60 research outputs found

    Reconstruction of Daily 30 m Data from HJ CCD, GF-1 WFV, Landsat, and MODIS Data for Crop Monitoring

    Get PDF
    With the recent launch of new satellites and the developments of spatiotemporal data fusion methods, we are entering an era of high spatiotemporal resolution remote-sensing analysis. This study proposed a method to reconstruct daily 30 m remote-sensing data for monitoring crop types and phenology in two study areas located in Xinjiang Province, China. First, the Spatial and Temporal Data Fusion Approach (STDFA) was used to reconstruct the time series high spatiotemporal resolution data from the Huanjing satellite charge coupled device (HJ CCD), Gaofen satellite no. 1 wide field-of-view camera (GF-1 WFV), Landsat, and Moderate Resolution Imaging Spectroradiometer (MODIS) data. Then, the reconstructed time series were applied to extract crop phenology using a Hybrid Piecewise Logistic Model (HPLM). In addition, the onset date of greenness increase (OGI) and greenness decrease (OGD) were also calculated using the simulated phenology. Finally, crop types were mapped using the phenology information. The results show that the reconstructed high spatiotemporal data had a high quality with a proportion of good observations (PGQ) higher than 0.95 and the HPLM approach can simulate time series Normalized Different Vegetation Index (NDVI) very well with R2 ranging from 0.635 to 0.952 in Luntai and 0.719 to 0.991 in Bole, respectively. The reconstructed high spatiotemporal data were able to extract crop phenology in single crop fields, which provided a very detailed pattern relative to that from time series MODIS data. Moreover, the crop types can be classified using the reconstructed time series high spatiotemporal data with overall accuracy equal to 0.91 in Luntai and 0.95 in Bole, which is 0.028 and 0.046 higher than those obtained by using multi-temporal Landsat NDVI data

    Review on Active and Passive Remote Sensing Techniques for Road Extraction

    Get PDF
    Digital maps of road networks are a vital part of digital cities and intelligent transportation. In this paper, we provide a comprehensive review on road extraction based on various remote sensing data sources, including high-resolution images, hyperspectral images, synthetic aperture radar images, and light detection and ranging. This review is divided into three parts. Part 1 provides an overview of the existing data acquisition techniques for road extraction, including data acquisition methods, typical sensors, application status, and prospects. Part 2 underlines the main road extraction methods based on four data sources. In this section, road extraction methods based on different data sources are described and analysed in detail. Part 3 presents the combined application of multisource data for road extraction. Evidently, different data acquisition techniques have unique advantages, and the combination of multiple sources can improve the accuracy of road extraction. The main aim of this review is to provide a comprehensive reference for research on existing road extraction technologies.Peer reviewe

    A systematic review of the use of Deep Learning in Satellite Imagery for Agriculture

    Full text link
    Agricultural research is essential for increasing food production to meet the requirements of an increasing population in the coming decades. Recently, satellite technology has been improving rapidly and deep learning has seen much success in generic computer vision tasks and many application areas which presents an important opportunity to improve analysis of agricultural land. Here we present a systematic review of 150 studies to find the current uses of deep learning on satellite imagery for agricultural research. Although we identify 5 categories of agricultural monitoring tasks, the majority of the research interest is in crop segmentation and yield prediction. We found that, when used, modern deep learning methods consistently outperformed traditional machine learning across most tasks; the only exception was that Long Short-Term Memory (LSTM) Recurrent Neural Networks did not consistently outperform Random Forests (RF) for yield prediction. The reviewed studies have largely adopted methodologies from generic computer vision, except for one major omission: benchmark datasets are not utilised to evaluate models across studies, making it difficult to compare results. Additionally, some studies have specifically utilised the extra spectral resolution available in satellite imagery, but other divergent properties of satellite images - such as the hugely different scales of spatial patterns - are not being taken advantage of in the reviewed studies.Comment: 25 pages, 2 figures and lots of large tables. Supplementary materials section included here in main pd

