 2. DNA damage from Beacon Calculus simulations. (a) Cells undergo DNA damage (red) and may carry it forward for generations before

an Ada molecule (blue) is generated to repair it. Ada is methylated (gold) as it repairs DNA damage creating a positive feedback loop whereby

methylated Ada upregulates transcription of the ada gene. Ada levels are reduced through successive cell divisions. (b) DNA damage model

written in the Beacon Calculus. (c-d) Average total Ada and meAda per cell over time. Each trace corresponds to a simulation of a growing

population of cells for (c) low DNA damage (kdmg = 0.0001) and (d) high DNA damage (kdmg = 0.01). In each of panels (c-d), 25 simulations are

shown. Values for k_basal and k_division are from [26] while k_me is from [30]. Values for k_dmg and kMax were approximated based

on the results in [31].

https://doi.org/10.1371/journal.pcbi.1007651.g002
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parameter mA is used in the rate calculation of this action so that Ada is generated at a basal

rate if mA=0, but the rate scales to saturation with the value of mA to reflect the upgregulation

of the ada gene by meAda. If the cell has DNA damage and at least one Ada molecule to repair

it, CELL can fix the damage by first performing action generate_meAda and then convert-

ing Ada to meAda (Line 10). Damage repair requires interaction between Ada and a methyl-

ated base, so the rate of this action scales with the value of d and A. The cell’s DNA is damaged

at a static rate (Line 11) which increments parameter d.

The cell can divide at the mean rate of replication for E. coli cells (Line 12). When cell divi-

sion begins, the CELL process carries on as a new process DIV for a dividing cell. The DIV
process (Line 14) encodes how Ada, methylated Ada, and damage are segregated between two

daughter cells. In addition to the original three parameters of the dividing cell, this process has

four additional parameters: the amount of Ada and meAda that segregates to one daughter cell

(A1 and M1, respectively) and the amount of Ada and meAda that segregates to the second

daughter cell (A2 and M2). These new parameters each start at zero (Line 12). For each Ada

and methylated Ada molecule in the parent cell (Lines 14 and 16, respectively) a random

choice is made as to which daughter cell inherits the protein. When a choice has been made

for each molecule of Ada and meAda, the DIV process starts two new daughter CELL pro-

cesses (Lines 18-19).

The initial condition for each simulation is a single cell with no Ada and no DNA methyla-

tion damage (Line 22). As the cell divides, the system is comprised of an exponentially growing

population of the initial cell’s descendents. Computing the average Ada per cell for this expo-

nentially growing colony shows that the amount of Ada stays near the basal average amount of

1.25 molecules per cell when the rate of DNA damage is low (Fig 2c, highest spike at 5 Ada

molecules per cell). Some colonies exhibited sharp spikes in Ada levels caused by DNA damage

that had gone unrepaired for several generations. However, this happened infrequently and

the elevated Ada levels tended back towards zero as the Ada was diluted by successive cell divi-

sions. When the rate of DNA damage was high, the spikes in Ada level were higher in magni-

tude (Fig 2d, highest spike at 350 Ada molecules per cell). In addition, Ada levels stayed

elevated over time and did not tend back towards zero. These observations are qualitatively

consistent with the results from [26] of Ada levels in individual E. coli cells under both high

and low DNA damage conditions.

Communication between processes in the Beacon Calculus means that the model can be

easily extended to incorporate cell-to-cell interactions or cell-to-environment interactions

using handshakes and beacons. More generally, the Beacon Calculus makes it simple to model

a growing and changing population. While this example focused on how a population of cells

responds to DNA damage, a similar approach can be taken to model more diverse applications

such as the spread of disease through a population.

Multisite phosphorylation

Cellular signalling relies on post-translational modifications and, in many instances, substrates

are modified on multiple sites. This is thought to confer specific information processing func-

tions such as switch-like responses [31–33] (see [34] for a review). One example is the revers-

ible phosphorylation of membrane-anchored receptors or adaptors by extrinsic kinases and

phosphatases, which applies to a large class of receptors known as non-catalytic tyrosine-phos-

phorylated receptors (NTRs) of which the T-cell antigen receptor (TCR) is a member [35].

