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2.3. Ground Survey Data

The main land-use types in the study area during winter include winter wheat, buildings, roads,
woodland, water bodies, agricultural buildings, unplanted farmland, and other. In the GF-2 imagery,
buildings, roads, water bodies, agricultural buildings, unplanted farmland, and other all have obvious
color and texture features that can be easily distinguished visually. However, winter wheat and
woodland (especially some evergreen trees) are more similar in color and texture. To address this, we
conducted ground investigations throughout the study area from December 2017 to January 2019,
obtaining 119 samples (83 winter wheat and 36 woodland) for which the coordinates, type, and other
information were recorded, along with photos (Figure 2).

Figure 2. Distribution of ground sampling points used to distinguish winter wheat from woodland
within the study area.

2.4. Labeled Image Dataset

We selected 317 non-overlapping 960×720-pixel sub-regions within the fused image (Section 2.2),
then labeled each manually. After labeling was completed, each sub-region corresponded to a label
file, forming an image–label pair (Figure 3). These files were single-band files in which the number of
pixel rows and columns was consistent with the corresponding image. Each labeled pixel was given a
category number: winter wheat (1), buildings (2), roads (3), water bodies (4), agricultural buildings (5),
unplanted farmland (6), woodland (7), and other (8).
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Figure 3. Example of image–label pair: (a) original Gaofen-2 image and (b) labeled image by pixel.

3. Method

Our method consisted of three steps. First, the improved RefineNet generated the initial
segmentation and outputted a category probability vector for each pixel (Section 3.1). Second, these
initial segmentations were statistically analyzed using manual labels as a reference to determine the
confidence threshold (Section 3.2). Third, all pixels below the confidence threshold were post-processed
to generate their final category label (Section 3.3).

3.1. Initial Segmentation by CNN

In the common CNN structure, the feature extractor comprises multiple overlapping convolutional
layers, each of which was followed by pooling, batch normalization, and activation layers (Figure 4).
The convolution layer contained several convolution kernels, most of which were 3 × 3. The pooling
layer aggregated the features, which was beneficial for screening out features with good discrimination.
The batch normalization layer was used to normalize the feature values. The activation layer adopted a
nonlinear function. According to Hornik [70], the use of an activation layer facilitates better expressions
of the correlation features between similar pixels and better optimization of features.

Figure 4. Basic structure of convolutional neural networks (CNNs) used for image segmentation.
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The feature vector generator is generally composed of deconvolution layers, which can generate
feature vectors of equal length for each pixel. These generated feature vectors are used as the inputs
for the classifier to determine the pixel category. Therefore, the deconvolution performance directly
determines the model performance. At present, most CNNs used for image segmentation have
similar feature extractor structures; they are mainly distinguished by their feature vector generators.
For example, FCN uses the interpolation method as a feature vector generator, while SegNet uses
the deconvolution kernel. More recent CNNs generate pixel-level feature vectors using trained
deconvolution kernels.

Unlike other CNNs, RefineNet [42] uses a new “multipath” structure to fuse fine low-level features
and rough high-level features, effectively improving the distinguishability of features and greatly
improving the accuracy of segmentation results. The RefineNet feature vector generator consists of
four levels. Each level uses the results of both the higher-level semantic feature deconvolution and the
feature extractor at the same level as the input. This multi-level feature fusion strategy improves the
distinguishability of features.

Considering the superior performance of the RefineNet model, we chose this as the initial
segmentation model in our study. Similar to other CNNs, RefineNet also employs the Softmax model
as a classifier.

We used a modified Softmax model as a classifier. The modified SoftMax model also takes a
pixel-level feature vector as the input, and calculates the probability of classifying the pixel into each
category. The category corresponding to the maximum probability value was assigned as the category
of the pixel. The probabilities were organized into a category probability vector. The output included
the category probability vector and initial category for each pixel.

3.2. Statistics for Initial Classification Results

Statistical analysis showed that the most pixels which had been correctly classified were located
inside the winter wheat planting area, and the most pixels which had been incorrectly classified
were located at the edge of this area. Statistical analysis also showed that the difference between
the maximum probability value and the second-highest probability value was generally large in the
category probability vectors of pixels that had been correctly classified, but that it was generally small
or nearly equivalent in the category probability vectors of pixels that had been incorrectly classified.

We proposed the confidence level (CL) as an indicator for the credibility of the CNN segmentation
results. The CL of a category probability vector was calculated as:

CL = pi − pj, (2)

where p is a category probability vector, pi is the maximum value in p, and pj is the second-highest
value in p.

Our analysis showed that the classification result for a pixel could be considered credible if the CL
of this pixel was higher than the minimum confidence threshold (minCL); otherwise, it was considered
non-credible. Those pixels with CL values lower than minCL required post-processing. In our study,
based on the statistical analysis of the training results, 0.21 was selected as minCL.

3.3. Low-Confidence Pixel Post-Processing

3.3.1. Feature Selection

Based on the prior knowledge that the inner pixels and edge pixels in winter wheat planting areas
have very similar colors and textures, and the near-infrared (NIR) band is sensitive to crops, we created
a feature vector for each pixel using the red, blue, green, and near-infrared bands along with NDVI,
uniformity (UNI), contrast (CON), entropy (ENT), and inverse difference (INV). NDVI was calculated
following Wang et al. [10],
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NDVI =
NIR−Red
NIR + Red

, (3)

UNI, CON, ENT, and INV were extracted using the methods proposed by Yang and Yang, based
on GLCM [23],

UNI =
∑q

i=1

∑q

j=1
(g(i, j))2, (4)

CON =
∑q−1

n=0
n2

{∑q

i=1

∑q

j=1
g(i, j)

}
where

∣∣∣i− j
∣∣∣ = n, (5)

ENT = −
∑q

i=1

∑q

j=1
(g(i, j) log

{
g(i, j)

}
, (6)

INV =
∑q

i=1

∑q

j=1

g(i, j)

1 + (i− j)2 , (7)

In (4)–(7), q is the gray level quantization and g(i,j) is the element of GLCM.
The feature vector v of each pixel had nine elements, structured as:

v = (red, green, blue, NIR, NDVI, UNI, CON, ENT, INV) (8)

3.3.2. Vector Distance Calculation Method

We used the improved Euclidean distance to calculate the vector distance of the two feature
vectors. The standard Euclidean distance is defined as:

d(x, y) =

√∑b

i=1
(xi − yi)

2, (9)

where x and y are the feature vectors to be compared, xi and yi are the feature components, and b
is the length of the feature vector. Smaller distances between the two feature vectors correspond to
greater similarity. In the standard Euclidean distance, all elements are considered to have equal weight,
without considering the influence of the aggregation degree of elements on the distance.

Statistically, among the features of the samples of the same category, a higher concentration of the
value of a certain feature corresponds to stronger distinguishability of this feature and greater weight
that should be assigned to this feature. Similarly, greater dispersion in the value of a certain feature
corresponds to weaker distinguishability and smaller assigned weight of this feature.

Based on prior knowledge, we introduced the reciprocal of the feature value distance as the
weight factor to improve the Euclidean distance, thus better reflecting the influence of feature value
aggregation on the vector distance. This weight factor was calculated as:

wi =
1

|maxi −mini| , (10)

where i is the position number of the component in the feature vector, wi is the weight of the component,
maxi is the maximum value of the ith components of all feature vectors, and mini is the minimum value
of the ith components of all feature vectors. On this basis, the vector distance calculation formula was:

d(x, y) =

√∑n

i=1
wi(xi − yi)

2, (11)

where x and y are the feature vectors to be compared, xi and yi are the feature components, wi is the
weight of component i, and n is the component number of the feature vector.
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3.3.3. Vector Distance Threshold Determination

• Firstly, each complete crop planting area in the training image was set as a statistical unit.
The vector distance d between each pixel and other pixels was calculated individually, and the
maximum vector distance di of the unit was recorded, where i was the number of the statistical unit.

• Secondly, the vector distance threshold (vdt) was obtained by:

vdt = max
1≤i�n

di, (12)

where n is the number of statistical units.

3.3.4. Low-confidence Pixel Classification

We used the following steps to optimize the results of winter wheat planting areas outputted by
the improved RefineNet model:

• NDVI for each pixel was calculated;
• UNI, CON, ENT, and INV for each pixel was calculated;
• CL was calculated pixel by pixel;
• Winter wheat pixels with continuous position and CL >minCL were divided into a separate group;
• For each group, the adjacent pixels for which CL < minCL were processed individually. For a

certain adjacent pixel p, we calculated the vector distances between p and each pixel in the adjacent
group and then chose the minimum value as the minimum distance mind. If mind < vdt, p was
re-classified as a winter wheat pixel.

3.4. Experimental Setup

We conducted a comparative experiment on a graphics workstation with a 12-GB internal graphics
card and a Linux Ubuntu 16.04 operating system. TensorFlow 1.10 software was used to write the
statistical analysis and post-processing code in the Python language. Using a RefineNet model from
the GitHub platform, we modified the output of the SoftMax model used by RefineNet. We used this
for initial segmentation and used the output as basic data for statistical analysis.

We selected the SegNet and unmodified RefineNet models as standard CNN and CRF as the
post-process method for comparison with PP-CNN (Table 1). SegNet works like RefineNet, except it
uses only high-level semantic features to generate feature vectors for each pixel.

Table 1. Models used in the comparative experiment.

Name Description

PP-CNN The proposed method
SegNet Classifier using only high-level semantic features

SegNet-CRF SegNet was used as the initial segmentation model, CRF was used as the
post-processing method

PP-SegNet As in PP-CNN, SegNet was used as the initial segmentation model
RefineNet Linear model was adopted for feature fusion

RefineNet-CRF Classic RefineNet was used as the initial segmentation model, CRF was used as the
post-processing method

By comparing the results from SegNet and RefineNet, we hoped to verify that the strategy of
generating features with RefineNet was better than that of generating features with SegNet. By
comparing the results of SegNet-CRF, RefineNet, and RefineNet-CRF with PP-CNN, we hoped to show
that post-processing could effectively improve the accuracy of segmentation results. By comparing the
results of SegNet with PP-SegNet, we hoped to show that the proposed post-processing method had
strong adaptability.
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We applied data augmentation techniques onto the training dataset, including horizontal flip,
color adjustment, and vertical flip steps. The color adjustment factors used included brightness, hue,
saturation, and contrast. Each image in the training dataset was processed 10 times. All images created
by the data augmentation techniques were only used in training the CNNs.

We used cross-validation techniques in the comparative experiments. Each CNN model was
trained over four rounds; in each round, 87 images were selected as test images and the other images
were used as training images. Each image was used at least once as the test image (Table 2).

Table 2. Percent of every category sample used in experiments.

Category Percent of Total Samples

Winter wheat 39.00%
Agricultural buildings 0.10%

Woodland 9.01%
Buildings 19.01%

Roads 0.81%
Water bodies 0.90%

Unplanted farmland 24.12%
Other 7.05%

Table 3 shows the hyper-parameter setup we used to train our model. In the comparison
experiments, the hyper-parameters were also applied to the comparison model.

Table 3. The hyper-parameter setup.

Hyper-Parameter Value

mini-batch size 32
learning rate 0.0001
momentum 0.9

epochs 20000

4. Results

We randomly selected ten test images from the test data set and assessed their segmentation
results using the SegNet, SegNet-CRF, PP-SegNet, RefineNet, RefineNet-CRF, and PP-CNN models
(Figure 5).

The six methods had very similar performances within the winter wheat planting areas, with
virtually no misclassifications. However, differences were obvious at the edges of these areas. PP-CNN
and PP-SegNet misclassified only very small numbers of discrete pixels, while SegNet had the most
errors in a more continuous pattern, with errors being more common at corners than at edges. RefineNet
had significantly fewer errors than the SegNet model, with most located near corners and few in
continuous patterns.

Comparing SegNet-CRF and PP-SegNet, RefineNet, and PP-CNN, respectively, it can be seen that,
on the premise that the initial segmentation results are the same, the results obtained by post-processing
using the proposed method are better than those obtained by using CRF. Considering that CRF has
very good performance in processing camera images, this may be because the resolution of remote
sensing images is lower than that of camera images, which reduces the performance of CRF. It shows
that the appropriate post-processing method should be selected according to the image characteristics.

Whether using CRF or the method proposed in this paper, the accuracy of the results after
post-processing is improved, which also shows the importance of post-processing methods when CNN
is applied to image segmentation.
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Figure 5. Comparison of segmentation results for GF-2 satellite imagery for six test images: (a)
original image; (b) manually labeled image; (c) SegNet; (d) SegNet-CRF (conditional random field); (e)
PP-SegNet; (f) RefineNet; (g) RefineNet-CRF; (h) PP-CNN.

We then produced a confusion matrix for the segmentation results for all four methods (Table 4),
where each column represents the classification result obtained from the segmentation results and each
row represents the actual category defined by manual classification. PP-CNN was clearly superior, with
classification errors accounting for only 5.6%, lower than the 13.7% for SegNet, 9.8% for SegNet-CRF,
6.2% for PP-SegNet, 7.2% for RefineNet, and 5.9% for RefineNet-CRF.

We used the accuracy, precision, recall, and Kappa coefficient to evaluate the performance of the
four models [45] (Table 5). The average accuracy of PP-CNN was 13.7% higher than SegNet, 7.2%
higher than RefineNet, and 6.2% higher than PP-SegNet.

Table 6 shows the average time required for each method to complete the testing of one image.
The proposed post-processing method requires an approximate increase of 2% in time and improves
the accuracy by 7.2%. The time consumed by CRF is higher than that consumed by the proposed
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method because the CRF must calculate the distances between all pixel–pixel pairs for a single image,
while the proposed method must calculate the distances for only a small number of pixel–pixel pairs.

Table 4. Confusion matrix for winter wheat classification.

Approach Predicted Winter Wheat Non-Winter Wheat

SegNet Winter wheat 29.6% 9.4%
Non-winter wheat 9.9% 51.1%

SegNet-CRF Winter wheat 31.9% 7.1%
Non-winter wheat 8.3% 52.7%

PP-SegNet Winter wheat 33.1% 5.9%
Non-winter wheat 5.9% 55.1%

RefineNet
Winter wheat 32.5% 6.5%

Non-winter wheat 6.3% 54.7%

RefineNet-CRF
Winter wheat 35.3% 3.7%

Non-winter wheat 7.8% 53.2%

PP-CNN
Winter wheat 36.9% 2.1%

Non-winter wheat 3.5% 57.5%

Table 5. Statistical comparison of model performance.

Index SegNet SegNet-CRF PP-SegNet RefineNet RefineNet-CRF PP-CNN

Accuracy 80.7% 84.6% 88.2% 87.2% 88.5% 94.4%
Precision 79.7% 83.7% 87.6% 86.6% 87.7% 93.9%

Recall 79.8% 84.1% 87.6% 86.5% 88.9% 94.4%
Kappa 0.663 0.722 0.779 0.763 0.786 0.889

Table 6. Statistical comparison of model performance.

Index SegNet SegNet-CRF PP-SegNet RefineNet RefineNet-CRF PP-CNN

Time [ms] 295 375 301 297 361 302

*ms: millisecond

5. Discussion

5.1. Advantages of PP-CNN

When an image is segmented pixel-wise by a CNN, the accuracy of the results is determined
by the feature extractor, feature generator, and classifier. The first two use trained feature extraction
rules to process remote sensing images and obtain feature vectors for each pixel, while the third uses
trained classification rules to process the acquired feature vectors and determine the pixel category.
Therefore, both sets of rules aim to express the main common features of similar objects. In remote
sensing images, the number of inner pixels for most objects is much larger than the number of edge
pixels, such that the trained rules tend to reflect the inner features, making classification errors more
likely at the edge of the object.

In order to further illustrate the influence of pixel position on feature extraction, we defined the
pixel blocks used to calculate feature values as three types: internal (type A), in which the pixel blocks
used are all composed of the same kind of pixel; edge (type B), in which the pixel blocks used contain
~50% of other types of pixel; and corner (type C), in which the pixel blocks used contain 75% or more
of other categories of pixel (Figure 6). Considering that CNNs use the same convolution kernel for
feature extraction, it is clear that when the channel values of other categories of pixels in the calculated
pixel blocks are different from the category of interest, the feature values of pixels in types A, B, and C
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will be quite different. Especially for type C pixels, if the difference between the pixel value and the
neighboring pixel value is large, the calculated feature value may be closer to the feature value range
of the neighboring category. This makes it difficult to effectively solve the problem of higher error
occurrence in edge pixel segmentation simply by using a CNN.

Figure 6. Examples of the effect of pixel position on the extracted features; pixel boxes (red) centered
on edge areas contain 50% or more non-winter wheat pixels.

Statistical analysis showed that, although crop planting areas may have clear differences between
inner and edge pixels in high-level semantic features, these remain quite similar in low-level features
(such as color or texture). Considering the high accuracy of inner pixel classification in our extraction
results, PP-CNN clearly integrated the advantages of CNNs and statistical features, thus significantly
improving the accuracy of the extraction results.

5.2. Influence of Maximum Vector Distance Threshold on PP-CNN Segmentation Results

The PP-CNN method uses color, texture, and other features to compose feature vectors and
combines statistical analysis techniques to post-process the results of the CNN model, thereby providing
improved spatial distribution data for winter wheat. When performing post-processing, we first
calculated the vector distance between low-confidence pixels and nearby crop pixels with high
confidence. We then compared the obtained vector distance with the vector distance threshold obtained
by statistical analysis to determine whether low-confidence pixels could be classified as winter wheat.
We took the maximum vector distance calculated by all statistical units as the vector distance threshold.

To compare the impact of vector distance thresholds on model performance, we used the minimum
vector distance (method I), the average of all vector distances (method II), and the maximum vector
distance (method III) as the vector distance threshold, respectively, with the results shown in Table 7.

