1,407 research outputs found

    AMTV headway sensor and safety design

    Get PDF
    A headway sensing system for an automated mixed traffic vehicle (AMTV) employing an array of optical proximity sensor elements is described, and its performance is presented in terms of object detection profiles. The problem of sensing in turns is explored experimentally and requirements for future turn sensors are discussed. A recommended headway sensor configuration, employing multiple source elements in the focal plane of one lens operating together with a similar detector unit, is described. Alternative concepts including laser radar, ultrasonic sensing, imaging techniques, and radar are compared to the present proximity sensor approach. Design concepts for an AMTV body which will minimize the probability of injury to pedestrians or passengers in the event of a collision are presented

    Advanced Air Bag Technology Assessment

    Get PDF
    As a result of the concern for the growing number of air-bag-induced injuries and fatalities, the administrators of the National Highway Traffic Safety Administration (NHTSA) and the National Aeronautics and Space Administration (NASA) agreed to a cooperative effort that "leverages NHTSA's expertise in motor vehicle safety restraint systems and biomechanics with NASAs position as one of the leaders in advanced technology development... to enable the state of air bag safety technology to advance at a faster pace..." They signed a NASA/NHTSA memorandum of understanding for NASA to "evaluate air bag to assess advanced air bag performance, establish the technological potential for improved technology (smart) air bag systems, and identify key expertise and technology within the agency (i.e., NASA) that can potentially contribute significantly to the improved effectiveness of air bags." NASA is committed to contributing to NHTSAs effort to: (1) understand and define critical parameters affecting air bag performance; (2) systematically assess air bag technology state of the art and its future potential; and (3) identify new concepts for air bag systems. The Jet Propulsion Laboratory (JPL) was selected by NASA to respond to the memorandum of understanding by conducting an advanced air bag technology assessment. JPL analyzed the nature of the need for occupant restraint, how air bags operate alone and with safety belts to provide restraint, and the potential hazards introduced by the technology. This analysis yielded a set of critical parameters for restraint systems. The researchers examined data on the performance of current air bag technology, and searched for and assessed how new technologies could reduce the hazards introduced by air bags while providing the restraint protection that is their primary purpose. The critical parameters which were derived are: (1) the crash severity; (2) the use of seat belts; (3) the physical characteristics of the occupants; (4) the proximity of the occupants to the airbag module; (5) the deployment time, which includes the time to sense the need for deployment, the inflator response parameters, the air bag response, and the reliability of the air bag. The requirements for an advanced air bag technology is discussed. These requirements includes that the system use information related to: (1) the crash severity; (2) the status of belt usage; (3) the occupant category; and (4) the proximity to the air bag to adjust air bag deployment. The parameters for the response of the air bag are: (1) deployment time; (2) inflator parameters; and (3) air bag response and reliability. The state of occupant protection advanced technology is reviewed. This review includes: the current safety restraint systems, and advanced technology characteristics. These characteristics are summarized in a table, which has information regarding the technology item, the potential, and an date of expected utilization. The use of technology and expertise at NASA centers is discussed. NASA expertise relating to sensors, computing, simulation, propellants, propulsion, inflatable systems, systems analysis and engineering is considered most useful. Specific NASA technology developments, which were included in the study are: (1) a capacitive detector; (2) stereoscopic vision system; (3) improved crash sensors; (4) the use of the acoustic signature of the crash to determine crash severity; and (5) the use of radar antenna for pre-crash sensing. Information relating to injury risk assessment is included, as is a summary of the areas of the technology which requires further development