NTRs are known to have multiple phosphorylation sites (20 in the case of TCRs) and are phos-

phorylated and dephosphorylated by kinases and phosphatases that are also confined to the

plasma membrane. Given that these receptors often control cellular responses, their
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phosphorylation is tightly regulated and consequently, will be highly sensitive to the relative

concentration or activity of their regulating kinases and phosphatases. This leads to so-called

ultrasensitivity, where an input signal produces very little output signal as long as the input

remains below a certain threshold, but causes a high output signal once the threshold is

exceeded. This results in a sigmoidal input-output curve, typically with a very steep inflection.

Ultrasensitivity represents an important way in which biomolecular processes remain robust

to noise.

The Beacon Calculus model in Fig 3 is similar to, and inspired by, the model by Dushek

et al. who modelled the phosphorylation of TCRs when they were phosphorylated by kinase

Lck and dephosphorylated by phosphatase CD45 [36]. The model shown here corroborates

the authors’ findings: In order to achieve ultrasensitivity, an enzyme must dwell for a short

period after modifying the phosphorylation of a receptor.

Each TCR can be phosphorylated 20 times. When an enzyme enters the proximity of a

receptor, it can either bind to the receptor or leave (Fig 3a). The enzyme can phosphorylate the

receptor if it is a kinase or dephosphorylate the receptor if it is a phosphatase. Once the enzyme

phosphorylates or dephosphorylates the receptor, there is a period of inactivity (or a dwell)

before the enzyme can bind to the receptor again. The number of phosphorylation sites,

together with the action of two types of enzyme, leads to a high number of distinct species in

the system; this can make a differential equation model cumbersome to write down and inte-

grate. The Beacon Calculus makes modelling this system straightforward by representing

enzymes and receptors as processes, whereby receptor processes keep track of their phosphor-

ylation and the type of enzyme bound to them using parameters.

A model in the Beacon Calculus for TCR phosphorylation is shown in Fig 3b. Each

ENZYME process (Line 13) has parameter e, whereby the enzyme is a phosphatase if e=1 or

else it is a kinase if e=0. A receptor process R (Line 14) has parameter p which keeps track of

the number of times the receptor has been phosphorylated. An enzyme enters the proximity of

a receptor via a handshake on channel proximalEnzyme, whereby the enzyme transmits its

parameter e to the receptor to indicate whether it is a kinase or a phosphatase. After the hand-

shake, the enzyme deadlocks while the receptor carries on as a new process R_PROX (Line 15)

that encodes the behaviour of a receptor with an enzyme in close proximity. The reverse reac-

tion can occur if R_PROX performs action enzLeave (Line 15) where R_PROX then carries

on as R and ENZYME in parallel. If the enzyme is a kinase and the receptor is not fully phos-

phorylated, the enzyme can bind at a rate proportional to how many sites on the receptor are

unphosphorylated (Line 16). If the enzyme is a phosphatase, the enzyme binds at a rate pro-

portional to how many sites on the receptor are phosphorylated (Line 17). When R_PROX
binds an enzyme, it carries on as process R_BOUND. In this new process, the enzyme can either

unbind (Line 21), phosphorylate the receptor if the bound enzyme is a kinase (Line 22), or

dephosphorylate the receptor if the bound enzyme is a phosphatase (Line 23). If the enzyme

phosphorylates or dephosphorylates the receptor, the bound receptor R_BOUND carries on as

process R_CAT in which the enzyme is proximal to the receptor but briefly inert. The enzyme

can either leave (Line 18) or rebind once the inert period is over (Line 19-20).

The above model is similar to that of [36], and the results agree with the authors’ findings

(Fig 3c). When the enzyme dwells after modifying the phosphorylation of a receptor, the frac-

tion of receptors that are phosphorylated is ultrasensitive with respect to the relative concen-

tration of kinase and phosphatase; it displays switch-like behaviour. If the dwell is removed

and all other parameter values are kept constant, the ultrasensitivity is lost. While the Beacon

Calculus is able to reproduce an established model in only a few lines of code, the language

also makes it simple to expand upon the model. For example, the model in Fig 3b can be

extended to model groups of receptors on different areas of the membrane. A group of
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Fig 3. T-cell antigen receptor ultrasensitivity from Beacon Calculus simulations. (a) An enzyme enters the proximity of a receptor,

binds to the receptor, and phosphorylates the receptor if the enzyme is a kinase or dephosphorylates the receptor if the enzyme is a

phosphatase. (b) T-cell antigen receptor model written in the Beacon Calculus with parameters taken from [36]. (c) The fraction of

phosphorylated receptors is ultrasensitive to the relative concentration of kinase and phosphatase when the enzyme dwells after

modifying a receptor (green) but loses ultrasensitivity if the dwell is removed (blue). Points (shown with standard deviation) are the

average of 50 simulations taken after the system reaches a steady state.

https://doi.org/10.1371/journal.pcbi.1007651.g003
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receptors can use beacons to signal a state change in that group which can cause other groups

located elsewhere to respond.