Table 7. Comparison of PP-CNN model performance for minimum (I), average (II), and maximum (III)
vector distances.

Index I II III

Precision 96.1% 94.8% 93.9%
Recall 90.1% 92.5% 94.4%
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Method III had the lowest precision but the highest recall rate, because using the maximum
distance as the threshold means that similar pixels of other categories are classified as winter what
pixels, thus reducing the accuracy. However, method I ensures maximum winter pixel extraction.
Therefore, when PP-CNN is applied in the real world, researchers should choose among the three
methods according to the extraction target and research goals.

5.3. Influence of Feature Strategy on Classification Results

We further compared SegNet and RefineNET by analyzing the impact of feature extraction
strategies on the classification results. We selected a group of semantic features from the last layer
of the SegNet and RefineNet models having the greatest difference. We divided these features into
three groups of pixels: winter wheat edge, winter wheat inner, and non-winter wheat (Figure 7). Here,
“inner” meant that when extracting the pixel features, only the winter wheat pixels included in the
pixel block participated in the feature calculation; “edge” meant that pixels mixed with other categories
participated. The feature results extracted by RefineNet were more concentrated by type and better
discriminated between type; in comparison, the SegNet results were far less coherent. The feature
fusion strategy adopted by the RefineNet model was clearly more conducive to improving the accuracy
of the results than SegNet’s strategy of only using high-level semantic features.

Figure 7. Statistical comparison of extracted features for (a) RefineNet and (b) SegNet.
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6. Conclusions

Using CNNs to extract crop spatial distribution information from satellite remote sensing imagery
has become increasingly common. However, the use of CNNs alone usually results in very rough
edge areas, with a corresponding negative influence on overall accuracy. We used prior knowledge
and statistical analysis to optimize winter wheat CNN extraction results, especially with regard to
edge areas.

We analyzed the root cause of increased errors in CNN edge pixel classification, then used the
category probability vector output to calculate the results’ credibility, dividing these into high-credibility
and low-credibility pixels for subsequent processing. We then optimized the accuracy of the latter’s
classification by analyzing the characteristics of planting area pixels using prior knowledge of
the segmentation results. This new extraction strategy effectively improved the accuracy of crop
extraction results.

Although the PP-CNN post-processing method proposed here was mainly established for crop
extraction, it could be applied to the extraction of water, forest, grassland, and other land-use types
with small internal pixel differences. However, for land-use types with larger internal differences, such
as residential land, other post-treatment feature organization methods must be developed. The main
disadvantage of our approach is the need for more manually classified images; future research should
test the use of semi-supervised classification to reduce this dependence.
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Abstract: Object detection from satellite images has been a challenging problem for many years. With
the development of effective deep learning algorithms and advancement in hardware systems, higher
accuracies have been achieved in the detection of various objects from very high-resolution (VHR)
satellite images. This article provides a comparative evaluation of the state-of-the-art convolutional
neural network (CNN)-based object detection models, which are Faster R-CNN, Single Shot Multi-box
Detector (SSD), and You Look Only Once-v3 (YOLO-v3), to cope with the limited number of labeled
data and to automatically detect airplanes in VHR satellite images. Data augmentation with rotation,
rescaling, and cropping was applied on the test images to artificially increase the number of training
data from satellite images. Moreover, a non-maximum suppression algorithm (NMS) was introduced
at the end of the SSD and YOLO-v3 flows to get rid of the multiple detection occurrences near each
detected object in the overlapping areas. The trained networks were applied to five independent
VHR test images that cover airports and their surroundings to evaluate their performance objectively.
Accuracy assessment results of the test regions proved that Faster R-CNN architecture provided the
highest accuracy according to the F1 scores, average precision (AP) metrics, and visual inspection
of the results. The YOLO-v3 ranked as second, with a slightly lower performance but providing a
balanced trade-off between accuracy and speed. The SSD provided the lowest detection performance,
but it was better in object localization. The results were also evaluated in terms of the object size and
detection accuracy manner, which proved that large- and medium-sized airplanes were detected with
higher accuracy.

Keywords: convolutional neural networks (CNNs); end-to-end detection; transfer learning; remote
sensing; single shot multi-box detector (SSD); You Look Only Once-v3 (YOLO-v3); Faster RCNN

1. Introduction

Object detection from satellite imagery has considerable importance in areas, such as defense and
military applications, urban studies, airport surveillance, vessel traffic monitoring, and transportation
infrastructure determination. Remote sensing images obtained from satellite sensors are much complex
than computer vision images since these images are obtained from high altitudes, including interference
from the atmosphere, viewpoint variation, background clutter, and illumination differences [1].
Moreover, satellite images cover larger areas (at least 10kmx10km for one image frame) and represent
the complex landscape of the Earth’s surface (different land categories) with two-dimensional images
with less spatial details compared to digital photographs obtained from cameras. As a result, the
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data size and areal coverage of satellite images are also bigger compared to natural images. In object
detection studies with satellite imagery, the visual interpretation approach that benefits from experts’
knowledge for the identification of different objects/targets is still widely used. The accuracy of this
approach is dependent on the level of expertise and the approach is time consuming due to the manual
process [2].

Several studies have been conducted on the automatic identification of different targets, such
as buildings, aircraft, ships, etc., to reduce human-induced errors and save time and effort [1,3,4].
However, the complexity of the background; differences in data acquisition geometry, topography,
and illumination conditions; and the diversity of objects make automatic detection challenging for
satellite images. The object detection task can be considered as a combination of two fundamental
tasks, which are the classification of the objects and determination of their location on the images.
Studies conducted so far have focused on improving these two tasks separately or together [1,5].

In the early studies, the majority of the studies were conducted with unsupervised methods using
different attributes. For example, the scale-invariant feature transform (SIFT) key points and the graph
theorem were used for building detection from panchromatic images [6]. Alternatively, a wavelet
transform was utilized in ship detection from synthetic aperture radar (SAR) images [7]. However,
such unsupervised methods generally provided efficient results for simple structure types, and the
results were successful for a limited variety of objects. Later studies focused on supervised learning
methods so that objects with different constructions could be identified with high performance from
more complex scenes [8,9]. The main reason behind the more successful results with supervised
learning is that the learning process during the training phase is performed with previously manually
labeled samples. Before the use of convolutional neural network (CNN) structures became widespread,
different supervised learning methods were utilized with handcrafted features. In previous research, a
spatial sparse coding bag-of-words (BOW) model was developed for aircraft recognition through the
SVM classifier and the results were better than the traditional BOW model [10]. Gabor filters with
SVM were used to detect aircraft, and achieved a 91% detection rate (DR) with a 7.5% false alarm rate
(FAR) [11]. A deformation model representing the relation of the roots and parts of the objects by
utilizing an extracted histogram of oriented gradient (HOG) features at different scales of images was
developed and trained in a discriminatory manner as a framework for object recognition using a mixed
model [12]. In another study, a probabilistic latent semantic analysis model (pLSA) and a K-Nearest
Neighbor (k-NN) classifier with bag-of-visual-words (BoVW) was used for landslide detection [13]. In
a more recent research, visually saliency and sparse coding methods were combined to efficiently and
simultaneously recognize the multi-layered targets from optical satellite images [14].

In summary, the location of objects on the image is generally determined by scanning the entire
image with a sliding window approach and a classifier, which may be selected from the abovementioned
methods, which does the recognition task. The classifiers trained with these methods have a low size
of parameters. Therefore, scanning the entire image with small strides allows an acceptable pace at
object detection.

In 2012, following the remarkable success of AlexNet’s [15] at the ImageNet Large-Scale Visual
Recognition Challenge [16], the CNN architectures, which are also known as deep learning methods,
have begun to be used in different image processing problems. After the evolution of AlexNet, which
can be accepted as a milestone for deep learning, deeper architectures, such as visual geometry
group (VGG) [17], GoogleNet [18], which came up with inception modules, and residual network
(ResNet) [19], were developed and the error rate in the competition decreased gradually. Along with
these advancements, researchers started to use CNN structures in object classification with satellite
images [20–24]. Although the remote sensing images have less spatial details and complex background,
these methods can achieve highly accurate results near the visual interpretation performance.

In the challenges for object detection from natural images, competitors have tended to use
state-of-the-art deep learning architectures, such as PASCAL VOC (Pattern Analysis, Statistical
Modelling and Computational Learning Visual Object Classes) and COCO (Common Objects in
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Context) as a base network with a large amount of labeled data to beat the previous results. They
applied different approaches, fine-tuning the base networks and performing some modifications;
not only for increasing the accuracy of the classification part of the object detection task but also for
improving the localization performance.

For the classification stage of object detection, the success of deep architectures is promising, but
as they include a large number of parameters, direct use of the sliding window method, which has a
high computational cost, is being abandoned. New architectures, such as the R-CNN (regions with
CNN features), SPP-NET (Spatial Pyramid Pooling), Fast R-CNN, and Faster R-CNN, have emerged to
overcome the computational cost disadvantage of the sliding window approach. These architectures
use CNN networks as a base network for classification and solve the problem of localization by creating
object candidates from the image [25–28]. With these structures, high performance and high speed
could be achieved in real-time applications, such as object detection from a video stream. Additionally,
object proposal approaches have become more widely used in remote sensing applications, with
improvements in speed and performance [29–33]. Detection by producing an object proposal achieved
successful results, but there is a trade-off between the detection performance and processing speed
according to the number of proposals produced. The number and the accuracy of the object candidates
could directly affect the precision of the trained model or reduce the detection speed [34].

In recent years, You Only Look Once (YOLO) [35] and Single Shot MultiBox Detector (SSD) [36]
networks, which convert the classification and localization steps of the object detection task into a
regression problem, can perform object detection tasks with a single neural network structure. These
new methods have also overwhelmed the object proposal techniques in major competitions, such as
PASCAL VOC (Pattern Analysis, Statistical Modelling and Computational Learning Visual Object
Classes) [37] and COCO (Common Objects in Context) [38], where objects are detected from natural
images. However, few studies have implemented these techniques on remotely sensed images. This is
mainly due to an imbalanced dataset, where there are a large number of labeled natural images for
detection tasks but less for remote sensing images. In addition, unlike the natural images, some of the
objects that should be detected in satellite images are represented with few numbers of pixels due to
the limitations of the sensor’s spatial resolution. Moreover, the presence of a multi-perspective data set
is important to obtain highly accurate detection results. Although it is not a difficult task to create
multi-perspective data sets using natural images, this could be challenging with satellite sensors. This
challenge could be partially overcome by using satellite images obtained with different incidence angles
to account for perspective differences in the training phase. Lastly, the atmospheric conditions and
sun angle should be considered for satellite images as they affect the spectral response of the objects.
Cheng et al. proposed the creation of a large-sized dataset named NWPU-RESISC45 to overcome the
lack of training samples that are derived from satellite images. Their network consists of 31,500 image
chips related to 45 land classes and they reported an obvious improvement in scene classification by
implementing this dataset on pre-trained networks [22]. Radovic et al. worked on the detection of
aircraft from unmanned aerial vehicle (UAV) imageries with YOLO and achieved a 99.6% precision
rate [39]. Nie et al. used SSD to detect the various sizes of ships inshore and offshore areas using a
transfer-learned SSD model with 87.9% average precision and outperformed the Faster R-CNN model,
which provided an 81.2% average precision [40]. Wang et al. tried two sizes of detectors (SSD300
and SSD512) with SAR images for the same purpose and achieved 92.11% and 91.89% precisions,
respectively [41].

The main objective of this research was to develop a framework with a comparative evaluation of
the state-of-the-art CNN-based object detection models, which are Faster R-CNN, SSD, and YOLO,
to increase the speed and accuracy of the detection of aircraft objects. To increase the detection
accuracy, VHR satellite images obtained from different incidence angles and atmospheric conditions
were introduced into the evaluation. As mentioned above, the trained data availability for the satellite
images is limited, which is an important drawback in CNN-based architectures. Thus, this research
proposes the use of a pre-trained network as a base, and improves the training data by comparatively
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less number of samples obtained from satellite images. In addition, default bounding boxes are
generated with six different aspect ratios at every feature map layer to detect objects more accurately
and faster. The detection models were trained with a labeled dataset produced from satellite images
with different acquisition characteristics and by the use of the transfer learning approach. The training
processes were performed repeatedly with different optimization methods and hyper-parameters.
Although the accuracy is very important, it must be taken into account that the framework needs to
process very large-scale satellite images quickly. Thus, a detection flow was developed to use trained
models in the simultaneous detection of multiple objects from satellite images with large coverage.
This research aimed to significantly contribute to the CNN-based object detection field by:

- Improving the performance of state-of-the-art object detectors on the satellite image domain by
improving the learning with a patched and augmented “A Large-scale Dataset for Object DeTection in
Aerial Images (DOTA)” satellite dataset (transfer learning) and hyperparameter tuning.

- Providing a detection flow that includes the slide-and-detect approach and non-Maximum
suppression algorithm, to enable fast and accurate detection on large-scale satellite images.

- Providing a comparative evaluation of object detection models across different object sizes and
different IOUs and preform an independent evaluation with full-sized (large-scale) Pleiades satellite
images that have different resolution specs than the training dataset to investigate the transferability.

2. Data and Methods

In this section, information about the used satellite images and data augmentation process are
given initially. Next, a detailed description of the evaluated network architectures is provided. Lastly,
the steps and parameterization of the training process are explained.

2.1. Data and Augmentation

The DOTA dataset was used for training and testing purposes. It is an open-source dataset for
object detection purposes from remote sensing images. The dataset includes satellite image patches
obtained from the Google Earth© platform, and Jilin 1 (JL-1) and Gaofen 2 (GF-2) satellites. It contains
15 object categories as airplane, ship, storage tank, baseball diamond, tennis court, basketball court,
ground track field, harbor, bridge, large vehicle, small vehicle, helicopter, roundabout, soccer ball
field, and swimming pool. The image sizes are in the range of 800 × 800 to 4000 × 4000. In this study,
airplane detection was aimed for; therefore, 1631 images that contained 5209 commercial airplane
objects were selected from the dataset. The images were split to the size of 1024 × 1024 patches to train
Faster R-CNN and 608 × 608 for training SSD and YOLO-v3 detectors. The spatial resolution of the
images varies in range 0.11 to 2 m and they contain various orientations, aspect ratios, and pixel sizes
of the objects. In addition, the images vary according to the altitude, nadir-angles of the satellites, and
the illumination conditions. The selected images were separated as 90% for training and the rest for
testing. The DOTA training and test sets also include different samples in terms of airplane dimensions,
background complexity, and illuminance conditions. Some image patches have some cropped objects,
and some examples are black and white panchromatic images. These variations in the DOTA dataset
enable the trained object detection architectures to achieve a similar performance in different image
conditions (Figure 1).

Figure 1. Patches from the DOTA test set; (a) cropped, (b) very big, (c) very small, (d) complex
background, (e) illuminance effect, and (f) panchromatic samples.
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Moreover, independent testing was performed with five image scenes obtained from very
high-resolution pan-sharpened Pleiades 1A&1B satellite images with a 0.5-m spatial resolution and
four spectral channels. In this research, Red/Green/Blue (RGB) bands of the Pleiades images were
used. Satellite images were acquired in different atmospheric conditions but mostly at cloudless days
and at different times in daylight. Images were collected between 2015 and 2017 in different seasons
except for the winter. The images contain the Istanbul Ataturk, Istanbul Sabiha Gokcen, Izmir Adnan
Menderes, Ankara Esenboga, and Antalya airport districts. They cover about a 53 km2 area and contain
280 commercial airplanes. Properties of the Pleiades VHR images are provided in Table 1.

Table 1. Properties of Pleiades satellite images used for model construction and independent testing.

Image Area Acquisition Date
Incidence
Angle (◦)

Sun Elevation
Angle (◦)

Surface Area
(km2)

Ataturk Airport 4/13/2017 21.16 54.43 15.03
Esenboga Airport 9/27/2015 19.4 46.42 14.97

Sabiha Gokcen Airport 4/29/2017 29.77 62.28 17.93
Antalya Airport 5/3/2017 16.88 64.61 23.42

Izmir Airport 3/28/2017 21.19 52.31 8.3

When the bounding box area distributions of aircraft samples were investigated for the DOTA
training, DOTA test, and Pleiades image datasets, it was revealed that the DOTA train set includes
almost the same distribution as the DOTA test set, with areas between 0 and 15,000 pixels, while it
differs slightly from the samples in the large-scale Pleiades image data set. There is no object sample
over 20,000 pixels in the large-scale test set and the areas of the samples are mostly between 3000 and
6000 pixels (Figure 2).

Figure 2. Number of the pixel size of the airplane bounding boxes in the dataset.

In deep architectures, a large number of labeled data is significant. Thus, the data augmentation
has vital importance to cope with a lack of labeled data and to have robustness in the training step.
Horizontal rotation and random cropping were applied as augmentation techniques. Besides, the
image chips were scaled in HSV (hue-saturation-value) to imitate atmospheric and lighting conditions
(Figure 3).

2.2. SSD Network Framework

In this sub-section, the general architecture of the SSD framework is presented initially. After,
the default bounding box and negative sample generation procedures are explained. Next, the loss
function and detection flow steps are presented.
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Figure 3. Augmented data: (a) original image chip; (b) Rotated and randomly scaled in HSV; (c) Rotated,
randomly cropped, and scaled in HSV.

2.2.1. General Architecture

The SSD is an object detector in the form of a single convolutional neural network. The SSD
architecture works with the corporation of extracted feature maps and generated bounding boxes,
which are called default bounding boxes. The network simply performs the loss calculation by
comparing the offsets of the default bounding boxes and predicted classes with the ground truth values
of the training samples at every iteration by the use of different filters. After that, it updates all the
parameters according to that calculated loss value with the back propagation algorithm. In this way, it
tries to learn best filter structures that can detect the features of the objects and generalize the training
samples to reduce the loss value, thus attaining high accuracy at the evaluation phase [36].