    APPLICATIONS OF MACHINE LEARNING AND COMPUTER VISION FOR SMART INFRASTRUCTURE MANAGEMENT IN CIVIL ENGINEERING

    Get PDF
    Machine Learning and Computer Vision are the two technologies that have innovative applications in diverse fields, including engineering, medicines, agriculture, astronomy, sports, education etc. The idea of enabling machines to make human like decisions is not a recent one. It dates to the early 1900s when analogies were drawn out between neurons in a human brain and capability of a machine to function like humans. However, major advances in the specifics of this theory were not until 1950s when the first experiments were conducted to determine if machines can support artificial intelligence. As computation powers increased, in the form of parallel computing and GPU computing, the time required for training the algorithms decreased significantly. Machine Learning is now used in almost every day to day activities. This research demonstrates the use of machine learning and computer vision for smart infrastructure management. This research’s contribution includes two case studies – a) Occupancy detection using vibration sensors and machine learning and b) Traffic detection, tracking, classification and counting on Memorial Bridge in Portsmouth, NH using computer vision and machine learning. Each case study, includes controlled experiments with a verification data set. Both the studies yielded results that validated the approach of using machine learning and computer vision. Both case studies present a scenario where in machine learning is applied to a civil engineering challenge to create a more objective basis for decision-making. This work also includes a summary of the current state-of-the -practice of machine learning in Civil Engineering and the suggested steps to advance its application in civil engineering based on this research in order to use the technology more effectively

    Monitoring fatigue and drowsiness in motor vehicle occupants using electrocardiogram and heart rate - A systematic review

    Get PDF
    Introdução: A fadiga é um estado complexo que pode resultar em diminuição da vigilância, frequentemente acompanhada de sonolência. A fadiga durante a condução contribui significativamente para acidentes de trânsito em todo o mundo, destacando-se a necessidade de técnicas de monitorização eficazes. Existem várias tecnologias para aumentar a segurança do condutor e reduzir os riscos de acidentes, como sistemas de deteção de fadiga que podem alertar os condutores à medida que a sonolência se instala. Em particular, a análise dos padrões de frequência cardíaca pode oferecer informações valiosas sobre a condição fisiológica e o nível de vigilância do condutor, permitindo-lhe compreender os seus níveis de fadiga. Esta revisão tem como objetivo estabelecer o estado atual das estratégias de monitorização para ocupantes de veículos, com foco específico na avaliação da fadiga pela frequência cardíaca e variabilidade da frequência cardíaca. Métodos: Realizamos uma pesquisa sistemática da literatura nas bases de dados Web of Science, SCOPUS e Pubmed, utilizando os termos veículo, condutor, monitoração fisiológica, fadiga, sono, eletrocardiograma, frequência cardíaca e variabilidade da frequência cardíaca. Examinamos artigos publicados entre 1 de janeiro de 2018 e 31 de janeiro de 2023. Resultados: Um total de 371 artigos foram identificados, dos quais 71 foram incluídos neste estudo. Entre os artigos incluídos, 57 utilizam o eletrocardiograma (ECG) como sinal adquirido para medir a frequência cardíaca, sendo que a maioria das leituras de ECG foi obtida através de sensores de contacto (n=41), seguidos por sensores vestíveis não invasivos (n=11). Relativamente à validação, 23 artigos não mencionam qualquer tipo de validação, enquanto a maioria se baseia em avaliações subjetivas de fadiga relatadas pelos próprios participantes (n=27) e avaliações feitas por observadores com base em vídeos (n=11). Dos artigos incluídos, apenas 14 englobam um sistema de estimativa de fadiga e sonolência. Alguns relatam um desempenho satisfatórios, no entanto, o tamanho reduzido da amostra limita a abrangência de quaisquer conclusões. Conclusão: Esta revisão destaca o potencial da análise da frequência cardíaca e da instrumentação não invasiva para a monitorização contínua do estado do condutor e deteção de sonolência. Uma das principais questões é a falta de métodos suficientes de validação e estimativa para a fadiga, o que contribui para a insuficiência dos métodos na criação de sistemas de alarme proativos. Esta área apresenta grandes perspetivas, mas ainda está longe de ser implementada de forma fiável.Background: Fatigue is a complex state that can result in decreased alertness, often accompanied by drowsiness. Driving fatigue has become a significant contributor to traffic accidents globally, highlighting the need for effective monitoring techniques. Various technologies exist to enhance driver safety and minimize accident risks, such as fatigue detection systems that can alert drivers as drowsiness sets in. In particular, measuring heart rate patterns may offer valuable insights into the occupant's physiological condition and level of alertness, and may allow them to understand their fatigue levels. This review aims to establish the current state of the art of monitoring strategies for vehicle occupants, specifically focusing on fatigue assessed by heart rate and heart rate variability. Methods: We performed a systematic literature search in the databases of Web Of Science, SCOPUS and Pubmed, using the terms vehicle, driver, physiologic monitoring, fatigue, sleep, electrocardiogram, heart rate and heart rate variability. We examine articles published between 1st of january 2018 and 31st of January 2023. Results: A total of 371 papers were identified from which 71 articles were included in this study. Among the included papers, 57 utilized electrocardiogram (ECG) as the acquired signal for heart rate (HR) measures, with most ECG readings obtained through contact sensors (n=41), followed by non-intrusive wearable sensors (n=11). Regarding validation, 23 papers do not report validation, while the majority rely on subjective self-reported fatigue ratings (n=27) and video-based observer ratings(n=11). From the included papers, only 14 comprise a fatigue and drowsiness estimation system. Some report acceptable performances, but reduced sample size limits the reach of any conclusions. Conclusions: This review highlights the potential of HR analysis and non-intrusive instrumentation for continuous monitoring of driver's status and detecting sleepiness. One major issue is the lack of sufficient validation and estimation methods for fatigue, contributing to the insufficiency of methods in providing proactive alarm systems. This area shows great promise but is still far from being reliably implemented