    Advances in Object and Activity Detection in Remote Sensing Imagery

    Get PDF
    The recent revolution in deep learning has enabled considerable development in the fields of object and activity detection. Visual object detection tries to find objects of target classes with precise localisation in an image and assign each object instance a corresponding class label. At the same time, activity recognition aims to determine the actions or activities of an agent or group of agents based on sensor or video observation data. It is a very important and challenging problem to detect, identify, track, and understand the behaviour of objects through images and videos taken by various cameras. Together, objects and their activity recognition in imaging data captured by remote sensing platforms is a highly dynamic and challenging research topic. During the last decade, there has been significant growth in the number of publications in the field of object and activity recognition. In particular, many researchers have proposed application domains to identify objects and their specific behaviours from air and spaceborne imagery. This Special Issue includes papers that explore novel and challenging topics for object and activity detection in remote sensing images and videos acquired by diverse platforms

    Estimation of the Conifer-Broadleaf Ratio in Mixed Forests Based on Time-Series Data

    Get PDF
    Most natural forests are mixed forests, a mixed broadleaf-conifer forest is essentially a heterogeneously mixed pixel in remote sensing images. Satellite missions rely on modeling to acquire regional or global vegetation parameter products. However, these retrieval models often assume homogeneous conditions at the pixel level, resulting in a decrease in the inversion accuracy, which is an issue for heterogeneous forests. Therefore, information on the canopy composition of a mixed forest is the basis for accurately retrieving vegetation parameters using remote sensing. Medium and high spatial resolution multispectral time-series data are important sources for canopy conifer-broadleaf ratio estimation because these data have a high frequency and wide coverage. This paper highlights a successful method for estimating the conifer-broadleaf ratio in a mixed forest with diverse tree species and complex canopy structures. Experiments were conducted in the Purple Mountain, Nanjing, Jiangsu Province of China, where we collected leaf area index (LAI) time-series and forest sample plot inventory data. Based on the Invertible Forest Reflectance Model (INFORM), we simulated the normalized difference vegetation index (NDVI) time-series of different conifer-broadleaf ratios. A time-series similarity analysis was performed to determine the typical separable conifer-broadleaf ratios. Fifteen Gaofen-1 (GF-1) satellite images of 2015 were acquired. The conifer-broadleaf ratio estimation was based on the GF-1 NDVI time-series and semi-supervised k-means cluster method, which yielded a high overall accuracy of 83.75%. This study demonstrates the feasibility of accurately estimating separable conifer-broadleaf ratios using field measurement data and GF-1 time series in mixed broadleaf-conifer forests

    Satellite Imagery to Map Topsoil Organic Carbon Content over Cultivated Areas: An Overview

    Get PDF
    There is a need to update soil maps and monitor soil organic carbon (SOC) in the upper horizons or plough layer for enabling decision support and land management, while complying with several policies, especially those favoring soil carbon storage. This review paper is dedicated to the satellite-based spectral approaches for SOC assessment that have been achieved from several satellite sensors, study scales and geographical contexts in the past decade. Most approaches relying on pure spectral models have been carried out since 2019 and have dealt with temperate croplands in Europe, China and North America at the scale of small regions, of some hundreds of km(2): dry combustion and wet oxidation were the analytical determination methods used for 50% and 35% of the satellite-derived SOC studies, for which measured topsoil SOC contents mainly referred to mineral soils, typically cambisols and luvisols and to a lesser extent, regosols, leptosols, stagnosols and chernozems, with annual cropping systems with a SOC value of similar to 15 g.kg(-1) and a range of 30 g.kg(-1) in median. Most satellite-derived SOC spectral prediction models used limited preprocessing and were based on bare soil pixel retrieval after Normalized Difference Vegetation Index (NDVI) thresholding. About one third of these models used partial least squares regression (PLSR), while another third used random forest (RF), and the remaining included machine learning methods such as support vector machine (SVM). We did not find any studies either on deep learning methods or on all-performance evaluations and uncertainty analysis of spatial model predictions. Nevertheless, the literature examined here identifies satellite-based spectral information, especially derived under bare soil conditions, as an interesting approach that deserves further investigations. Future research includes considering the simultaneous analysis of imagery acquired at several dates i.e., temporal mosaicking, testing the influence of possible disturbing factors and mitigating their effects fusing mixed models incorporating non-spectral ancillary information