In the SSD method, a state-of-the-art CNN architecture was used as a base network for feature
extraction with additional convolution layers, which produce smaller feature maps to detect the objects
with different scales. Also, SSD allows more aspect ratios for generating default bounding boxes. In
this way, SSD boxes can wrap around the objects in a tighter and more accurately. Lastly, the SSD
network used in this research has a smaller input size, which positively affects the detection speed
compared to YOLO architectures (Figure 4). Besides, YOLO has just two fully connected layers instead
of additional convolution layers. These modifications are the main differences of SSD from the YOLO
and they help to obtain a higher precision rate and faster detection [36].

In the original SSD research, the VGG-16 model was used as a base network. In this research, the
InceptionV2 model was used to reach a higher precision and faster detection as it has a deeper structure
than the VGG models. In addition, it uses fewer parameters than VGG models thanks to the inception
modules that are composed of multiple connected convolution layers [42]. As an example, GoogleNet,
which is one of the first networks with inception modules, employed only 5 million parameters, which
represented a 12x reduction compared to AlexNet and it gives slightly more accurate results than VGG.
Furthermore, VGGNet has 3x more parameters than AlexNet [18].

2.2.2. Default Bounding Boxes and Negative Sample Generation

In the initial phase of training, it is necessary to find out which default bounding box matches well
with the bounding boxes of the ground truth samples. The default generated bounding boxes vary
with the location and aspect ratio, and a scale process is applied by matching each ground truth box to
a default box with the best jaccard overlapping value, which should be higher than 0.5 threshold. This
condition facilitates the learning process and allows the network to predict high scores for multiple
overlapping default boxes, rather than selecting only those that have the maximum overlap.
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Figure 4. SSD architecture that uses Inception V2 as a base network with 32 as the batch size at training.

To handle different object scales, SSD utilizes feature maps that were extracted from several
different layers in a single network. For this aim, a fixed number of default bounding boxes should be
produced at different scales and aspect ratios in each region of the extracted feature maps. Six levels
of aspect ratios were set supposing ar ∈ {1, 2, 3, 1/2, 1/3} and sk is the scale of the k-th square feature
map for generating default boxes. The sixth one is generated for the aspect ratio of 1 with the scale of
s′k =

√
sksk + 1. Therefore, the width (wa

k = sk
√

ar) and height (ha
k = sk

√
ar) can be computed for each

default box. Figure 3 illustrates how the generated default bounding boxes on a 5 × 5-feature map
are represented on the input image and overlap with the possible objects (Figure 5). For this research,
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150 bounding boxes were generated. At the same time, each of them represents the predictions in the
evaluation step.

Figure 5. Illustration of the 5 × 5 feature map and generated default boxes with six aspect ratios.

After the matching phase, which is performed at the beginning of the training, most of the default
boxes are set as negatives. Instead of using all the negative examples to protect the balance with the
positive examples, the confidence loss for each default box was calculated and three of them with the
highest scores were selected, so the ratio between the negatives and positives is not more than 3:1. This
ratio is found to provide faster optimization and training with higher accuracy [36].

2.2.3. Loss Function

The loss (objective) value was calculated as a combination of the confidence of the predicted class
scores and the accuracy of the location. The total loss value (localization loss + confidence loss) given
in Equation (1) is an indication of the pairing of the i-th default box with j-th ground truth box of class
p, such that xp

ij = {1, 0}:
L(x, c, l, g) =

1
N

(
Lcon f (x, c) + αLloc(x, l, g)

)
, (1)

where N corresponds to the number of matching default boxes. If there is no match (N = 0), the total
loss is determined as zero directly. The α value is the balance of two types of losses, and it is equal to 1
during the cross-validation phase. The localization loss is calculated as the Smooth L1 loss between the
offsets of the predicted box (l) and the ground truth box (g). If the center location of the boxes denoted
as cx, cy, the default boxes d, width w, and height as h:

Lloc(x, l, g) =
∑N

i∈Posm∈{cx,cy,w,h}

∑
xk

ijsmoothL1(lmi − ĝm
j ), (2)

in which:

smoothL1(x) =

⎧⎪⎪⎨⎪⎪⎩
0.5x2 i f |x| < 1

|x| − 0.5 otherwise,

ĝcx
j = (gcx

j − dcx
i )/dw

i ĝcy
j = (gcy

j − dcy
i )/dh

i

ĝw
j = log

gw
j

dw
i

ĝh
j = log

gh
j

dh
i

.
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Additionally, the confidence loss (c) was calculated as a softmax loss of the predicted class relative
to other classes:

Lcon f (x, c) = −
N∑

i∈Pos

xp
ij log ĉp

i −
N∑

i∈Neg

log(ĉ0
i ) (3)

ĉp
i =

exp
(
cp

i

)
∑

p exp
(
cp

i

) . (4)

The above-mentioned equations are detailed in Liu et al.’s article [37].

2.2.4. Detection Flow

While the usual sliding window technique slides the whole image at a fixed sliding step, it
cannot ensure that the windows cover the objects exactly. Moreover, small sliding steps result in huge
computation costs and larger window sizes, thus decreasing the accuracy. As shown in Figure 6, a
detection flow was created with the sliding window approach and an optimized sliding step to achieve
higher accuracy and faster detection [43]. As an example schema, when the sliding was performed
with a 300-pixel size over a 500 × 500 pixel image patch, the objects at the edges of the window could
not be detected or the bounding box offsets of them would be incorrect. To tackle this problem, an
overlapping area between two windows was determined as 100 pixels, which covers the object size for
this research. In the sliding process for an image with a certain overlap, k × l windows were obtained
to detect by the object detector for the horizontal and vertical directions, respectively:

k =

[
height− overlap

ssd height− overlap

]
, (5)

l =
[

width− overlap
ssd width− overlap

]
. (6)

 
Figure 6. Process of the proposed detection flow of a 500 × 500 image with 100 pixels overlapping; the
colored parts in the middle represents overlapping areas.

After the sliding and detection step, the non-maximum suppression (NMS) algorithm [44]
(Appendix A) was used to eliminate multiple detection occurrences over an object in the overlapping
regions and a score threshold was also applied to decrease the number of false detections (Figure 7).
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Figure 7. Detection results of occluded objects (a) Without the NMS algorithm, (b) With the
NMS algorithm.

2.3. You Look Only Once (YOLO) v3 Network Framework

Yolo-v3 is grounded upon the custom CNN architecture, which is called DarkNet-53 [45]. The
initial Yolo v1 architecture was inspired by GoogleNet, and it performs downsampling of the image
and produces final predictions from a tensor. This tensor is obtained in a similar way as in the ROI
pooling layer of the Faster R-CNN network. The next-generation Yolo v2 architecture uses a 30-layer
architecture, which consists of 19 layers from Darknet-19 and an additional 11 layers adopted for object
detection purposes. This new architecture provides more accurate and faster object detection results,
but it often struggles with the detection of small objects in the region of interest. Moreover, it does not
benefit from the advantages of the residual blocks or upsampling operations while Yolo v3 does.

Yolo v3 consists of a fully convolutional architecture, which uses a variant of Darknet, which has
53 layers trained with the Imagenet classification dataset. For the object detection tasks, an additional
53 layers were added onto it, and the improved architecture trained with the Pascal VOC dataset. With
this structural design, the Yolo v3 outperformed most of the detection algorithms, while it is still fast
enough for the real-time applications. With the help of the residual connections and upsampling, the
architecture can perform detections at three different scales from the specific layers of the structure [45].
This makes the architecture more efficient at the detection of smaller objects but results in slower
processing than the previous versions due to the complexity of the framework (Figure 8).

The shape of the detection kernel is 1 × 1 × (B × (5 + C)). In the v3 network, 3 pieces of an anchor
are used for detection for each scale. Here, B is the number of the anchors on the feature map, 5 is for
the 4 bounding box offsets, and one for object confidence. C is the number of categories. In the current
research, the Yolo v3 network was used and the class was the only airplane, so the detection kernel
shape was designed as 1 × 1 × (3 × (5 + 1)) for each scale. The first detection process was performed
from the 82nd layer, as the first 81 layers downsampled the input image by the size of 32 strides. If the
input image has a size of 608 × 608 pixels, that will be output as a feature map of 18 × 18 pixels in that
layer. This corresponds to 18 × 18 × 18 detection features being obtained from this layer. After the
first detection operation, the feature map was upsampled by a factor of 2. This upsampled feature
map is was with the feature map arising from the 61st layer. Then, a few 1 × 1 convolution operations
were performed to fuse features and reduce the depth dimension. After that, the second detection
is performed from the 94th layer, which returns a detection feature map of 36 × 36 × 18. The same
procedure was performed for the third scale at the 106th layer, which yields a feature map of the
72 × 72 × 18 size. This means it produced 20,412 predicted boxes for each image. As in the SSD
network, the final predictions were proposed after the NMS algorithm was applied.
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Figure 8. Yolo v3 architecture schema.

2.4. Faster R-CNN Network Framework

In this sub-section, the general architecture of the faster R-CNN framework is presented initially.
After, the loss function and residual blocks are explained in detail.

2.4.1. General Architecture

Faster R-CNN is one of the most used object detection networks, which achieves accurate and
quick results with CNN structures. It was initially used for nearly real-time applications, such as video
indexing tasks, due to these capabilities. Faster R-CNN has developed progressively over time. The
first version of it, the R-CNN, uses a selective search algorithm that utilizes a hierarchical grouping
method to produce object proposals. It produces 2000 objects as the rectangular boxes, and they are
passed to a pre-trained CNN model. Then, the feature maps of them are extracted from the CNN
model to pass them to an SVM for classification [25].

In 2015, Girshick R. et al. [27] came up again with the Fast R-CNN, which moves the R-CNN
solution one step forward. The main advantage of Fast R-CNN over the R-CNN is gained by producing
the object proposals from the feature map of the CNN, instead of getting them from the complete input
image. In this way, there is no need to apply the CNN process 2000 times to extract feature maps. In
the next step, the region of interest (ROI) pooling is applied to ensure a standard and pre-defined
output size is obtained. Finally, the future maps are classified with a softmax classifier and bounding
box localizations are performed with linear regression.

In the Faster R-CNN, the selective search method is replaced by a region proposal network (RPN).
This network aims to learn the proposal od an object from the feature maps. The RPN is the first stage
of this object detection method. The feature maps extracted from a CNN are passed to the RPN for
proposing the regions. For each location of the feature maps, k anchor boxes are used to generate region
proposals. The anchor box number k is defined as 9 considering the 3 different scales and 3 aspect
ratios in the original research [36]. With a size of W × H feature map, there are W × H × k anchor
boxes in total, which are comprised of the negative (not object) and positive (object) samples. This
means that there are many negative anchor boxes for an image, and to prevent bias occurring due to
this imbalance, the negative and positive samples are chosen randomly by a 1:1 ratio (128 negative and
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128 positives) as a mini-batch. The RPN learns to generate the region proposals at the training phase
by utilizing these anchor boxes by comparing the ground truth boxes of the objects. The bounding
box classification layer (cls) of the RPN outputs 2 × k scores whether there is an object or not for k
boxes. A regression layer is used to predict the 4 × k coordinates (center coordinates of box, width, and
height) of k boxes. After generation of the region proposals, the ROI pooling operation is performed
as in the Fast R-CNN at the second stage of the network. Again, as in Fast R-CNN, a ROI feature
vector is obtained from fully connected layers and this vector is classified by softmax to determine
which category it belongs. A box regressor is applied to it to adapt the bounding box of that object.
In the current research, the Faster R-CNN was used with a residual neural network (ResNet) that
was comprised of 101 residual layers. This network won the COCO 2015 challenge by utilizing the
ResNet-101, instead of VGG-16 in Faster R-CNN. Moreover, one additional scale parameter was added
for generating the anchor boxes to detect smaller airplanes (4 scales, 3 aspect ratios, k = 12).

2.4.2. Loss Function

The loss function of the RPN network for an image was defined as:

L({pi}, {ti}) = 1
Ncls

∑
i
Lcls(pi, p∗i ) + λ

1
Nreg

∑
i
p∗i Lreg

(
ti, t∗i

)
, (7)

where i is the index of an anchor, pi is the prediction probability of anchor i being an object, and p∗i is
the ground truth label and it is 1 if the anchor is an object; otherwise, it is 0. Lcls and Lreg represent
the classification loss, respectively, which is a log loss over two classes (object or not object) and the
regression loss is the smooth L1 function used for the ti and t∗i parameters. ti is a vector representation
of the predicted bounding box, and t∗i is a ground truth bounding box associated with a positive
anchor. Lastly, the parameter λ is used for balancing the loss function terms, and Ncls and Nreg are the
normalization parameters of the classification and regression losses according to the mini-batch size
and anchor locations.

2.4.3. Residual Blocks

When the CNN networks are designed with a deeper structure, degradation problems can occur.
As the architecture becomes deeper, the layers of the higher level can act simply as an identity function.
The output of them, which are the feature maps, becomes more similar to the input data. This
phenomenon causes saturation in the accuracy, which is followed by fast degradation. To solve this
problem, the residual blocks can be used. Instead of learning from a direct mapping of ×→ y with a
function H(x), the residual blocks can be used to modify the function as H(x) = F(x) + x, where F(x)
and × represent the stacked non-linear layers and identity function, respectively.

2.5. Training

In this work, all the experiments were performed with the Tensorflow and Keras open-source
deep learning framework, which was developed by the Google research team [46]. The transfer
learning technique was applied by using the pre-trained network with the COCO dataset. Additionally,
fine-tuning of the parameters and extending the training set with the sample collection were performed
to improve the performance as much as possible.

Through the transfer learning approach, the training was started with the implementation of the
pre-trained parameters to include the useful information gathered from a previously trained network
with different data used for another problem in the computer vision area. Although the COCO dataset
contains natural images, the pre-trained model of the networks, which was utilized from COCO, can
be used for the current research as well, because features, such as the edge, corner, shape, and color,
can be implemented, which form the basis of all of the vision tasks. After starting the network with
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the parameters of the pre-trained model, it was fed with training examples from the produced DOTA
image chips.

For Faster R-CNN, 1024 × 1024 sized image patches were used to train the model. For the RPN
stage, the bounding box scales were defined as 0.25, 0.5, 1.0, and 2.0 with 0.5, 1.0, and 2.0 aspect ratios,
which ensured that the network generated 12 anchor boxes for each location of the feature maps. The
batch size was defined as 1 to prevent memory allocation errors. For the first attempt of the training,
the process continued until 400,000 iterations, which took 72 h. The learning rate was started at 0.003
and was reduced to half of it in each further 75,000 step. The training loss did not decrease more, thus
a new training process was initialized, with the learning rate corresponding to a tenth of the previous
value, and the process continued for 900,000 iterations by reducing the learning rate to a quarter for
each 50,000 step after the 150,000th iteration.

For the SSD network, 608 × 608-sized image patches were used for training. The sizes and aspect
ratios of the default bounding boxes of each feature map layers remained the same as the original
SSD research [36]. The RMSProp optimization method was used for gradient calculations with a 0.001
learning rate and 0.9 decay factor for each 25,000 iteration. The batch size was defined as 16 and the
training process was continued till the 200,000th step, which took 60 h. The first attempt at the SSD
training provided unsatisfactory results similar to Faster R-CNN. Therefore, a new training process
initialized with a 0.0004 learning rate value and the same decay factor for each 50,000th iteration along
with 450,000 iterations.

The Yolo-v3 architecture was trained with the Adam optimizer by a learning rate of 5 × 10−5 with
a decay factor of 0.1 for every 3 epochs, with which the validation loss did not decrease. We used
9 anchor boxes with different sizes, 3 for each stage of the network, as in the original paper. Before
the training, the bounding boxes of the entire data were clustered according to their sizes with the
k-means clustering algorithm to find 9 optimum anchor box sizes. In the next step, bounding boxes
were sorted from smallest to largest. For the validation purpose, 10% of the training data was split for
monitoring the validation loss during the training process. The batch size was defined as 8 and the
whole training was continued for 80 epochs. One epoch means the feed forward and back propagation
processes are completed for the whole training dataset. Training of the Yolo-v3 took about 36 h.

3. Results and Discussion

In this section, the evaluation metrics used in this research are introduced in the first place.
Secondly, the comparative results of each network according to COCO metrics across different datasets
are presented and discussed. Next, the overall performance of the networks is discussed with respect
to the precision, recall, and F1 scores. Lastly, a visual evaluation of the results is provided.

3.1. Evaluation Metrics

In the object detection tasks, two widely used performance metrics are the average precision
(AP) and F1 score. At the training process, a detector compares the predicted bounding boxes with
the ground truth bounding boxes according to the intersection over union (IOU) at each iteration to
update its parameters. Generally, a 0.5 IOU ratio for each prediction at the training stage is aimed for.
This means that if the network predicts an object with a bounding box that overlaps with the ground
truth box by at least 50%, it is considered as a true prediction. When the localization is a matter for a
computer vision task, this ratio could be set higher. In this research, the value remained as 0.5, and it
was expected to detect the objects at least with this ratio at the evaluation phase. Therefore, this ratio
was used for calculating the performance metrics.