    Vision-based Detection of Mobile Device Use While Driving

    Get PDF
    The aim of this study was to explore the feasibility of an automatic vision-based solution to detect drivers using mobile devices while operating their vehicles. The proposed system comprises of modules for vehicle license plate localisation, driver’s face detection and mobile phone interaction. The system were then implemented and systematically evaluated using suitable image datasets. The strengths and weaknesses of individual modules were analysed and further recommendations made to improve the overall system’s performance

    The 1981 current research on aviation weather (bibliography)

    Get PDF
    Current and ongoing research programs related to various areas of aviation meteorology are presented. Literature searches of major abstract publications, were conducted. Research project managers of various government agencies involved in aviation meteorology research provided a list of current research project titles and managers, supporting organizations, performing organizations, the principal investigators, and the objectives. These are tabulated under the headings of advanced meteorological instruments, forecasting, icing, lightning and atmospheric electricity; fog, visibility, and ceilings; low level wind shear, storm hazards/severe storms, turbulence, winds, and ozone and other meteorological parameters. This information was reviewed and assembled into a bibliography providing a current readily useable source of information in the area of aviation meteorology

    On driver behavior recognition for increased safety:A roadmap

    Get PDF
    Advanced Driver-Assistance Systems (ADASs) are used for increasing safety in the automotive domain, yet current ADASs notably operate without taking into account drivers’ states, e.g., whether she/he is emotionally apt to drive. In this paper, we first review the state-of-the-art of emotional and cognitive analysis for ADAS: we consider psychological models, the sensors needed for capturing physiological signals, and the typical algorithms used for human emotion classification. Our investigation highlights a lack of advanced Driver Monitoring Systems (DMSs) for ADASs, which could increase driving quality and security for both drivers and passengers. We then provide our view on a novel perception architecture for driver monitoring, built around the concept of Driver Complex State (DCS). DCS relies on multiple non-obtrusive sensors and Artificial Intelligence (AI) for uncovering the driver state and uses it to implement innovative Human–Machine Interface (HMI) functionalities. This concept will be implemented and validated in the recently EU-funded NextPerception project, which is briefly introduced

    Data collection, analysis methods and equipment for naturalistic studies and requirements for the different application areas. PROLOGUE Deliverable D2.1

    Get PDF
    Naturalistic driving observation is a relatively new method for studying road safety issues, a method by which one can objectively observe various driver- and accident related behaviour. Typically, participants get their own vehicles equipped with some sort of data logging device that can record various driving behaviours such as speed, braking, lane keeping/variations, acceleration, deceleration etc., as well as one or more video cameras. In this way normal drivers are observed in their normal driving context while driving their own vehicles. Optimally, this allows for observation of the driver, vehicle, road and traffic environments and interaction between these factors. The main objective of PROLOGUE is to demonstrate the usefulness, value, and feasibility of conducting naturalistic driving observation studies in a European context in order to investigate traffic safety of road users, as well as other traffic related issues such as eco-driving and traffic flow/traffic management. The current deliverable aims to develop an inventory of the current and appropriate data collection and data analysis equipment for naturalistic observation studies together with a theoretical analysis of the requirements for different application areas. The deliverable also discusses data quality issues and top level data base management requirements. Among the reviewed literature, maximal use is made of the extensive knowledge and experience that comes from the EU projects FESTA and EuroFOT, the 100car study and the SHRP2 preparatory safety
    corecore