Extensions to the DNA replication model

To demonstrate the flexibility of models written in the Beacon Calculus, the DNA replication

model from Fig 1 is extended to include two topics of interest from the field: cooperative origin

firing and the effect of a replication fork barrier.

It has been hypothesised that the probability of a replication origin firing increases if a

nearby origin fires [37]. This may be due to stoichiometrically limiting firing factors which are

more likely to interact with an origin if they have already interacted with another origin

nearby. The Beacon Calculus model in Fig 4a extends the DNA replication model so that when

an origin fires, it launches a beacon on channel coop transmitting its location to induce firing

of nearby origins. If an origin has not yet fired, it can fire at rate fire which is taken to be the

origin’s base affinity for firing factors (Line 7). The modified model includes an additional

pathway to firing where an origin can receive a beacon on channel coop that is transmitting a

parameter within 50 kb of the origin’s location (Line 8). The rate at which this beacon is

received is inversely proportional to the distance between the origin and the transmitted

parameter. If the beacon is received, the origin fires, launches its own beacon on channel

coop transmitting its position to other origins, and starts two replication forks from its posi-

tion. Therefore, origin firing is either due to the origin’s natural affinity for firing factors or

due to another origin firing nearby (if there is one).

When proteins bind tightly to DNA, they may act as a replication fork barrier (RFB) that

can stall replication forks moving in a particular direction. One role of RFBs is preventing col-

lisions between replication and transcription machinery [38]. This is incorporated into the

Beacon Calculus model as shown in 5b. First, the location of the fork barrier is specified on the

chromosome (Line 5) along with the rate of the stall (Line 6). If a rightward moving fork

makes it to this position, it stalls (Line 12) before it ultimately recovers and continues stepping.

Simulations of the models shown in Fig 4a and 4b are shown in Fig 4c. The replication fork

barrier causes a sharp change to the timing profile near the location of the replication fork bar-

rier at chromosomal coordinate i=200 while the cooperative firing behaviour makes the

whole chromosome replicate slightly earlier. However, the additional parameters added in

these two models were not fit to data; these two extensions are only intended to demonstrate

the ease with which Beacon Calculus models can be extended. With further parametrisation,

however, these extensions can be useful in making meaningful biological predictions about

DNA replication systems.

Discussion

Process calculi are a natural framework in which to model biological systems, but they are an

underutilised tool within systems biology; to the authors’ knowledge, process calculi have

never before been applied to DNA replication, DNA methylation damage, or receptor ultra-

sensitivity. The Beacon Calculus makes it quick and easy to create models of systems where

processes can change both their actions and interactions over time. Beacons make it simple for

a process to influence the actions of all other processes in the system. This paper has shown

how this paradigm is used to model both the complex behaviour of cells and macromolecular

structures in only a few lines of code.

A language that makes it simple and concise to encode biological models has advantages

beyond saving time: it changes the way the tool is used. Simplicity increases confidence that

the user has actually encoded what they think they have encoded and have not introduced
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Fig 4. Extensions to the DNA replication model. The DNA replication model in Fig 1b is modified to include either (a) cooperative origin

firing or (b) fork progression through a replication fork barrier. All changes to the model in Fig 1b are highlighted in blue. (c) Results from Fig

1b compared with the simulated models from (a) and (b) where each curve is the average over 500 simulations. Shading shows the standard

error of the mean. The system line has been truncated for clarity (see S1 Text). The stall rate sr was chosen to be on average ten times slower

than it takes a fork to move 1 kb.

https://doi.org/10.1371/journal.pcbi.1007651.g004
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bugs into the model. It also leads to models that are easy to change, modify, and extend. This

flexibility encourages experimentation where hypotheses can be rapidly tested, and any con-

clusions drawn from laboratory experiments investigated, to ensure that they are consistent

with the biological data.

The features in the Beacon Calculus are all geared toward models that are quick to encode

and easy to modify. As shown above, the DNA replication model in Fig 1b can be modified to

include features of interest from the literature such as cooperative origin firing and a replica-

tion fork barrier that stalls replication forks at a particular chromosomal coordinate. The flexi-

bility of the Beacon Calculus means that these changes are straightforward to incorporate and

come at the expense of only one or two lines of code.