The F1 score evaluation metric is used to understand the success rate by calculating the precision
and recall rate. The precision is the ratio of the actual matches of all objects that are detected as matches
and the recall is the ratio of the number of objects that are detected correctly to the number of all
ground truth samples. Neither the recall rate nor precision rate is individually enough to measure
the performance of the framework; therefore, the harmonic mean of them, which is the F1 score, was
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also calculated. By defining the true positive (TP) as truly detected objects, the false negative (FN) as
non-detected objects, and the false positive (FP) as falsely detected objects, the precision, recall and F1
score was calculated as:

Precision =
TP

TP + FP
, (8)

Recall =
TP

TP + FN
, (9)

F1 score = 2 ∗ Precision ∗Recall
Precision + Recall

. (10)

Additionally, 12 different metrics were used to measure the characteristics and performance of the
object detection algorithms with the COCO metric API (Table 2). Unless defined otherwise, the average
precision (AP) and average recall (AR) weree calculated by averaging over 10 different IOU ranging
from 0.5 to 0.95 with 0.05 intervals. Besides, the values where IOU is 0.5 and 0.75 were calculated for
AP. AP is the average precision calculation according to all categories and IOU values. In this research,
there was only one detection category, which is airplane. AR is the maximum number of detections
per image, averaged over categories and IoUs. These calculations were also checked by interpreting
the bounding box areas. According to COCO, objects with a size smaller than 322 pixels are defined as
small, between 322 and 962 as medium, and more than 962 pixels as large. The metric calculations
were performed according to all scale levels and for separate scales [47].

Table 2. COCO performance metrics with calculation rules.

Calculated for Metric Name

AP for [ IoU = 0.50:0.95 | area = all |maxDets = 100 ] 1. Metric
AP for [ IoU = 0.50 | area = all |maxDets = 100 ] 2. Metric
AP for [ IoU = 0.75 | area = all |maxDets = 100 ] 3. Metric

AP for [ IoU = 0.50:0.95 | area = small |maxDets = 100 ] 4. Metric
AP for [ IoU = 0.50:0.95 | area =medium |maxDets = 100 ] 5. Metric

AP for [ IoU = 0.50:0.95 | area = large |maxDets = 100 ] 6. Metric
AR for [ IoU = 0.50:0.95 | area = all |maxDets = 1 ] 7. Metric
AR for [ IoU = 0.50:0.95 | area = all |maxDets = 10 ] 8. Metric

AR for [ IoU = 0.50:0.95 | area = all |maxDets = 100 ] 9. Metric
AR for [ IoU = 0.50:0.95 | area = small |maxDets = 100 ] 10. Metric

AR for [ IoU = 0.50:0.95 | area =medium |maxDets = 100 ] 11. Metric
AR for [ IoU = 0.50:0.95 | area = large |maxDets = 100 ] 12. Metric

3.2. Evaluation with COCO API

The DOTA dataset was randomly divided into two as a training and test with 90% and 10% ratios,
respectively. However, there is a difference in the distribution of object scales for the training and test
groups. Moreover, for the independent large-scale image set produced from Pleiades satellite images,
most of the objects are in the medium range (Table 3).

Table 3. The ratios (%) of data sets according to the object scale.

Data Set/Object Scale Small Medium Large

DOTA Training Set 0.06 0.52 0.42
DOTA Test Set 0.03 0.28 0.69

Large Scale Image Set 0.10 0.76 0.14

To evaluate the converge rates of the models on the training data, the performance metrics were
also calculated for the DOTA training set, in addition to the test data. The performances of all trained
models were examined with the COCO metric API, except for the first training attempts of SSD and
Faster R-CNN as their learning rate was low (Table 4). According to the COCO metrics, the Faster
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R-CNN model provided the best results when considering the mean of the precision for different IoU
values. Yolo-v3 provided promising results for 0.5 IoU and above, while Faster R-CNN is better if
0.75 IOU and above is desired. For metrics 4, 5, and 6, Faster R-CNN provided the best AP result for
different IOUs in small, medium, and large objects for the DOTA test set. However, in the large-scale
image set, the Yolo-v3 model provided better results for small and medium objects. The reason for
these results is that the architectures have different structures to learn different attributes from the
training data. The seventh, eighth, and ninth metrics provide information about the recall rates for all
object sizes according to the detection number per image. Similarly, the Faster R-CNN provided better
results according to these metrics. When the AR results were investigated according to metrics 10, 11,
and 12, it was revealed that the recall rates of Yolo-v3 are worse than the SSD for large-scale image sets.
In addition, the SSD is also ahead of the Faster R-CNN for small and medium aircrafts.

Table 4. Performance of DOTA training, DOTA test, and large-scale image set according to
COCO metrics.

DOTA Training Set DOTA Test Set Large Scale Image Set

Yolo-v3 SSD
(2nd)

F RCNN
(2nd) Yolo-v3 SSD

(2nd)
F RCNN

(2nd) Yolo-v3 SSD
(2nd)

F RCNN
(2nd)

Metric 1 0.428 0.411 0.481 0.391 0.371 0.451 0.148 0.151 0.172
Metric 2 0.806 0.711 0.757 0.76 0.618 0.717 0.434 0.431 0.364
Metric 3 0.397 0.445 0.573 0.345 0.415 0.513 0.079 0.078 0.136
Metric 4 0.044 0.020 0.119 0.077 0.040 0.088 0.055 0.026 0.046
Metric 5 0.417 0.399 0.463 0.358 0.290 0.394 0.179 0.188 0.169
Metric 6 0.491 0.475 0.540 0.414 0.422 0.485 0.060 0.146 0.300
Metric 7 0.187 0.188 0.210 0.252 0.273 0.302 0.006 0.006 0.009
Metric 8 0.482 0.458 0.515 0.458 0.431 0.501 0.069 0.056 0.073
Metric 9 0.500 0.475 0.536 0.458 0.432 0.501 0.242 0.276 0.265
Metric 10 0.064 0.067 0.167 0.075 0.087 0.138 0.052 0.078 0.074
Metric 11 0.484 0.462 0.520 0.407 0.355 0.427 0.275 0.295 0.262
Metric 12 0.568 0.536 0.596 0.487 0.471 0.539 0.198 0.305 0.408

The fact that the DOTA training and test performances are similar for the three architectures
indicates that the models can successfully learn the object characteristics from the DOTA dataset.
However, when these results were compared with the results from the large-scale Pleiades image set,
there is a big performance gap. The main reasons behind the performance gap are that the dimensions
of the aircrafts inside the large-scale image set are distributed differently than the DOTA dataset and
large-scale image sets contain different types of aircraft (Figure 9).

With the COCO metric API, precision–recall curves were plotted according to the object size, and
the differences between these curves provides valuable insights about the detection efficiencies of
models. As presented in Figures A1–A3, precision–recall (PR) curves were plotted for small-, medium-,
large-scale objects and for all object sizes across the three models. The evaluations were performed for
the DOTA test set and large-scale image set separately. The orange area out of the curves represents
the false negative (FN) portion of the evaluated data set. In other words, it is the PR after all errors
are removed. The purple area presents the falsely detected objects, which are the backgrounds in the
dataset (BG). The blue area presents the localization errors of the predicted boxes (Loc) and indicates
that the PR curve is a 0.1 IOU value. The white area shows the area under the precision–recall curve,
which is comprised of the prediction with IOU above 0.75 (C75). Lastly, the grey area represents the
detections with IOU above 0.5 (C50). The brown area (Sim) is the PR curve after the super-category
false positives are removed. Green area (Oth) is the PR after all class confusions are removed. As
this research does not include a super-category or any other category, these curves do not exist in the
provided plots.

183



Remote Sens. 2020, 12, 458

 

Figure 9. Graphic representation of COCO evaluation metrics.

When the PR plots were investigated together with the AP metrics, which is presented in Table 5,
it was observed that the large-sized aircrafts were detected better for the DOTA test and large-scale
image set. Additionally, it can be asserted that all of the networks detect better with the IOU above 0.5
when the margin area was compared with IOU above 0.75. The localization error for the DOTA test set
is smaller compared with large-scale images. For the Yolo-v3 network, nine optimum anchor sizes were
selected by clustering the whole DOTA training samples according to the object sizes; however, the
pixel sizes of objects are much smaller in the large-scale image set. Besides, the number of objects in the
DOTA training set is much more than the large-scale image set, which possibly resulted in unbalanced
object sizes between the two datasets. Lastly, the sizes of the anchor boxes that were selected with
the k-means algorithm in the training phase did not match with the optimum size for the large-scale
image dataset. This condition could be an explanation for the higher localization errors observed for
the large-scale image set.

Table 5. Average precision (AP) metrics of all test sets for all networks according to COCO metric API.

Dataset DOTA Test Set Large Scale Image Set

AP C75 C50 Loc Bg C75 C50 Loc Bg

Yolo-v3 All 0.34 0.76 0.78 0.79 0.08 0.43 0.79 0.79
Yolo-v3 Large 0.36 0.80 0.82 0.83 0.02 0.22 0.69 0.69

Yolo-v3 Medium 0.33 0.67 0.70 0.71 0.10 0.51 0.85 0.85
Yolo-v3 Small 0 0.25 0.25 0.25 0.04 0.11 0.48 0.48
SSD All (2nd) 0.41 0.61 0.64 0.67 0.07 0.43 0.74 0.78

SSD Large (2nd) 0.48 0.68 0.70 0.70 0.06 0.41 0.76 0.77
SSD Medium (2nd) 0.29 0.52 0.59 0.63 0.11 0.51 0.77 0.80

SSD Small (2nd) 0 0.13 0.13 0.25 0 0.15 0.41 0.62
Faster R-CNN All (2nd) 0.51 0.71 0.72 0.73 0.13 0.36 0.81 0.81

Faster R-CNN Large (2nd) 0.56 0.77 0.78 0.79 0.22 0.52 0.82 0.82
Faster R-CNN Medium (2nd) 0.42 0.60 0.61 0.61 0.13 0.37 0.83 0.83

Faster R-CNN Small (2nd) 0.06 0.17 0.17 0.25 0.04 0.14 0.55 0.59
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Although the SSD network provided the worst performance for the test sets, it is much effective in
the localization of the objects when compared with the other networks. Moreover, the Yolo-v3 network
provided better detection of the small objects with 0.5 IOU. Additionally, Faster R-CNN can detect the
small objects of the DOTA test set with 6% AP, while the other networks cannot, and for the small
objects of the large-scale image set, it has a similar performance with the Yolo-v3 (Figure 10).

 

Figure 10. Graphic representation of COCO AP metric results.

3.3. Evaluation with Accuracy Metrics

As the last evaluation step, the precision, recall, and F1 scores were calculated for all networks and
all datasets with a 0.5 IOU threshold. To observe how the models can generalize the training data, these
metrics were calculated for the training data as well. Moreover, the first attempt of the training for
SSD and Faster R-CNN were added to the evaluation in this step to observe the improvements gained
by second training with modified parameters for these models. According to the results presented
in Table 6, the Faster R-CNN with the second training parameter set provided the highest precision,
recall, and F1 scores for both the DOTA and large-scale test sets. Moreover, it took second place after
YOLO-v3 with slight differences for the DOTA training set, which indicates good generalization and
learning through the training phase. The YOLO-v3 performance is ranked as second for both test sets,
with comparatively low recall values, which is a sign of an increment in non-detected objects. SSD
with the second training parameter set provided the lowest scores for test sets as well as the training
set, which indicates a low level of generalization and learning process (Figure 11). When the results of
SSD and Faster R-CNN with the first training parameter set were compared with the second parameter
set, an obvious improvement was observed with the modified parameters, indicating the importance
of parameter selection in the training phase.
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Table 6. Precision, recall, and F1 score of all datasets.

Dataset DOTA Training Set DOTA Test Set Large Scale Image Set

Method/Metric Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Yolo-v3 0.99 0.95 0.97 0.96 0.89 0.92 0.97 0.87 0.91
SSD (1st) 0.99 0.44 0.61 0.96 0.43 0.59 0.65 0.36 0.46
SSD (2nd) 0.89 0.73 0.80 0.86 0.68 0.76 0.87 0.65 0.74

Faster R-CNN (1st) 0.99 0.51 0.67 0.99 0.47 0.63 0.74 0.41 0.52
Faster R-CNN (2nd) 0.97 0.92 0.95 0.98 0.89 0.93 0.98 0.92 0.94

 

Figure 11. Graphic representation of the precision, recall, and F1 scores.

3.4. Visual Evaluation

The detection results from the DOTA test set and Pleiades large-scale image set were interpreted
visually to assess the performance of algorithms. According to the detection results of the DOTA test
set, Yolo-v3 is more successful than the other networks. Although the selected samples provided
in Figure 12 include different sized aircrafts, and the image patches have illuminance differences,
background complexities, and different band information, the Yolo-v3 provided a lesser amount of
missing objects, while SSD provided the worst results.
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Figure 12. Detection results of some of the DOTA test set patches (a) Yolo-v3, (b) SSD, (c) Faster R-CNN.

The aircraft detection from the large-scale Pleiades image set, which covers a 53-km2 area in
total, lasted around 37 s for SSD, 97 s for Yolo v3, and 102 s for the Faster R-CNN with the proposed
detection flow approach. The results from Sabiha Gokcen Airport and Antalya Airport are provided
in Figures A4 and A5, respectively. In Figure A4, non-detected objects are observable in the center
and northern part of the image for SSD. YOLO-v3 missed only two airplanes for that image scene,
however, it faced multiple detections at the bottom left part of the image scene where several airplanes
are grouped. Faster R-CNN provided a balanced performance with a high detection rate and good
localization of the objects. For Figure A5, similar results were achieved, and some false detections
were also observed in the SSD case.

4. Conclusions

This article presented a comparative evaluation of state-of-the-art CNN-based object detection
models for determining airplanes from satellite images. The networks were trained with the DOTA
dataset and the performance of them was evaluated with both the DOTA dataset and independent
Pleiades satellite images. The best results were obtained with the Faster R-CNN network according
to the COCO metrics and F1 scores. The Yolo-v3 architecture also provided promising results with a
lower processing time, but SSD could not converge the training data well with low iterations. All of
the networks tended to learn more with different parameters and more iterations. It can be asserted
that Yolo-v3 has a faster convergence capability when compared with the other networks; however, the
optimization methods also play an important role in the process. Although SSD provided the worst
detection performance, it was better in object localization. The imbalance between the object sizes and
the diversities also affected the results. In the training of deep learning architectures, imbalances should
be avoided, or the categories should be divided into finer grains, such as airplanes, gliders, small
planes, jet planes, and warplanes. In summary, transfer learning and parameter tuning approaches on
pre-trained object detection networks provided promising results for airplane detection from satellite
images. Besides, the proposed slide and detect and non-maximum suppression-based detection flow
enabled algorithms to be run on full-sized (large-scale) satellite images.
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For future work, the anchor box sizes can be defined by weighted clustering according to the
sample size of the datasets. Moreover, all of the networks can be used together to define the offsets of
the bounding boxes by averaging the predicted bounding boxes, to prevent false positives and increase
the recall ratio. In this way, the localization errors could be decreased as well. Finding a way to use
the ensemble learning methods for object detection architectures could be another improvement. In
addition, the object detection networks often use R, G, and B bands, as they are mostly developed
for natural images. However, satellite imageries can contain more spectral bands. Therefore, further
studies are planned to integrate the additional spectral bands of the satellite images, to increase the
number of labels and train the model more accurately.
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Appendix A

Algorithm A1 Non-Maximum Suppression

1: procedure NMS
2: input:

3: d = {bd =
[
lx, ly, lw, lh

]
, cd}: bounding box offsets

4: and confidence scores of detection list,
5: t: iou threshold,
6: ts: score threshold.
7: output:

8: fd = {b f =
[
lx, ly, lw, lh

]
, c f }: final detection list.

9: if (size of d < 2)
10: return

11: %sort detections in descending order according to cd
12: d ← sort(cd)
13: fd = d[0]
14: for all bd, cd in d do

15: %calculate iou between bd, b f
16: iou = iou (bd, b f )
17: idxs ← where (iou < t) in d
18: if (size of idxs == 0)
19: if (cd > ts)
20: fd = stack ( fd, {bd, cd})
21: end for

22: end procedure
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Figure A1. SSD Precision–recall curves for, (a) all object sizes, (b) small, (c) medium, (d) large object
size obtained from, (I) DOTA test data and (II) Pleiades large-scale test image data.
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Figure A2. YOLO—V3 Precision–recall curves for, (a) all object sizes, (b) small, (c) medium, (d) large
object size obtained from, (I) DOTA test data and (II) Pleiades large-scale test image data.
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Figure A3. Faster R-CNN Precision–recall curves for, (a) all object sizes, (b) small, (c) medium, (d) large
object size obtained from, (I) DOTA test data and (II) Pleiades large-scale test image data.
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Figure A4. The aircraft detection results of Sabiha Gokcen Airport from Pleiades image data.
192



Remote Sens. 2020, 12, 458

 

Figure A5. The aircraft detection results of Antalya Airport from Pleiades image data.
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Abstract: With the increasing resolution of optical remote sensing images, ship detection in optical
remote sensing images has attracted a lot of research interests. The current ship detection methods
usually adopt the coarse-to-fine detection strategy, which firstly extracts low-level and manual
features, and then performs multi-step training. Inadequacies of this strategy are that it would
produce complex calculation, false detection on land and difficulty in detecting the small size ship.
Aiming at these problems, a sea-land separation algorithm that combines gradient information and
gray information is applied to avoid false alarms on land, the feature pyramid network (FPN) is
used to achieve small ship detection, and a multi-scale detection strategy is proposed to achieve ship
detection with different degrees of refinement. Then the feature extraction structure is adopted to fuse
different hierarchical features to improve the representation ability of features. Finally, we propose a
new coarse-to-fine ship detection network (CF-SDN) that directly achieves an end-to-end mapping
from image pixels to bounding boxes with confidences. A coarse-to-fine detection strategy is applied
to improve the classification ability of the network. Experimental results on optical remote sensing
image set indicate that the proposed method outperforms the other excellent detection algorithms
and achieves good detection performance on images including some small-sized ships and dense
ships near the port.

