924 research outputs found

    The Saharan heat low and moisture transport pathways in the central Sahara-multiaircraft observations and Africa-LAM evaluation

    Get PDF
    We present a characterization of the Saharan heat low (SHL) based on dropsonde observations made on 22 June 2011 by two simultaneously flying aircraft during the Fennec project. The observations are used to identify moisture transport pathways and to validate the UK Met Office limited area model for northern Africa (Africa-LAM). The observations capture the SHL, harmattan, and monsoon surge. The SHL has a northeast-southwest orientated elongated shape centered over northern Mauritania. The SHL core is associated with a 950 hPa temperature minimum (36.4°C) in the morning caused by the monsoon surge and a maximum (42.6°C) in the afternoon. The monsoon surge east of the SHL core splits into two transport pathways: (a) curving around the SHL core in the north, especially pronounced in a morning near-surface layer, and (b) northeastward transport within the ~2km deep monsoon surge (afternoon observations only). In the morning the model forecasts the harmattan, monsoon surge, and the SHL geographic location and northeast-southwest orientation well but the model represents the SHL flatter and more spatially extended and overestimates the convective boundary layer (CBL) by up to ~0.3 km. The simulated afternoon SHL location appears shifted westward by up to ~1°. The model overestimates the shallow afternoon monsoon surge CBL depth of ~1.8km by >2kmresulting in southwestward transport of vertically mixed moisture above ~2.5km contrasting observed northeastward-only transport at lower levels. This moisture distribution model error is likely to have consequences for simulations of Saharan thermodynamics and dust emissions caused by convection-driven cold pools

    07 Intern Assignment Biological Adaptations

    Get PDF
    WELCOME to WINDOWS on the INQUIRY CLASSROOM! You have landed on a piece of a National Science Foundation Project (DUE 1245730) directed by Professor Chris Bauer, Chemistry Department, University of New Hampshire. This is one part of a completely documented inquiry-based university science course called “Fire & Ice” which explores the nature of heat and temperature. There are multiple video perspectives and commentary from instructors and students, and documents of all course materials (agenda, instructions, student work). It’s too complicated to explain here. Take a look at the user orientation document at this link

    Advances in understanding mineral dust and boundary layer processes over the Sahara from Fennec aircraft observations

    Get PDF
    International audienceThe Fennec climate program aims to improve understanding of the Saharan climate system through a synergy of observations and modelling. We present a description of the Fennec airborne observations during 2011 and 2012 over the remote Sahara (Mauritania and Mali) and the advances in the understanding of mineral dust and boundary layer processes they have provided. Aircraft instrumentation aboard the UK FAAM BAe146 and French SAFIRE Falcon 20 is described, with specific focus on instrumentation specially developed and relevant to Saharan meteorology and dust. Flight locations, aims and associated meteorology are described. Examples and applications of aircraft measurements from the Fennec flights are presented, highlighting new scientific results delivered using a synergy of different instruments and aircraft. These include: (1) the first airborne measurement of dust particles sized up to 300 microns and associated dust fluxes in the Saharan atmospheric boundary layer (SABL), (2) dust uplift from the breakdown of the nocturnal low-level jet before becoming visible in SEVIRI satellite imagery, (3) vertical profiles of the unique vertical structure of turbulent fluxes in the SABL, (4) in-situ observations of processes in SABL clouds showing dust acting as CCN and IN at −15 °C, (5) dual-aircraft observations of the SABL dynamics, thermodynamics and composition in the Saharan heat low region (SHL), (6) airborne observations of a dust storm associated with a cold-pool (haboob) issued from deep convection over the Atlas, (7) the first airborne chemical composition measurements of dust in the SHL region with differing composition, sources (determined using Lagrangian backward trajectory calculations) and absorption properties between 2011 and 2012, (8) coincident ozone and dust surface area measurements suggest coarser particles provide a route for ozone depletion, (9) discrepancies between airborne coarse mode size distributions and AERONET sunphotometer retrievals under light dust loadings. These results provide insights into boundary layer and dust processes in the SHL region – a region of substantial global climatic importance

    Two-microphone spatial filtering provides speech reception benefits for cochlear implant users in difficult acoustic environments

    Get PDF
    This article introduces and provides an assessment of a spatial-filtering algorithm based on two closely-spaced (∼1 cm) microphones in a behind-the-ear shell. The evaluated spatial-filtering algorithm used fast (∼10 ms) temporal-spectral analysis to determine the location of incoming sounds and to enhance sounds arriving from straight ahead of the listener. Speech reception thresholds (SRTs) were measured for eight cochlear implant (CI) users using consonant and vowel materials under three processing conditions: An omni-directional response, a dipole-directional response, and the spatial-filtering algorithm. The background noise condition used three simultaneous time-reversed speech signals as interferers located at 90°, 180°, and 270°. Results indicated that the spatial-filtering algorithm can provide speech reception benefits of 5.8 to 10.7 dB SRT compared to an omni-directional response in a reverberant room with multiple noise sources. Given the observed SRT benefits, coupled with an efficient design, the proposed algorithm is promising as a CI noise-reduction solution.National Institutes of Health (U.S.) (Grant R01 DC 000117)National Institutes of Health (U.S.) (Grant R01 DC DC7152)National Institutes of Health (U.S.) (Grant 2R44DC010524-02

    Fennec dust forecast intercomparison over the Sahara in June 2011

    Get PDF
    International audienceIn the framework of the Fennec international programme , a field campaign was conducted in June 2011 over the western Sahara. It led to the first observational data set ever obtained that documents the dynamics, thermodynam-ics and composition of the Saharan atmospheric boundary layer (SABL) under the influence of the heat low. In support to the aircraft operation, four dust forecasts were run daily at low and high resolutions with convection-parameterizing and convection-permitting models, respectively. The unique airborne and ground-based data sets allowed the first ever intercomparison of dust forecasts over the western Sahara. At monthly scale, large aerosol optical depths (AODs) were forecast over the Sahara, a feature observed by satellite retrievals but with different magnitudes. The AOD intensity was correctly predicted by the high-resolution models, while it was underestimated by the low-resolution models. This was partly because of the generation of strong near-surface wind associated with thunderstorm-related density currents that could only be reproduced by models representing con-vection explicitly. Such models yield emissions mainly in the afternoon that dominate the total emission over the western fringes of the Adrar des Iforas and the Aïr Mountains in the high-resolution forecasts. Over the western Sahara, where the harmattan contributes up to 80 % of dust emission, all the models were successful in forecasting the deep well-mixed SABL. Some of them, however, missed the large near-surface dust concentration generated by density currents and low-level winds. This feature, observed repeatedly by the airborne lidar, was partly forecast by one high-resolution model only

    Cross Saharan transport of water vapour via recycled cold-pool outflows from moist convection

    Get PDF
    Very sparse data has previously limited observational studies of meteorological processes in the Sahara. We present an observed case of convectively-driven water vapour transport crossing the Sahara over 2.5 days in June 2012, from the Sahel in the south to the Atlas in the north. A daily cycle is observed, with deep convection in the evening generating moist cold pools that fed the next day’s convection; the convection then generated new cold pools, providing a vertical recycling of moisture. Trajectories driven by analyses were able to capture the direction of the transport but not its full extent, particularly at night when cold pools are most active, and analyses missed much of the water content of cold pools. The results highlight the importance of cold pools for moisture transport, dust and clouds, and demonstrate the need to include these processes in models in order to improve the representation of Saharan atmospher
    corecore