While this paper has shown that the Beacon Calculus can easily produce flexible and con-

cise models of biological systems from the current literature, it is not appropriate for every

task. S1 Text compares the Beacon Calculus with the stochastic π-calculus [15, 16, 18], Kappa

[39–41], Bio-PEPA [9], BioNetGen [42, 43], PySB [44], ML-Rules [45, 46], and Simmune [47,

48]. For each of these tools, examples are described where they may be more appropriate than

the Beaocn Calculus. In general, rule-based languages may be the better choice for applications

where the complex, combinatorial assembly of biomolecules is important. This is particularly

important for applications involving large protein-protein interaction networks and modifica-

tion of species by ligands. In addition, while it is possible to create species within a compart-

ment with Beacon Calculus parameters, tools such as Bio-PEPA, ML-Rules, and Simmune

deal with this much more naturally. The Beacon Calculus finds its niche in applications where

system components must be able to easily coordinate with each other or with a global reference

frame (such as in the DNA replication model) or adapt behaviour in response to complex and

changing environmental conditions (such as a cell responding to DNA damage or multisite

phosphorylation).

There are many applications throughout biology where the Beacon Calculus can be an ideal

tool for modelling and simulation. This paper illustrated three examples from cell biology and

molecular biology, but modelling at the population level is possible as well. A stochastic ver-

sion of the SIR model for a population’s response to an infectious disease would be straightfor-

ward: each individual is a process, whether they are susceptible, infected, or recovered from an

infection is kept track of with a parameter, a response to nearby individuals could be modelled

using the ability of handshake receives to accept a range of parameters, and beacons could be

used to signal some state change within a city or area as the disease evolves. There are a wide

range of applications within biology, and while the Beacon Calculus was developed for biologi-

cal applications, there is nothing biology-specific in the language; it can be used for applica-

tions in engineering and other fields.

One of the biggest challenges in creating a simulation tool is ensuring the user is simulating

what they think they are simulating; if the user has made an error encoding the model, this can

lead to incorrect conclusions being drawn about the underlying biology. An advantage of pro-

cess algebras is that the language’s semantics, together with automated theorem proving tech-

niques, can be used to prove whether a certain combination of actions is ever possible in the

model. In the DNA replication model, for example, a user may wish to verify that replication

forks cannot step through each other in the model that they have encoded. If this action is pos-

sible, then there is an error in the model and the simulation results will not accurately reflect

the biological reality. A planned extension of the bcs tool is allowing the user to specify certain

actions or properties that should not be allowed in the model. The tool will check these proper-

ties before beginning the simulations to ensure that they are not possible, giving the user

greater confidence in the validity of the result.
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The Beacon Calculus is a language that makes it fast and easy to encode concise, flexible

models of biological systems. It is particularly well-suited for systems where interactions

between components change over time, where components need to change the state of many

other components, or where components need to respond to events happening within a cer-

tain region. Its breadth is demonstrated by creating models of DNA replication and DNA

damage repair from the literature, as well as creating a stochastic version of an established

deterministic multisite phosphorylation model. To support the language, a contribution of this

work is an open-source simulator called bcs which, together with the provided examples,

makes it easy for users to create and simulate their own models.

Materials and methods

An open-source Beacon Calculus simulator (bcs) is provided to simulate models written in the

Beacon Calculus (https://github.com/MBoemo/bcs.git). The software uses a modified Gillespie

algorithm to simulate paths through the model [49]. For each simulation, the software outputs

a table of actions sorted in order of ascending time. Each row specifies a time, the action per-

formed at that time, and the process that performed the action (as well as its parameter values

at the time when the action was performed). While there is basic plotting capability included

with the software, the output was designed to be easy to parse so that it can be reformatted into

plots that are appropriate for the biological system being modelled. For the results in this

paper, the Beacon Calculus output has been reformatted into plots that are common in the

examples’ respective fields. To make it clear how to use the bcs software to simulate biological

models, all of the examples in this paper are written in bcs source code. Benchmarks for the

run time of simulations are specified in S1 Text.

Supporting information

S1 Text. Supporting information. A formal definition of the Beacon Calculus language, com-

parisons with other methods, additional information about the DNA replication model, bcs

benchmarks, and additional examples.

(PDF)
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