Keywords: convolutional neural networks (CNNs); feature fusion; ship detection; optical remote
sensing images

1. Introduction

Ship detection in optical remote sensing image is a challenging task and has a wide range of
applications such as ship positioning, maritime traffic control and vessel salvage [1]. Differing from
natural image that taken in close-range shooting with horizontal view, remote sensing image acquired
by satellite sensor with a top-down perspective is vulnerable to the factor such as weather. Offshore
and inland river ship detection has been studied on both synthetic aperture radar (SAR) and optical
remote sensing imagery. Some alternative methods of machine learning approaches have also been
proposed [2–5]. However, the classic ship detection methods based on SAR images will cause a high
false alarm ratio and be influenced by the sea surface model, especially on inland rivers and in offshore
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areas. Schwegmann et al. [6] used deep highway networks to avoid the vanishing gradient problem.
They developed their own three-class SAR dataset that allows for more meaningful analysis of ship
discrimination performances. They used data from Sentinel-1 (Extra Wide Swath), Sentinel-3 and
RADARSAT-2 (Scan-SAR Narrow). They used Deep Highway Networks 2, 20, 50, 100 with 5-fold
cross-validation and obtained an accuracy of 96% outperforming classical techniques such as SVM,
Decision Trees, and Adaboost. Carlos Bentes et al. [7] used a custom CNN with TerraSAR-X Multi Look
Ground Range Detected (MGD) images to detect ships and iceberg. They compared their results with
SVM and PCA+SVM, and showed that the proposed model outperforms these classical techniques.
The classic detection methods based on SAR images do not perform well on small and gathering ships.
And with the increasing resolution and quantity of optical remote sensing images, ship detection in
optical remote sensing images has attracted a lot of research interests.This paper mainly discusses ship
detection in optical remote sensing images. In the object detection task, natural image is mainly used
to front-back object detection. By contrast, remote sensing image is mainly used to left-right object
detection [8]. Ship detection in remote sensing image is immensely affected by the viewpoint changes,
cloud occlusion, wave interference, background clutter. Of these, the characteristics of optical remote
sensing image such as the diversity of target size, high complexity of background and small targets
makes ship detection particularly difficult.

In recent years, ship detection methods in optical remote sensing image mainly adopt a
coarse-to-fine detection strategy which is based on two-stage [9,10]. The first step is the ship candidate
extraction stage. All candidate regions that possibly contain ship targets are searched out in the
entire image by some region proposal algorithms, which is a coarse extraction process. In this case,
the information of image such as color, texture and shape is usually taken into account [1,11]. Region
proposal algorithms include the sliding windows-based method [12], the image segmentation-based
method [10], and the saliency analysis-based method [13,14]. These methods can preliminarily extract
the candidate region of ships, then the ship candidate region is filtered and merged according to shape,
scale information and neighborhood analysis methods [15]. Selective search algorithm (SS) [16] is a
representative algorithm for candidate region extraction and is widely used in object detection task.

The second step is the ship recognition stage. The ship candidate regions are classified by a binary
classifier which distinguishes whether the ship target is located in the candidate region [17]. It is a fine
recognition process. The features of ships are extracted and then candidate regions are classified. Many
traditional methods extract low-level features, such as scale-invariant feature transform (SIFT) [18],
histogram of oriented gradients (HOG) [19], deformed part mode (DPM) feature [20] and structure-local
binary patterns (LBP) feature [21,22] to classify candidate regions. With the popularization of deep
learning, some methods use convolution neural network (CNN) to extract the features of ships,
which are the high-level feature with more semantic information. These extracted features combine
with a classifier to classify all candidate regions to distinguish the ship from the background. Many
excellent classifiers such as the support vector machine (SVM) [1,23], AdaBoost [24], and unsupervised
discrimination strategy [13] are adopted to recognize the candidate regions.

Although the traditional method has achieved considerable detection results in clear and calm
ocean environments, there still have many deficiencies. Yao et al. [25] found that the traditional
methods have some shortcomings. First, the extracted candidate regions have a large amount of
redundancy, which leads to expensive calculation. Second, the manual feature focuses on the shape
or texture of ships, which requires manual observation of all ships. The complex background and
variability in ship size will lead to poor detection robustness and low detection speed. Most important
of all, when the size of the ships is very small or the ships are concentrated at the port, the extraction
of the ship candidate region is particularly difficult. Therefore, the accuracy and efficiency of ship
detection are greatly reduced.

Recently, convolutional neural networks (CNN) with good feature expression capability have
widely used in image classification [26], object detection [27,28], semantic segmentation [29], image
segmentation [30], image registration [31,32]. Object detection based on deep convolution neural

198



Remote Sens. 2020, 12, 246

network has achieved good performance on large scale natural image data set. These methods are
mainly divided into two main categories: two-stage method and one-stage method. Two-stage method
originated from R-CNN [33], then successively arise Fast R-CNN [34] and Faster R-CNN [28]. R-CNN
is the first object detection framework based on deep convolutional neural networks [35], which uses
the selective search algorithm (SS) to extract the candidate regions and computes features by CNN.
A set of class-specific linear SVMs [36] and regressors are used to classify and fine-tune the bounding
boxes, respectively. Fast R-CNN is improved on the basis of R-CNN to avoid repeated calculations
of candidate region features. Faster R-CNN proposes a region proposed network (RPN) instead of
the selective search method (SS) to extract candidate regions, which improves the computational
efficiency by sharing the features between the RPN and the object detection network. One-stage
methods, such as YOLO [27] and SSD [37], solve the detection problem as a regression problem and
achieve an end-to-end mapping directly from image pixels to bounding box coordinates by a full
convolutional network. SSD detects objects on multiple feature maps with different resolutions from a
deep convolutional network and achieves better detection results than YOLO.

In recent years, many ship detection algorithms [25] based on deep convolutional neural networks
have been proposed. These methods intuitively extract features of images through CNN, avoiding
complex shape and texture analysis, which significantly improve the detection accuracy and efficiency
of ships in optical remote sensing images. Zhang et al. [38] proposed S-CNN, which combines CNN
with the designed proposals extracted from two ship models. Zou et al. [23] proposed the SVD
Networks, which use CNN to adaptively learn the features of the image and adopt feature pooling
operation and the linear SVM classifier to determine the position of the ship. Hou et al. [39] proposed
the size-adapted CNN to enhance the performance of ship detection for different ship sizes, which
contains multiple fully convolutional networks of different scales to adapt to different ships sizes.
Yao et al. [25] applied a region proposal network (RPN) [28] to discriminate ship targets and regress
the detection bounding boxes, in which the anchors are designed by intrinsic shape of ship targets.
Wu et al. [40] trained a classification network to detect the locations of ship heads, and adopted an
iterative multitask network to perform bounding-box regression and classification [41]. But these
methods must first perform feature region extraction operations, so the efficiency of the algorithm
is reduced. The most important is that these methods can produce more false detection on land and
small ship cannot be detected.

This paper includes three main contributions:
(1) Aiming at the false detection on land, we use a sea-land separation algorithm [42] which

combines gradient information and gray information. This method uses gradient and gray information
to achieve preliminary separation of land and sea, and then eliminates non-connected regions through
a series of morphological operations and ignoring small area operations.

(2) About small ship cannot be detected, we used The Feature Pyramid Network (FPN) [43] and a
multi-scale detection strategy to solve this problem. The Feature Pyramid Network (FPN) proposes
a top-down path that combines a horizontally connected structure that combines low resolution,
strong semantic features with high resolution, weak semantic features to effectively solve small target
detection problem. The multi-scale detection strategy is proposed to achieve ship detection with
different degrees of refinement.

(3) We designed a two-stage inspection network for ship detection in optical remote sensing
images. It can obtain the position of the predicted ship directly from the image without additional
candidate region extraction operations, which greatly improves the efficiency of ship detection. Finally,
we propose a coarse-to-fine ship detection network (CF-SDN) which has the feature extraction structure
with the form of feature pyramid network, achieving end-to-end mapping directly from image pixels
to bounding boxes with confidence scores. The CF-SDN contains multiple detection layers with a
coarse-to-fine detection strategy employed at each detection layer.

The remainder of this paper is organized as follows. In Section II, we introduce our method
including procedure of optical remote sensing image preprocessing including the sea-land separation
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algorithm, the multi-scale detection strategy, two strategies to eliminate the influence of cutting
image, and the structure of the coarse-to-fine ship detection network (CF-SDN), including the feature
extraction structure, the distribution of anchor, the coarse-to-fine detection strategy, the details of
training and testing.. Section III describes the experiments performed on optical remote sensing image
data set and Section IV presents conclusions.

2. Methodology

In this section, we will introduce the procedure of optical remote sensing image preprocessing
including the sea-land separation algorithm, the multi-scale detection strategy, two strategies to
eliminate the influence of cutting image, and the structure of the coarse-to-fine ship detection network
(CF-SDN), including the feature extraction structure, the distribution of anchor, the coarse-to-fine
detection strategy, the details of training and testing. The procedure of optical remote sensing image
preprocessing is shown in Figure 1.

Figure 1. Flow diagram of the overall detection process.

2.1. Sea-land Separation Algorithm

Optical remote sensing images are obtained by satellites and aerial sensors. So the area that the
image covered is wide and the geographical background is complex. In ship detection task, ships are
usually scattered in water area (sea area) or in inshore area. In generally, the land and ship area present
a relatively high gray level and have much complex texture, which are contrary to the situation in the
sea area. Due to the complexity of the background in optical remote sensing images, the characteristics
of some land areas are very similar to those of ships. This can easily lead to the detection of ship on
land, which is called false alarm. Therefore, it is necessary to use sea-land separation algorithms to
distinguish the sea area (or water area) from the land area before formal detection.

The sea-land separation algorithm [42] used in this paper considers the gradient information and
the gray information of the optical remote sensing image comprehensively, combines some typical
image morphology algorithms, and finally generates a binary image. In the process of sea-land
separation, the algorithm that only considers the gradient information of the image performs well
when the sea surface is relatively calm and the land texture is complex. However, the algorithm is
difficult to achieve sea-land separation when the sea surface texture is complicated. The algorithm
considering gray-scale information of the image is suitable for processing uniform texture images, but is
difficult to process a complex image region. Therefore, the advantages of these two algorithms can be
complemented with each other. The combination of gradient information and gray scale information
can adapt to the complex situation of the optical remote sensing images, and can overcome the problem
of poor sea-land separation performance caused by considering single information. The sea-land
separation process is shown in Figure 2. The specific implementation details of the algorithm are
as follows:
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Figure 2. Flow diagram of the proposed sea-land separation algorithm.

(1) Threshold segmentation and edge detection are performed on the original image respectively.
Before the threshold segmentation, the contrast of the image is enhanced to highlight the regions where
the pixel values have large difference. Similarly, the image should be smoothed before performing
edge detection. The traditional edge detection methods produce a lot of subtle wavy textures on
the sea surface, which can be eliminated by filters. Here, we enhance the contrast of the image by
histogram equalization, and perform threshold segmentation by the Otsu algorithm. At the same
time, the median filter is used to smooth the image and the median filter size that selected in our
experiment is 5 × 5, because the median filter is a nonlinear filtering that can not only remove noise
but also preserve the edge information of the image when the image background is complex. Then the
canny operator is used to detect the image edges, and we set the low and high thresholds to 10% of the
maximum and 20% of the maximum, respectively.

(2) The threshold segmentation results and the edge detection results are combined by logical
OR operation, then a binary image is generated to highlight non-water areas, which is regarded as
the preliminary sea-land separation result. In the binary image, The pixel value of the land area is set
to 1, and the pixel value of the water area is set to 0. The final result (such as IMAGES3) is shown
in Figure 3.

Figure 3. (a) The testing optical remote-sensing image IMAGE3. (b) The sea–land separation result
corresponding to IMAGE3. It is a binary image, where the value of the position corresponding to the
sea (or water) area is 0 (it is shown in black in the figure), and the position corresponding to the land
region is 1(it is shown in white in the figure).
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(3) Finally, a series of specific morphological operations are performed on this binary image.
The basic specific morphological operation algorithms include dilation operation, erosion operation,
open operation and close operation. Among them, the dilation operation and the close operation can
fill gaps in the land contours of the binary map and remove small holes, while the erosion operations
and the open operations can eliminate some small protrusions and narrow sections in the land area.
Here, we first perform dilation operation and close operation on the binary image to eliminate the
small holes in the land area. Then we calculate the connected regions for the processed binary image
and exclude the small regions (corresponding to the ship or the small island at sea). The bumps
on the land edges are eliminated by the erosion operation and the opening operation. The above
specific morphological operation can be repeated to ensure the sea and land areas are completely
separated. The size and shape of structuring elements is determined by analyzing the characteristic of
non-connected areas on land from every experiment. The shape of structuring elements that selected
in our experiment is disk, and the size of disk is 5 and 10. Figure 4 gives the intermediate results of a
typical image slice in the sea-land separation process.

During test, only the area that contains the water area is sent into CF-SDN to detect ships and the
pure land area is ignored.

(a) (b) (c)

(d) (e) (f)

Figure 4. The intermediate results of one typical image slice in the sea-land separation process.
The intermediate results of one typical image slice in the sea–land separation process. (a) The original
image. (b) The edge detection result of the original image. (c) The threshold segmentation result of the
original image. (d) The result after logical OR operation. (e) The result after preliminary morphological
filtering. (f) The final sea–land separation result of the testing image.

Figure 4 gives the intermediate results of a typical image slice in the sea-land separation process.
It can be found that the results of edge detection and threshold segmentation can complement each
other to highlight non-water areas more completely. When only use threshold segmentation method,
the area with low gray values on land may be classified as sea areas. Edge detection highlights the
areas with complex textures and complements the results of threshold segmentation. We perform the
expansion filtering and closing operations on the combined results in sequence. Then the connected
regions are calculated and the small regions are removed. The final sea-land separation results highlight
the land area and ships on the surface are classified as sea area.
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2.2. Multi-Scale Detection Strategy

Generally the optical remote sensing images size is very large. The length and width of the
image is usually several thousand pixels, the ship targets seem to be very small on the entire image.
Therefore, it is necessary to cut the entire remote sensing image into some image slices and detect it
separately. These image slices are normalized to the fixed size (320 × 320) in a certain proportion. Then
the coarse-to-fine ship detection network outputs the detection results of these image slices. Here,
the outputs of network are scaled according to the corresponding proportion. Finally, these detection
results are mapped back to the original image according to the cutting position.

The sea-land separation results obtained in the previous subsection will also be applied in this
subsection. Most ship detection methods set the pixel value of the land area in the remote sensing
image to zero or the image’s mean value to achieve the purpose of shielding land during the detection
process. However, roughly removing original pixel values of the land area can easily lead to miss
detection of ships at boundary between sea and land. If separation results are not accurate enough,
detection performance will be greatly reduced. In this paper, we use a threshold to quickly exclude
the areas that only contain land, and detect ships in areas that contain water (include the boundary
between the sea and land). The specific method is as follows:

First, when the testing optical remote sensing image is cut, the corresponding sea-land separation
result (a binary image) will be cut into some binary image slices with the same cutting method. And In
the cut image, the ratio of ship area to slice area will become larger. Through a lot of experimental
and statistical analysis, we found that when the average value of each binary image slice is less than a
certain threshold, the water area in the image slice does not appear the ships. So each remote sensing
image slice corresponds to a binary image slice. Figure 5 lists 3 examples. We calculate the average
value of each binary image slice, and determine whether the image contains water. If the value is
greater than the set threshold (0.8), we can think the corresponding remote sensing image slice almost
does not contain water area, so we skip it and do not detect it.

Figure 5. The top part are 3 remote sensing images slices, and the bottom part are the corresponding
binary image slices. (1b) The mean value of the binary image slice is 0.52, which is smaller than the
threshold, so the image slice in (1a) should be sent to the ship detection network. (2b) The mean value
of the binary image slice is 1.0, which means that the image slice in (2a) only contains land, and can be
skipped directly. (3b) The mean value of the binary image slice is 0, which means that the image slice
in (3a) only contains water.
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All mentioned above is the method using a single cutting size to cut and detect the testing optical
remote sensing image. However, the scale distribution range of ships is wide. The size of small ship
is only dozens of pixels, while the size of large ships is tens of thousands of pixels. It is difficult to
determine the cutting size to ensure that ships at all scales can be accurately predicted. If the cutting
size is small, many large ships will be cut off, which leads to miss detection. If the cutting size is large,
many small ships will look smaller, which are difficult to detect. We propose a multi-scale detection
strategy shown in Figure 6 to solve this dilemma.

Figure 6. Flow diagram of the proposed multi-scale Detection.

The multi-scale detection strategy is that multiple cutting sizes are used to cut the testing optical
remote sensing image into multiple different scales image slices in the test process. The testing optical
remote sensing image is detected with multiple cutting sizes to achieve different degrees of refinement
detection. And the detection results at each cutting size are combined to make the ship detection in
optical remote sensing image more detailed and accurate.

In the experiment, we do a lot of tests and statistical analysis on the data set used in the
experiments, and we find that the maximum length of the ship in the data does not exceed 200 pixels,
the maximum width does not exceed 60 pixels, the minimum length is greater than 30 pixels, and the
minimum width is greater than 10 pixels. Finally, the image slices can achieve satisfactory results
when we choose the three cutting scales , 300 × 300, 400 × 400 and 500 × 500 respectively. And then
image slices of each scale are detected separately. The detection results at multiple cutting sizes are
combined and most of the redundant bounding boxes are deleted by non-maximal suppression (NMS),
then we obtain the final detection results.