    Remote Sensing of Snow Cover Using Spaceborne SAR: A Review

    Get PDF
    The importance of snow cover extent (SCE) has been proven to strongly link with various natural phenomenon and human activities; consequently, monitoring snow cover is one the most critical topics in studying and understanding the cryosphere. As snow cover can vary significantly within short time spans and often extends over vast areas, spaceborne remote sensing constitutes an efficient observation technique to track it continuously. However, as optical imagery is limited by cloud cover and polar darkness, synthetic aperture radar (SAR) attracted more attention for its ability to sense day-and-night under any cloud and weather condition. In addition to widely applied backscattering-based method, thanks to the advancements of spaceborne SAR sensors and image processing techniques, many new approaches based on interferometric SAR (InSAR) and polarimetric SAR (PolSAR) have been developed since the launch of ERS-1 in 1991 to monitor snow cover under both dry and wet snow conditions. Critical auxiliary data including DEM, land cover information, and local meteorological data have also been explored to aid the snow cover analysis. This review presents an overview of existing studies and discusses the advantages, constraints, and trajectories of the current developments

    Integrated Applications of Geo-Information in Environmental Monitoring

    Get PDF
    This book focuses on fundamental and applied research on geo-information technology, notably optical and radar remote sensing and algorithm improvements, and their applications in environmental monitoring. This Special Issue presents ten high-quality research papers covering up-to-date research in land cover change and desertification analyses, geo-disaster risk and damage evaluation, mining area restoration assessments, the improvement and development of algorithms, and coastal environmental monitoring and object targeting. The purpose of this Special Issue is to promote exchanges, communications and share the research outcomes of scientists worldwide and to bridge the gap between scientific research and its applications for advancing and improving society

    Artificial Neural Networks and Evolutionary Computation in Remote Sensing

    Get PDF
    Artificial neural networks (ANNs) and evolutionary computation methods have been successfully applied in remote sensing applications since they offer unique advantages for the analysis of remotely-sensed images. ANNs are effective in finding underlying relationships and structures within multidimensional datasets. Thanks to new sensors, we have images with more spectral bands at higher spatial resolutions, which clearly recall big data problems. For this purpose, evolutionary algorithms become the best solution for analysis. This book includes eleven high-quality papers, selected after a careful reviewing process, addressing current remote sensing problems. In the chapters of the book, superstructural optimization was suggested for the optimal design of feedforward neural networks, CNN networks were deployed for a nanosatellite payload to select images eligible for transmission to ground, a new weight feature value convolutional neural network (WFCNN) was applied for fine remote sensing image segmentation and extracting improved land-use information, mask regional-convolutional neural networks (Mask R-CNN) was employed for extracting valley fill faces, state-of-the-art convolutional neural network (CNN)-based object detection models were applied to automatically detect airplanes and ships in VHR satellite images, a coarse-to-fine detection strategy was employed to detect ships at different sizes, and a deep quadruplet network (DQN) was proposed for hyperspectral image classification

    Remote Sensing Applications in Monitoring of Protected Areas

    Get PDF
    Protected areas (PAs) have been established worldwide for achieving long-term goals in the conservation of nature with the associated ecosystem services and cultural values. Globally, 15% of the world’s terrestrial lands and inland waters, excluding Antarctica, are designated as PAs. About 4.12% of the global ocean and 10.2% of coastal and marine areas under national jurisdiction are set as marine protected areas (MPAs). Protected lands and waters serve as the fundamental building blocks of virtually all national and international conservation strategies, supported by governments and international institutions. Some of the PAs are the only places that contain undisturbed landscape, seascape and ecosystems on the planet Earth. With intensified impacts from climate and environmental change, PAs have become more important to serve as indicators of ecosystem status and functions. Earth’s remaining wilderness areas are becoming increasingly important buffers against changing conditions. The development of remote sensing platforms and sensors and the improvement in science and technology provide crucial support for the monitoring and management of PAs across the world. In this editorial paper, we reviewed research developments using state-of-the-art remote sensing technologies, discussed the challenges of remote sensing applications in the inventory, monitoring, management and governance of PAs and summarized the highlights of the articles published in this Special Issue
    corecore