2.3. Elimination of Cutting Effect

Because the optical remote sensing images need to be cut during the detection process, many
ships are easy to be cut off. This results in some bounding boxes which are output by the network only
containing a portion of the ship. We adopt two strategies to eliminate the effect of cutting.

(1) We slice the image by overlap cutting. The overlap cutting is a strategy to ensure each ship
appears completely at least once in all cutting image slices. This strategy produces overlapping slices
by moving stride smaller than the slice size. For example, when the slice size is 300*300, the stride
must be less than 300, and the produced slices certainly have overlapping parts. Moreover, different
cutting scales are used in the test process. The ship which is cut off at one scale may completely appear
at another scale. These bounding boxes detected from each image slice are mapped back to the original
image according to the cutting position, which ensure that at least one of the bounding boxes of the
same ship can completely contain the ship. The overlap cutting size used in experiment is 100 and the
stride is 100.
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(2) Suppose there are two bounding boxes A and B, shown in Figure 7a. The original NMS method
calculates the Intersection over Union (IoU) of the two bounding boxes and compares it with the
threshold to decide whether to delete the bounding box with lower confidence. However, optical
remote sensing image ship detection is special. As shown in Figure 7b, it is assumed that the bounding
box A only contains a part of a ship, and the bounding box B completely contains the same ship,
so most of the area A is contained in B. But according to the above calculation method, the IOU
between A and B may not exceed the threshold, so the bounding box A is retained and becomes a
redundant bounding box.

(a) (b)

Figure 7. Two bounding boxes with overlapping areas.

In order to solve this situation, a new metric named IOA (intersection over area) is used in the
NMS to determine whether to delete the bounding box. We define IOA between box A and box B as:

IOA =
area(A ∩ B)

area(B)
(1)

Here, assuming that the confidence of B is lower than A (if the confidence of the two boxes is
equal, then box B is the smaller one.) and area(A ∩ B) refers to the area of the overlap between box A
and box B.

During the test, we first perform non-maximum suppression on all detection results, which
calculates the value of IOU between overlapping bounding boxes (the threshold is 0.5) to remove some
redundant bounding boxes. For the remaining bounding boxes, the IOA between the overlapping
bounding boxes are calculated. If the IOA between the two bounding boxes exceeds the threshold
which is set to 0.8 in the experiments, the bounding box with lower confidence is removed.
The remaining bounding boxes are the final detection results.

2.4. The Feature Extraction Structure

Using deep convolutional neural networks for target detection have an important problem. It is
that the feature map output by the convolutional layer becomes smaller as the network deepens,
and the information of the small target is also lost. This causes low detection accuracy for small target.
Considering that shallow feature maps have higher resolution and deep feature maps contain more
semantic information, we used FPN [43] to solve this problem. This structure can fuse features of
different layers and independently predict object position of each feature layer. Therefore, the CF-SDN
not only can preserve the information of small ship, but also have more semantic information. The input
of the network is an image slice which is cut from optical remote sensing images, and the output is the
predicted bounding boxes and the corresponding confidences. The feature extraction structure of the
CF-SDN is shown in the Figure 8.
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Figure 8. The feature extraction structure of the coarse-to-fine ship detection network.

We select the first 13 convolutional layers and the first 4 max pooling layers of VGG-16 which is
pre-trained with ImageNet dataset [44] as the basic network, and add 2 convolutional layers (conv6
and conv7) at the end of the network. The two convolutional layers (conv6 and conv7) reduce the
resolution of the feature map to half in sequence. With the deepening of the network, the features
are continuously sampled by the max pooling layer, and the resolution of the output feature map
get smaller, but the semantic information is more abundant. This is similar to the bottom-up process
in FPN networks(A deep convnet computes an inherent multi-scale and pyramidal shape feature
hierarchy). We select four different resolution feature maps that output from conv4_3, conv5_3, conv6
and conv7 , as shown in Figure 8. The strides of the selected feature maps are 8, 16, 32 and 64. The input
size of this network is 320 × 320 pixels and the resolutions of the selected feature map are 40 × 40
(conv4_3), 20 × 20 (conv5_3), 10 × 10 (conv6) and 5 × 5 (conv7).

We set four detection layers in the network, and generate four feature maps of corresponding
size through the selected feature maps. Then these feature maps are used as the input of four
detection layers respectively. The deepest feature map (5 × 5) output by conv7 is directly considered
as the feature map of the last detection layer input, which is named det7. The feature maps used as
inputs of the remaining detection layers are generated sequentially from the back to front in a lateral
connections manner. The dotted line in the Figure 8 demonstrates the lateral connections manner.
The deconvolution layer doubles the resolution of the deep feature map, while the convolution layer
only changes the channel number of the feature map without changing the resolution. Feature maps
are fused by element addition, and a 3 × 3 convolutional layer is added to decrease the aliasing effect
caused by up-sampling. The fusion feature map serves as the input of the detection layer.

2.5. The Distribution of Anchors

In this subsection, we design the distribution of anchors at each detection layer. Anchors [28]
are a set of reference boxes at each feature map cell, which tile the feature map in a convolutional
manner. At each feature map cell, we predict the offsets relative to the anchor shapes in the cell and the
confidence that indicate the presence of ship in each of those boxes. In optical remote sensing images,
the scale distribution of ships is discrete, and ships usually have diverse aspect ratio depending on
different orientations. So anchors with multiple sizes and aspect ratios are set at each detection layer
to increase the number of matched anchors.

Feature maps from different detection layer have different resolutions and receptive field
sizes introduce two types of receptive fields in CNN [45,46] , one is the theoretical receptive field
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which indicates the input region that theoretically affects the value of this unit, the other is the
effective receptive field which indicates the input region has effective influence on the output value.
Zhang et al. [47] points out that the effective receptive field is smaller than the theoretical receptive
field, and anchors should be significantly smaller than theoretical receptive field in order to match
the effective receptive field. At the same time, the article states that the stride size of a detection layer
determines the interval of its anchor on the input image.

As listed in the second and third column of Table 1, the stride size and the size of theoretical
receptive field at each detection layer are fixed. Considering that the anchor size set for each layer
should be smaller than the calculated theoretical receptive field, we design the anchor size of each
detection layer as shown in the fourth column of Table 1. The anchors of each detect layer have two
scales and five aspect ratios. The aspect ratios are set to { 1

3 , 1
2 , 1, 2, 3}, so there are 2 × 5 = 10 anchors

at each feature map cell on each detection layer.

Table 1. The distribution of the anchors.

Detect Layer Stride Theoretical Receptive Field Size Anchor Size

conv4_3 8 922 {322,642}
conv5_3 16 1962 {642,962}
conv6 32 4042 {1282,1602}
conv7 64 4042 {1922,2242}

2.6. The Coarse-to-Fine Detection Strategy

The structure of the detection layer is shown in Figure 9. We set up three parallel branches at
each detection layer, two for classification and the other for bounding box regression. In Figure 9,
the branches from top to bottom are coarse classification network, fine classification network and
bounding box regression network, respectively. At each feature map cell, the bounding box regression
network predicts the offsets relative to the anchor shapes in the cell, and the coarse classification
network predicts the confidence which indicates the presence of ship in each of those boxes. This is a
coarse detection process which obtains some bounding boxes with confidences. Then, the image block
contained in the bounding box which has a confidence higher than the threshold (set to 0.1) is further
classified (ship or background) by the fine classification network to obtain the final detection result.
This is a fine detection process.

Figure 9. The structure of the detection layer.
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2.6.1. Loss Function

Aiming at the structure of the detection layer, the multi-task loss L are used to jointly optimize
model parameters:

L = α
1

Ncls1
∑

i
Lcls(pi, p∗i ) + β

1
Nreg

∑
i

p∗i Lreg(ti, t∗i ) + γ
1

Ncls2
∑

j
Lcls(pj, p∗j ) (2)

In Equation (2) i is the index of an anchor from the coarse classification network and the bounding
box regression network in a batch, and pi is the predicted probability that the anchor i is a ship. If the
anchor is positive, the ground truth label p∗i is 1, and p∗i is 0 conversely. ti is a vector representing
the 4 parameterized coordinates of the predicted bounding box, and t∗i is that of the ground-truth
box associated with a positive anchor. The term p∗i Lreg means the regression loss is activated only for
positive anchors and disabled otherwise. j is the index of an anchor from the fine classification network
in a mini-batch, and the meaning of pj and p∗j is similar to pi and p∗i . The three terms are normalized
by Ncls1 , Nreg and Ncls2 and weighted by the balancing parameter α, β and γ. Ncls1 represents the
number of positive and negative anchors from the coarse classification network in the batch. Nreg

represents the number of positive anchors from the bounding box regression network in the batch,
and Ncls2 represents the number of positive and negative anchors from the fine classification network
in the batch. In our experiment, we set α = β = γ = 1

3 .
In Equation (2) the classification loss Lcls is the log loss from the coarse classification network:

Lcls(pi, p∗i ) = −log[p∗i pi + (1 − pi)(1 − p∗i )] (3)

the regression loss Lreg is the smooth L1 loss from the bounding box regression network:

Lreg(ti, t∗i ) = R(ti − t∗i ) (4)

R is smooth L1 function:

smoothL1(x) =

{
0.5x2 i f |x| < 1,

|x| − 0.5 otherwise
(5)

2.6.2. Training Phase

In the training phase, these three branches are trained at the same time. A binary class label is set
for each anchor in each branch.

(1) For coarse classification network and bounding box regression network, the anchors assigned
positive label must satisfy one of the following two conditions: (i) match a ground truth box with the
highest Intersection-over-Union (IoU) overlap. (ii) match a ground-truth box with an IoU overlap
higher than 0.5. The anchors which have IoU overlap lower than 0.3 for all ground-truth boxes are
assigned as negative label. The SoftMax layer outputs the confidences of each anchor at each cell on
the feature map. Anchors whose confidence higher than 0.1 are selected as the train samples of the fine
classification network.

(2) For fine classification network, the anchors selected from the previous step are further given
positive and negative label. Here, the IoU overlap threshold for selecting the positive anchor is raised
from 0.5 to 0.6. The larger threshold means that the positive anchor selected is closer to the ground
truth box, which makes the classification more precise. Since the number of negative samples in remote
sensing images is much larger than the number of positive samples, we randomly select negative
samples to ensure that the ratio between positive and negative samples in each mini-batch is 1:3. If the
number of positive samples is 0, the number of negative samples is set to 256.
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2.6.3. Testing Phase

In the testing phase, firstly the bounding box regression network outputs the coordinate offsets
to each anchor at each feature map cell. Then we adjust the position of each anchor by the box
regression strategy and to get the bounding boxes. The outputs of the two classification networks
are the confidence scores s1 and s2 corresponding to each bounding box. The confidence scores
encode the probability of the ship appearing in the bounding box. First, if s1 output from the coarse
classification network is lower than 0.1, the corresponding bounding box is removed. Then the
confidence corresponding to the remaining bounding box is determined as the product of s1 and s2.
The bounding box with the confidence larger than 0.2 is selected. Finally, non-maximum suppression
(NMS) is applied to get final detection results.

3. Experiments and Results

In this section, the details of the experiments are described and the performances of the proposed
method are studied. First, we introduce the data set used in the experiment. Then we introduce
evaluation metrics used in the experiments. Finally, we conduct multiple sets of experiments to
evaluate the performance of our methods and compare it with three excellent detection methods.

3.1. Data Set

Due to the lack of public data sets intended for ship detection in optical remote sensing image,
we collected seven typical and representative images from different geographic conditions in Google
Earth. The resolution of these images is 0.5 meter per pixel. The number of ships contained in each
image range from dozens to hundreds and the ship size varies from 10 × 10 pixels to 400 × 400 pixels.
Among these images, we selected 4 images for training and 3 images were remained for testing.
The position of each ship in training images were labeled, including the coordinates of the center point,
length and width of the ship. The data set we used is shown in Figure 10. Table 2 introduces the three
images IMAGE1, IMAGE2, and IMAGE3 of the testing set.

Figure 10. The data set we used

For training set images, the center of each ship was regarded as the center of image slice and some
image slices were cut out as the train samples with the size of 300 × 300, 400 × 400, and 500 × 500.
Data augmentation was achieved through translation, rotation, image brightness, contrast changes
and so on. After data augmentation, 30000 image slices with different sizes composed the training data
set for CF-SDN. Each ship is completely contained in at least an image slice and the corresponding
position information constituted the training label set.
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Table 2. The information of the testing images.

Image Size Numbers of Ships Main Feature of Ships

IMAGE1 7948 × 11,289 190 small
IMAGE2 5726 × 4267 67 dense
IMAGE3 10,064 × 23,168 560 small and dense

3.2. Evaluations Metrics

The precision-recall curve (PRC) and average precision (AP) are used to quantitatively evaluate
the performance of an object detection system.

3.2.1. Precision-Recall Curve

The precision-recall curve reflects the trend in precision and recall. The precision rate represents
the proportion of the real target in the predicted target, and the recall rate represents the proportion of
the correctly detected targets in the actual real targets. The precision and recall metrics are computed
as follows:

precision =
Ntp

Ntp + Nf p
(6)

recall =
Ntp

Ntp + Nf n
(7)

Here, Ntp represents the number of true positives, which indicates the number of the correctly
detected targets. Nf p represents the number of false positives, which indicates the number of the error
detected targets(misjudge the background as a target). Nf n represents the number of false negatives,
which indicates the number of miss detected targets. If the IoU between the predicted bounding box
and the ground truth bounding box exceeds 0.5, the detection is regarded as true positive, otherwise,
as a false positive. If there are multiple predicted bounding boxes overlap the same ground truth
bounding box, then only one is considered as true positive, while others are considered as false positive.

The higher precision rate and recall rate, the better detection performance. But the precision
rate is usually balanced against the recall rate. When the recall rate increases, the precision rate will
decrease accordingly. Therefore, we calculate the average precision of the P-R curve to reflect the
detection performance.

3.2.2. Average Precision

The average precision is the area under the precision-recall curve. Here, the average precision is
obtained by calculating the average value of the corresponding precision when the recall rate changes
from 0 to 1. In this paper, the average precision is calculated by the method used in the PASCAL VOC
Challenge, which calculates the average precision by taking the mean of the precision rate of the points
at all different recall rates on the P-R curve.

3.3. Implementation Details

Our experiments are implemented in Caffe, in a hardware environment consisting of HP-Z840
Workstation with an TITAN X12-GB GPU.

In the training of CF-SDN, the layers from VGG-16 are initialized by pre-training a model for
ImageNet classification [48], which is a common technique used in deep neural networks. All other
new layers are initialized by drawing weights from a zero-mean Gaussian distribution with standard
deviation 0.01. The whole network is trained end-to-end by back propagation algorithm and SGD.
The initial learning rate is set to 0.001 and we use it for 30k iterations; then we continue training for
30k iterations with 0.0005. The batch size is set to 20, and the total number of positive anchors and
negative anchors in a batch is 256. The momentum is set to 0.9 and the weight decay is set to 0.0005.
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3.4. Experimental Results and Analysis

3.4.1. Performance on the Testing Data Set

Using the trained CF-SDN, we perform ship detection on the testing data set which contains three
optical remote sensing images with different scenes. The sea-land separation algorithm is used to
obtain a binary image of the testing image, which is used to remove the image slices that only contain
land. The multi-scale detection strategy is used to achieve different degrees of refinement detection.
Figures 11–13 shows the detection results of CF-SDN on IMAGE1, IMAGE2 and IMAGE3 respectively,
in which the true positives, false positives and false negatives are indicated by red, green and blue
rectangles. The top left corner of the rectangle shows the confidence. Due to the large size of the testing
image, we only take some representative areas to show the details.

As shown in Figure 11, the proposed method exhibits good detection performance for small size
ships. Despite some ships on the sea are fuzzy which caused by cloud occlusion and wave interference,
the proposed method has successfully detected most of these ships. As shown in Figure 12 and
Figure 13, the proposed method has accurately located the scattered ships on the sea. Many ships on
the land boundary also can be well detected, though they are easily be confused with the land features.
For the dense ships in the port, as shown in Figure 13, our method can also detect most of the ships.

Figure 11. The detection results of IMAGE1. The true positives, false positives and false negatives are
indicated by red, green and blue rectangles. The top left corner of the rectangle shows the confidence.
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Figure 12. The detection results of IMAGE2. The true positives, false positives and false negatives are
indicated by red, green and blue rectangles. The top left corner of the rectangle shows the confidence.

Figure 13. The detection results of IMAGE3. The true positives, false positives and false negatives are
indicated by red, green and blue rectangles. The top left corner of the rectangle shows the confidence.
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3.4.2. Comparison with other detection algorithms

In order to quantitatively demonstrate the superiority of our approach, we compared it with the
other object detection algorithms. We choose R-CNN [33], Faster R-CNN [28], SSD [37] and the latest
ship detection algorithms [49] as the comparison algorithm. R-CNN is an object detection model based
on deep convolutional neural network and has been widely used in object detection of remote sensing
images. Faster R-CNN is the representative two-stage object detection model and is improved from
R-CNN. SSD is the representative one-stage object detection model, which is the same as CF-SDN and
achieves an end-to-end mapping directly from image pixels to bounding box coordinates. The latest
ship detection algorithm is a R-CNN based ship detection algorithm. Figure 14 is shown the specific
example from six different methods.

(a) (b) (c)

(d) (e) (f)

Figure 14. The specific example from six different methods. (a) The CF-SDN detection result. (b) The
C-SDN detection result. (c) The Faster-RCNN detection result. (d) The SSD detection result. (e) The
RCNN detection result. (f) The RCNN-based ship detection result.

In addition, to further validate the effectiveness of the proposed feature extraction structure
and the coarse-to-fine detection strategy, we compare the proposed CF-SDN with CF-SDN without
fine classification. In this experiment, C-SDN represents the CF-SDN without fine classification
network, which has the same feature extraction structure as CF-SDN, but only contains a coarse
classification network and a bounding box regression network at the detection layer. CF-SDN
represents the complete CF-SDN, which adopts the coarse-to-fine detection strategy in detection,
and predicts the boundary box that may contain ships through a coarse classification network and
a bounding box regression network, and further finely classifies the detection results through a fine
classification network.

For all test methods, the sea-land separation algorithm was implemented to remove the image
slice that only contains land. We used the overlap cutting to slice the images the cutting size used in
test is 400 (the overlap cutting size is 100 and the stride is 100). In addition, the detection results of the
whole testing images are processed by NMS, and the IOA threshold is set to 0.5.

Tables 3 and 4 and Figure 15 show the quantitative comparison results of these methods on
testing data set. As can be seen, the proposed CF-SDN exceed all other methods for all images in
terms of AP. Compared with R-CNN, SSD, Faster R-CNN, C-SDN and R-CNN Based Ship Detection,
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the proposed CF-SDN acquires 27.3%, 9.2%, 4.8%, 2.7%, 22.4% performance gains in terms of AP
on entire data set, respectively. Among them, the performance of C-SDN is second only to CF-SDN.
Compared with R-CNN, SSD, Faster R-CNN and R-CNN Based Ship Detection, the CF-SDN without
fine classification (C-SDN) acquires 24.6%, 6.5%, 2.1%, 21.7% performance gains in terms of AP on
entire data set, respectively. This benefits from the proposed feature extraction structure which fuses
different hierarchical features to improve the representation of features. Through the comparion
between the C-SDN and CF-SDN, we can find the superiority of the coarse-to-fine detection strategy.
Many false alarms are removed and the average precision is improved by the further fine classification.

Table 3. Performance comparison of the six methods on the testing set in terms of AP.

IMAGE1 IMAGE2 IMAGE3 Comprehensive

R-CNN 0.389 0.442 0.475 0.415
SSD 0.504 0.691 0.625 0.596

Faster R-CNN 0.590 0.695 0.645 0.640
R-CNN Based Ship Detection 0.549 0.581 0.411 0.464

C-SDN 0.607 0.706 0.668 0.661
CF-SDN 0.610 0.742 0.706 0.688

Table 4. Performance comparison of the five methods on the testing set in terms of time(unit: second).

R-CNN SSD Faster R-CNN R-CNN Based Ship Detection CF-SDN

IMAGE1 42.432 19.584 29.376 31.469 13.661
IMAGE2 11.232 5.184 7.776 9.159 4.218
IMAGE3 65.208 30.096 47.652 56.326 26.752

Total 119.872 54.864 84.804 99.69 44.631

(a) (b)

(c) (d)

Figure 15. Performance comparison of the six methods on the testing set in terms of the P-R Curves.
(a) Comparison of detection performance on IMAGE1. (b) Comparison of detection performance
on IMAGE2. (c) Comparison of detection performance on IMAGE3. (d) Comparison of detection
performance on the whole testing data set.
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3.4.3. Sea-Land Separation to Improve the Detection Accuracy

In order to validate the effectiveness of the sea-land separation algorithm, we compared the
detection results with and without sea-land separation during the test. We choose SSD and CF-SDN as
the detection model. SSD-I and C-SDN indicate that the sea-land separation method was not used
during the test. SSD-II and CF-SDN indicate that the proposed sea-land separation method is used
to remove the areas which only contain land during the test. The cutting size is 400 (the overlap is
100). The detection result of the whole testing image is processed by NMS, and the IoU threshold is set
to 0.5.

Table 5 shows the quantitative comparison results of the experiments. Table 6 shows the time
spent in two different phases during the test. It can be observed that SSD-II acquires 19.6% performance
gains in terms of AP in entire data set compared with SSD-I, while CF-SDN acquires 2.1% performance
gains compared with C-SDN. As shown in Figure 16, the method that use sea-land separation has
achieved higher accuracy when the recall rate is almost equal. This demonstrates that the sea-land
separation can avoid some false alarms and improve the detection accuracy. The detection performance
of SSD is more affected by sea-land separation than that of CF-SDN, which confirms that CF-SDN can
extract features better and generate fewer false alarms.

(a) (b)

(c) (d)

Figure 16. Performance comparison of with and without sea-land separation on the testing set in terms
of the P-R Curves. (a) Comparison of detection performance on IMAGE1. (b) Comparison of detection
performance on IMAGE2. (c) Comparison of detection performance on IMAGE3. (d) Comparison of
detection performance on the whole testing data set.
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Table 5. Performance comparison of with sea-land separation on the testing set and without sea-land
separation on the testing set in terms of AP.

SSD-I SSD-II C-SDN CF-SDN

IMAGE1 0.434 0.504 0.586 0.610
IMAGE2 0.621 0.691 0.720 0.742
IMAGE3 0.370 0.625 0.690 0.706

Comprehensive 0.400 0.596 0.667 0.688

Table 6. Time spent at different phases during the test(unit: second).

IMAGE1 IMAGE2 IMAGE3 Total

CF-SDN 13.661 4.218 26.752 44.631
Threshold segmentation 20.264 5.969 53.797 80.03

Edge detection 3.997 0.940 10.249 15.366
Morphological operation 2.858 0.804 7.764 11.426

Excluding the small region 7.843 3.416 19.496 30.755

3.4.4. Multi-Scale Detection Strategy Improves Performance

In order to validate the effectiveness of the multi-scale detection strategy, we compare the detection
performance of using single cutting size and using multi-scale detection strategy during the test. For the
experiment that using single cutting size, we adopt three different cutting sizes of 300 × 300, 400 × 400
and 500 × 500 respectively. For the experiment that using multi-scale detection strategy, we combine
the detection results of three single cutting size and use NMS to remove some redundant bounding
boxes. The detection model used in these experiments is the CF-SDN, and both of them use the
sea-land separation algorithm to remove the area that only contains land.

Table 7 and Figure 17 show the quantitative comparison results of using each single cutting
sizes and using the multi-scale detection strategy. As can be seen from them, the highest detection
accuracy is obtained by using the multi-scale detection strategy. When we only adopt a single cutting
size, the cutting scale of 400 × 400 demonstrates the best detection performance on the testing data
set. Compared with the single detection scale of 300, 400, 500, the combined result acquired 4.4%,
3.9%, 13.8% performance gains in terms of AP in entire data set. Combined with the detection
results at different cutting sizes, the multi-scale detection strategy shows the outstanding advantages.
The combination of multiple detection with different refinement degree effectively improves the
accuracy and the recall of ship detection.

Table 7. Performance comparison of using each single cutting size and using the multi-scale detection
strategy (combined) on the testing set in terms of AP.

300 × 300 400 × 400 500 × 500 Combined

IMAGE1 0.668 0.610 0.579 0.705
IMAGE2 0.757 0.742 0.710 0.745
IMAGE3 0.683 0.706 0.590 0.735

Comprehensive 0.683 0.688 0.589 0.727
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(a) (b)

(c) (d)

Figure 17. Performance comparison of using each single cutting size (300 × 300, 400 × 400 and
500 × 500) and using the multi-scale detection strategy (combined) on the testing set in terms of the
P-R Curves. (a) Comparison of detection performance on IMAGE1. (b) Comparison of detection
performance on IMAGE2. (c) Comparison of detection performance on IMAGE3. (d) Comparison of
detection performance on the whole testing data set.

4. Conclusions

This paper presents a coarse-to-fine ship detection network (CF-SDN) which includes a sea-land
separation algorithm, a coarse-to-fine ship detection network and a multi-scale detection strategy.
The sea-land separation algorithm can avoid false alarms on land. The coarse-to-fine ship detection
network do not need to use the region proposal algorithm and directly achieves an end-to-end mapping
directly from image pixels to bounding boxes with confidences. The multi-scale detection strategy can
achieve ship detection with different degrees of refinement. It effectively improves the accuracy and
speed of ship detection.

Experimental results on optical remote sensing data set show that the proposed method
outperforms other excellent detection algorithms and achieves good detection performance on the data
set including some small-sized ships. For the dense ships near the port, our method can locate most of
the ships well, although produce a little false alarms and miss detections at the same time. The main
reason for the missing detection is that many bounding boxes with high overlap are removed by
NMS. In fact, the overlaps between the ground truth of dense ships is very high. Therefore, our future
work will focus on the two aspects: (1) The orientation angle information is taken into account when
determining the position of the ship, which can effectively reduce the overlap between the bounding
boxes of the dense ships. (2) Combined with the characteristics of remote sensing images, the select
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strategy of positive and negative samples are considered in the network to improve the classification
and location ability of the detection network.
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Abstract: When extracting land-use information from remote sensing imagery using image
segmentation, obtaining fine edges for extracted objects is a key problem that is yet to be solved.
In this study, we developed a new weight feature value convolutional neural network (WFCNN) to
perform fine remote sensing image segmentation and extract improved land-use information from
remote sensing imagery. The WFCNN includes one encoder and one classifier. The encoder obtains
a set of spectral features and five levels of semantic features. It uses the linear fusion method to
hierarchically fuse the semantic features, employs an adjustment layer to optimize every level of fused
features to ensure the stability of the pixel features, and combines the fused semantic and spectral
features to form a feature graph. The classifier then uses a Softmax model to perform pixel-by-pixel
classification. The WFCNN was trained using a stochastic gradient descent algorithm; the former
and two variants were subject to experimental testing based on Gaofen 6 images and aerial images
that compared them with the commonly used SegNet, U-NET, and RefineNet models. The accuracy,
precision, recall, and F1-Score of the WFCNN were higher than those of the other models, indicating
certain advantages in pixel-by-pixel segmentation. The results clearly show that the WFCNN can
improve the accuracy and automation level of large-scale land-use mapping and the extraction of
other information using remote sensing imagery.

Keywords: convolutional neural network; image segmentation; multi-scale feature fusion; semantic
features; Gaofen 6; aerial images; land-use; Tai’an

1. Introduction

Remote sensing images have become the main data source for obtaining land-use information
at broad spatial scales. The most common method first assigns each pixel to a category using
image segmentation and subsequently generates land-use information according to the pixel-by-pixel
classification result [1,2]. Since the accuracy of the final extraction is determined by the accuracy of
the pixel-by-pixel classification, improving the segmentation accuracy is a common research focus [3].
The pixel feature extraction method and the classifier performance both have a decisive influence on
segmentation results [4,5].
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Researchers have proposed a variety of methods to extract ideal features. For example, spectral
indexes have been widely applied in the classification of low- and medium-spatial-resolution remote
sensing images, as they can accurately reflect statistical information regarding pixel spectral values.
Commonly used indexes include the vegetation index [6–13], water index [14], normalized difference
building index [15], ecological index [16], normalized difference vegetation index (NDVI) [10,13], and
derivative indexes such as the re-normalized difference vegetation index [12] or the growing season
normalized difference vegetation index [13]. Taking account of the advantage of the short time period
of low- and medium-spatial-resolution remote sensing images, some researchers have applied spectral
indexes to time-series images [17,18]. However, such indexes are mainly used to express common
information within the same land-use type through simple band calculations. When these are applied
to remote sensing images with rich detail and high spatial resolution, it becomes difficult to extract
features with good discrimination, limiting the application of spectral indexes to the classification of
such images.

For high-spatial-resolution remote sensing images with a high level of detail, researchers initially
proposed the use of texture features with the gray matrix method [19]. Subsequently, other researchers
have proposed a series of methods for extracting more abundant texture features, including the Gabor
filter [20], the Markov random field model [21], the Gibbs random field model [22], and the wavelet
transform [23]. Compared with spectral index features, texture features can better express the spatial
correlation between pixels, improve the ability to distinguish between features, and effectively improve
the accuracy of pixel classification.

Although the combination of spectral and texture features has greatly promoted the development
of remote sensing image segmentation technology and significantly improved the accuracy of pixel
classification results, the ongoing improvement in remote sensing technology has resulted in increasing
image resolutions and higher levels of detail. Traditional texture feature extraction techniques now
struggle with high-resolution images, such that new methods are needed to obtain effective feature
information from such images [24,25].

The developing field of machine learning is currently being applied to pixel feature extraction,
with early applications to image processing, including neural networks [26,27], support vector
machines [28,29], decision trees [30,31], and random forests [32,33]. These methods use pixel
spectral information as inputs and achieve the desired feature results through complex calculations.
Although these methods can fully explore the relationship between channels and obtain some effective
feature information, these features only express the information of a single pixel rather than the
spatial relationship between pixels, limiting these methods’ application in the processing of remote
sensing images.

Convolutional neural networks (CNNs) use pixel blocks as inputs and compute them with a set of
convolution kernels to obtain more features with a stronger distinguishing ability [34–37]. The biggest
advantage of CNNs lies in their ability to simultaneously extract specific pixel features as well as spatial
features of pixel blocks. This approach can reasonably set the structure of the convolutional layer
according to the characteristics of the image and the extraction target, so as to extract features that meet
the requirements, achieving good results in image processing [34,36]. The most widely used CNNs in
the field of camera image processing include fully convolutional networks (FCNs) [38], SegNet [39],
DeepLab [40], RefineNet [41], and U-NET [42]. DeepLab expands the convolution for rich features in
camera images, enabling the model to effectively expand the receptive field without increasing the
calculations required. SegNet and UNET can establish a symmetrical network structure and segment
camera images, resulting in an efficient utilization of high-level semantic features. RefineNet uses
a multipath structure to combine coarse high-level semantic features and relatively fine low-level
semantic features by equal-weight fusion.

As CNNs have outstanding advantages in feature extraction, they have been widely used in
other fields, such as real-time traffic sign recognition [43], pedestrian recognition [44], apple target
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recognition [45], plant disease detection [46], and pest monitoring [47]. Researchers have established a
method to extract coordinate information of an object from street view imagery [48] using CNNs.

Compared to camera images, remote sensing images have fewer details and more mixed pixels.
When using a CNN to extract information from remote sensing images, the influence of the convolution
structure on feature extraction must be considered [49]. Existing CNN structures are mainly designed
for camera images with a high level of detail; therefore, a more ideal result can be obtained through
adjustments that consider the specific characteristics of remote sensing images [50,51]. Researchers have
proposed a series of such adjustments for applying CNNs to remote sensing image processing [3] and
some classic CNNs have been widely applied in this field [52,53]. Based on the characteristic analysis
of target objects and specific remote sensing imagery, researchers have established a series of CNNs
such as two-branch CNN [49], WFS-NET [54], patch-based CNN [55], and hybrid MLP-CNN [56].
Researchers have also used remote sensing images to create many benchmark datasets, such as
EuroSAT [57] or the Inria Aerial Image dataset [58], to test the performance of CNNs.

In this study, we established a CNN structure based on variable weight fusion, the weight feature
value convolutional neural network (WFCNN), and experimentally assessed its performance. The main
contributions of this work are as follows.

• Based on the analysis of the data characteristics of remote sensing images, fully considering
the impact of image spatial resolution on feature extraction, we establish a suitable network
convolution structure;

• The proposed approach can effectively fuse low-level semantic features with high-level semantic
features and fully considers the data characteristics of adjacent areas around objects on remote
sensing images. Compared with the strategies adopted by other models, our approach is more
conducive to effective features.

2. Datasets

We employed two sets of datasets to test the performance of the model. We created the GF-6 images
dataset that contains 587 image-label pairs. The aerial image labeling dataset was the benchmark
dataset [58].

2.1. The GF-6 Images Dataset

2.1.1. Study Area

Tai’an is a prefecture-level city covering ~7761 km2 in Shandong Province, eastern China
(116◦20–117◦59′E, 35◦38′–36◦28′N; Figure 1); it has jurisdiction over the districts of Taishan and
Daiyue, the cities of Feicheng and Xintai, and the counties of Ningyang and Dongping. Its terrain
is highly variable, including mountains, hills, plains, basins, and lakes (Figure 1c). The mountains
are concentrated in the east and north, including Mount Tai (one of the Five Great Mountains of
China). The hills are mainly distributed in southwestern Xintai, eastern Ningyang, the northwestern
city suburbs, southern Feicheng, and northern Dongping. The major basin lies within Dongping and
contains Dongping Lake, Daohu Lake, and Zhoucheng Lake.

In the study area, crops are divided into summer and autumn crops, according to the growing
season. Summer crops mainly refers to winter wheat, and its growth period begins in the autumn and
reaches the early summer of the second year. Autumn crops mainly refer to corn, millet, and potato.
The growth period generally ranges from early summer to early winter. Therefore, crop planting areas
are usually divided into winter wheat and farmland.

There are eight main land-use types in the study area: developed land, water bodies, agricultural
buildings, roads, farmland, winter wheat, woodland, and others. Developed land includes residential
and factory areas, agricultural buildings refer to buildings in crop planting areas, and others refer to
areas not used. These diverse landforms and land-uses render the study area representative of many
different regions and suitable as an experimental area for this study.
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Figure 1. Geographic location of the city of Tai’an (red boundary) within Shandong Province, China:
(a) Geographic location of China; (b) Geographic location of Shandong Province; (c) Terrain of Tai’an
and (d) remote sensing images used in this study.

2.1.2. Remote Sensing Data

Gaofen 6 (GF-6) is a low-orbit optical remote sensing satellite launched by China in 2018, which
provides images with high resolution, wide coverage, high quality, and high efficiency. GF-6 has a
design life of eight years and two cameras: a full-color 8 m (high-resolution) multi-spectral camera
with an image swath of 90 km and a 16 m (medium-resolution) multi-spectral wide-format camera
with an image swath of 800 km. The GF-6 satellite will operate with the Gaofen 1 satellite network,
reducing the time resolution of remote sensing data acquisition from 4 d to 2 d. In-depth analysis of
these remote sensing images and the establishment of appropriate image segmentation methods will
allow the acquisition of high-precision global land-use information, which is of great significance for
improving the application level of GF-6.

We selected images from different seasons to increase the anti-interference abilities of the WFCNN
and mitigate potential complications, such as the change in seasons, and thus enhance applicability. We
collected a total of fifty-two GF-6 remote sensing images (Figure 1d). These images were divided into
four groups according to the image acquisition time. The first image group was captured in autumn
2018, the second in winter 2018, the third in spring 2019, and the fourth in summer 2019. Together, the
images of each group covered the study area. Specifications are given in Table 1.
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Table 1. Specifications for Gaofen 6 satellite imagery used in this study.

Band Range (μm) Spatial Resolution (m) Width (km)

Panchromatic 0.45–0.90 2 >90
B1 0.45–0.52 8 >90
B2 0.52–0.60 8 >90
B3 0.43–0.69 8 >90
B4 0.76–0.90 8 >90

Image preprocessing included geometric correction, radiation correction, and image fusion.
We used Python to develop a program for geometry correction that captured control points from
geometrically corrected Gaofen 2 (GF-2) remote sensing images. These geographically corrected GF-2
images have a spatial resolution of 1 meter, which is suitable for selecting control points from them.

Atmospheric correction was performed using the fast line-of-sight atmospheric analysis of spectral
hypercubes module in the environment for visualizing images (ENVI) software. The multi-spectral
and panchromatic images were fused using the Pan-sharping module in ENVI. The resulting image
included four bands (blue, green, red, and near-infrared) with a 2-m spatial resolution.

2.1.3. Dataset Creation

In the images captured in winter or spring, developed land, water bodies, agricultural buildings,
roads, bare fields, and farmland can be directly distinguished by visual interpretation within ENVI.
To accurately distinguish winter wheat and woodland, 353 sample points were obtained through
ground surveys (118 woodland and 235 winter wheat, Figure 2). Woodland areas had a rough texture, a
large color change, and an irregular shape, while winter wheat areas were finer, smoother, and generally
regular in shape. Defining these features helped to improve the accuracy of visual interpretation.

Figure 2. Geographic location of ground survey sample points used to distinguish winter wheat (green)
and woodland (yellow).

The ENVI software was used to fuse the images into a complete mosaic, covering the whole study
area. This image was then segmented into patches of 480 × 360 pixels, from which 587 images were

225



Remote Sens. 2020, 12, 213

selected for manual classification based on the eight land-use types defined above. Numerical codes
were then assigned to these land-use types; an example is provided in Figure 3. All labeled image
patches and their labeled files formed data sets for training and testing the WFCNN model.

 
Figure 3. Example of land-use classification: (a) original image and (b) classified image.

2.2. The Aerial Image Labeling Dataset

The aerial image labeling dataset was downloaded from https://project.inria.fr/
aerialimagelabeling/ [58]. The images cover dissimilar urban settlements, ranging from densely
populated areas (e.g., the financial district of San Francisco) to alpine towns (e.g., Lienz in the Austrian
Tyrol). The dataset features were as follows:

Coverage of 810 km2

Aerial orthorectified color imagery with a spatial resolution of 0.3 m
Ground truth data for two semantic classes: building and no building

The original aerial image labeling dataset contained 180 color image tiles, 5000 × 5000 pixels in
size, which we cropped into small image patches, each with a size of 500 × 500 pixels. An image-label
pair example is provided in Figure 4.

Figure 4. Example of image-label pair: (a) original image and (b) classified image.
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3. Methods

3.1. Structure of the WFCNN Model

The WFCNN model includes an encoder, a decoder, and a classifier (Figure 5). The encoder is
used to extract pixel-by-pixel features, while the decoder is used to fuse the coarse high-level semantic
features and fine low-level semantic features. The classifier is used to complete the pixel-by-pixel
classification. When training the model, the image patch and the corresponding label file are used as
inputs. Once the model is successfully trained, the image to be segmented is used as the input, with
the output being pixel-by-pixel label files.

Figure 5. Structure of the weight feature value convolutional neural network model.

3.1.1. Encoder

The encoder consists of five serial connection feature extraction units that can extract five levels of
semantic features for each pixel. Each unit consists of three convolutional layers, a batch normalization
layer, an activation layer, and a pooling layer. The encoder contains a total of 15 convolutional layers
with differing amounts of convolution kernels (Table 2). The advantage of this structural design is
that the influence of the image’s spatial resolution and geographical coverage is fully considered.
Ensuring that sufficient semantic features can be extracted avoids the risk that the excessively deep
convolution structure may cause noise in extracted feature values. This is beneficial to the classifier
when performing pixel-by-pixel classification.

Table 2. Number of convolution kernels for each convolutional layer.

Layer Number of Convolution Kernels

1, 2, 3 64
4, 5, 6, 128
7, 8, 9 256

10, 11, 12, 13, 14, 15 512

The activation layer uses the widely used rectified linear unit function as the activation function.
Commonly, the pooling operation can accelerate feature aggregation and eliminate feature values
with poor discrimination, which is beneficial to the operation of the classifier. However, the pooling
operation generally leads to a reduced feature map resolution, affecting segmentation accuracy. When
pooling the edge area of two object types, the fact that two adjacent pixels often belong to different
categories makes it is easy to mistakenly apply the feature values of one category to another category.
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When the pooling operation is carried out on images with a high level of detail or in the shallow
convolutional structure, the influence of this problem is not obvious, but if this operation is carried out
in the deep convolutional structure, the problem has a serious influence on feature extraction.

WFCNN uses a new pooling strategy to solve this problem. In the E1, E2, and E3 feature extraction
units, a 2 × 2 pool core is used and the pooling step length is 2, encouraging the advantages of the
pooling operation in accelerating feature aggregation. In the later stages, due to the large difference
between the current resolution and that of original images, the step length of the pooling layer in E4
and E5 cells is adjusted to 1. Here, the pool kernel size is still 2 × 2, but when the size of the function
block is smaller than that of the kernel participating in the pool operation, the size of the kernel pool is
adjusted to match the function block. This ensures that a valid pool value is obtained, so the size of the
feature graph output through E4 and E5 remains the same.

3.1.2. Decoder

The decoder is composed of five decoding units (D5, D4, D3, D2, and D1) that correspond to and
decode the encoding units with the same number (Figure 4). The fusion units F4, F3, F2, and F1 are
used to fuse the feature values obtained by the decoding unit. Other than F1, which only contains one
pooling layer, the structure of the other units is the same. Each unit includes one up-sampling layer,
several convolution layers, and one weight layer.

The up-sampling layer is a deconvolution layer, which is used to restore the size of the feature
graph. WFCNN adopts a gradual recovery strategy, in which the number of rows and columns are
respectively doubled during each adjustment; the number of rows and columns of the feature graph
are eventually restored to be consistent with the original image.

The convolutional layer adjusts the feature values after up-sampling to ensure the consistency of
the structure of the feature graphs involved in fusion. The adjustment strategy adopted by WFCNN
reduces the depth of the feature graph (Table 3). The decoder finally generates a feature vector
consisting of 64 elements for each pixel.

Table 3. Number of feature layers per decoding unit.

Unit Layers before Adjustment Layers after Adjustment

D5 512 512
D4 512 512
F4 512 256
D3 256 256
F3 256 128
D2 128 128
F2 128 64
D1 64 64
F1 64 64

Each weight layer contains only one convolution kernel of type 1 × 1 × h, which is used to unify
the feature values for stretching or narrowing transformation before fusion. The essence of the weight
layer is to uniformly multiply a certain coefficient for a certain feature layer and convert it into a
convolutional operation, to ensure that the model can be trained end-to-end.

3.1.3. Classifier

The Softmax model is a widely used classifier in FCN, SegNet, DeepLab, RefineNet, UNET, and
other models. In WFCNN, Softmax uses the 64-layer feature graph generated by the decoder as input,
calculates the probability of the pixel belonging to each category pixel-by-pixel, and organizes it into
a category probability vector as the output. The WFCNN uses the category corresponding to the
maximum probability value as the pixel category.
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3.2. Training WFCNN

3.2.1. Loss Function

WFCNN defines the loss function based on the cross entropy of the sample:

H(p, q) = −
m∑

i=1

qi log(pi) (1)

where m is the number of categories, p is the category probability vector with a length of m output by
WFCNN, and q is the real probability distribution, generated according to the manual label. In q, the
components are 0 except for that corresponding to the pixel’s category, where it is 1. In the WFCNN,
each pixel is regarded as an independent sample, allowing the loss function to be defined as:

loss = − 1
total

∑ m∑
i=1

qi log(pi) (2)

where total represents the sample count.

3.2.2. Training Algorithm

WFCNN is used end-to-end, with a stochastic gradient descent algorithm [50] used as the training
algorithm with the following steps:

1. The hyperparameters in the training process are determined and the parameters of the model
are initialized.

2. The selected image-label pairs are input into the model as training data.
3. The model carries out a forward calculation on the current training data.
4. Equation (2) is used to calculate the loss function of the real probability distribution and the

predicted probability distribution.
5. The random gradient descent algorithm is used to update the parameters of the model and

complete the training process.
6. Steps (3), (4), and (5) are repeated until the loss function is less than the specified expected value.

3.3. Experimental Setup

We used the SegNet, U-Net, and RefineNet models for comparison with WFCNN, as their
structures and working principles are similar, providing the best test for WFCNN. The models were set
up based on previous research, with SegNet containing 13 convolutional layers [39], U-Net containing
10 convolutional layers [42], and RefineNet containing 101 convolutional layers [41]. We implemented
WFCNN based on the TensorFlow Framework, using the Python language. To better assess its
performance, we also tested two variants, termed WFCNN-1 and WFCNN-2 (Table 4).

Table 4. Models used in the comparative experiment.

Name Description

WFCNN
SegNet Similar to WFCNN, the classifier used only high-level semantic features.
U-Net Similar to WFCNN, the classifier used fused features.

RefineNet Similar to WFCNN, the linear model was also adopted for feature
fusion, but the parameters were all fixed as 1.

WFCNN-1
The decoding unit was modified to use an adjustment strategy for the

feature map depth ascending scale. The length of the feature vector
generated by the decoder was 512 for each pixel.

WFCNN-2 The decoding unit was modified to remove the weight layer.
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All experiments were conducted on a graphics workstation with a 12 GB NVIDIA graphics card
and the Linux Ubuntu 16.04 operating system, using the data set defined in Section 2.

To increase the number and diversity of samples, each image in the training data set was processed
using color adjustment, horizontal flip, and vertical flip steps. The color adjustment factors included
brightness, saturation, hue, and contrast, and each image was processed 10 times. These enhanced
images were only used as training data.

We used cross-validation for comparative experiments. When using the GF-6 images dataset, 157
images were randomly selected as test data every training round, and the other images were used as
training data until all images were tested once. When using the aerial image labeling dataset, 3000
images were used as test data every training session.

4. Results

Overall, 10 results tested on the GF-6 images dataset were randomly selected from all models
(Figure 6), and 10 results were tested on the aerial image labeling dataset (Figure 7). As can be seen
from Figures 6 and 7, WFCNN performed best in all cases.

Figure 6. Comparative experimental results for 10 selected images from the GF-6 images dataset:
(a) original GF-6 image, (b) manual classification, (c) SegNet, (d) U-Net, (e) RefineNet, (f) WFCNN-1,
(g) WFCNN-2, and (h) WFCNN.
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Figure 7. Comparative experimental results for 10 selected images from the aerial image labeling
dataset: (a) original image, (b) manual classification, (c) SegNet, (d) U-Net, (e) RefineNet, (f) WFCNN-1,
(g) WFCNN-2, and (h) WFCNN.

SegNet exhibited most errors and the distribution was relatively scattered, with more misclassified
pixels in both the edge and inner areas. This shows that it is more reasonable to combine high semantic
features with low semantic features than to use only high semantic features.

The number of misclassified pixels produced by all three variants of WFCNN was lower for
RefineNet and U-net. The excellent performance of RefineNet and U-Net in the camera image indicates
that the network structure should be determined in accordance with the spatial resolution of the image.

WFCNN performed better than WFCNN-1. This excellent performance indicates that the feature
vector dimension was too high and is not conducive to improving the accuracy of the classifier.
The result that WFCNN performed better than WFCNN-2 shows that the weight layer played a role.

By comparing the performance of U-Net, RefineNet, WFCNN-1, WFCNN-2, and WFCNN, it
indicates that different feature fusion methods differ in their contributions to improving accuracy, so it
is necessary to choose an appropriate feature fusion method for a given situation.
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Figures 8 and 9 present confusion matrices for the different models, which again demonstrate
that WFCNN had the best segmentation results. Comparing Figures 8 and 9, it can be found that the
performance of each model on the aerial image labeling dataset is better than that on the GF-6 images
dataset, indicating that the spatial resolution has a certain impact on the performance of the model.

Figure 8. Confusion matrix for different model on the GF-6 images dataset: (a) SegNet, (b) U-Net, (c)
RefineNet, (d) WFCNN-1, (e) WFCNN-2, and (f) WFCNN.
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Figure 9. Confusion matrix for different model on the aerial image labeling dataset: (a) SegNet,
(b) U-Net, (c) RefineNet, (d) WFCNN-1, (e) WFCNN-2, and (f) WFCNN.

For comparison, we use Table 5 to summarize the data given in Figure 8, and use Table 6 to
summarize the data given in Figure 9.

Table 5. Comparison of model performance statistics on the GF-6 images dataset.

Indicator SegNet U-Net RefineNet WFCNN-1 WFCNN-2 WFCNN

A 75.58% 81.75% 82.67% 85.48% 91.13% 94.13%
B 24.42% 18.25% 17.33% 14.52% 8.87% 5.87%

A denotes the proportion of correctly classified pixels; B denotes the proportion of misclassified pixels.

Table 6. Comparison of model performance statistics on the aerial image labeling dataset.

Indicator SegNet U-Net RefineNet WFCNN-1 WFCNN-2 WFCNN

A 78.50% 86.40% 92.80% 94.20% 95.60% 96.90%
B 21.50% 13.60% 7.20% 5.80% 4.40% 3.10%

A denotes the proportion of correctly classified pixels; B denotes the proportion of misclassified pixels.

We used accuracy, precision, recall, F1-Score, intersection over union (IoU), and Kappa coefficient
as indicators to further evaluate the segmentation results for each model (Tables 7 and 8). The F1-Score
is defined as the harmonic mean of precision and recall. IoU is defined as the number of pixels labeled
as the same class in both the prediction and the reference, divided by the number of pixels labeled as
the class in the prediction or the reference.

The average accuracy of WFCNN was 18.48 % higher than SegNet, 11.44% higher than U-Net,
7.78% higher than RefineNet, 6.68% higher than WFCNN-1, and 2.15% higher than WFCNN-2.
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Table 7. Comparison of model indicators on the GF-6 images dataset comparison.

Indicator SegNet U-Net RefineNet WFCNN-1 WFCNN-2 WFCNN

Accuracy 75.58% 81.75% 82.67% 85.48% 91.13% 94.13%
Precision 75.05% 69.62% 76.07% 81.65% 89.90% 91.93%

Recall 72.20% 74.16% 82.02% 81.72% 90.71% 94.14%
F1-Score 0.7101 0.7797 0.7904 0.8231 0.8906 0.9271

IoU 0.7360 0.7181 0.7893 0.8169 0.9031 0.9302
Kappa coefficient 0.5826 0.5652 0.6514 0.6905 0.8232 0.8693

Table 8. Comparison of model indicators on the aerial image labeling dataset.

Indicator SegNet U-Net RefineNet WFCNN-1 WFCNN-2 WFCNN

Accuracy 78.50% 86.40% 92.80% 94.20% 95.60% 96.90%
Precision 76.94% 86.19% 92.83% 94.21% 95.22% 96.74%

Recall 74.43% 83.41% 91.23% 92.97% 95.10% 96.43%
F1-Score 0.6117 0.7362 0.8522 0.8794 0.9077 0.9340

IoU 0.7566 0.8478 0.9202 0.9358 0.9516 0.9658
Kappa coefficient 0.6122 0.7355 0.8520 0.8793 0.9080 0.9341

5. Discussion

5.1. Effect of Features on Accuracy

At present, remote sensing image classification mainly relies on three feature types: spectral
features mainly express information for individual pixels, textural features mainly express the spatial
correlation between adjacent pixels, and semantic features mainly express the relationship between
pixels in a specific region in a more abstract way.

CNNs can simultaneously extract these three feature types by reasonably organizing the
convolution kernel. For example, the features extracted by using a 1 × 1 convolution kernel are
equivalent to spectral features, those obtained by shallow convolutional layers can be regarded as
textural features, and those obtained by convolutional layers of different depths can be regarded as
semantic. Therefore, advanced semantic features can be considered as including all three feature types.
However, in CNNs, advanced semantic features are obtained by deepening the network structure and
expanding the receptive field. The spatial resolution of the image, the number of pixels covered by the
object area, and other factors will affect the feature extraction results.

In a high-resolution and detailed camera image, an object tends to occupy a larger area, and it
is advantageous to use advanced features. When SegNet only uses high-level semantic features to
process an image with a high level of detail, a certain number of misclassified pixels occur at the edge,
but few occur inside the object.

In the experiments of this study, the results of SegNet contained more misclassified pixels both
at the edge and the inner area. Comparing objects of different sizes showed that smaller objects had
more other types of objects adjacent to them and more pixels filled in. This is because the receptive
field of high-level semantic features is generally large, and when the type distribution of objects in the
receptive field is messy, the extracted feature values will deviate greatly from those of other pixels of
the same kind, thus, affecting the accuracy of the segmentation results.

Unlike SegNet, the other models tested here combined low-level semantic features with high-level
semantic features, with more accurate results. When segmenting remote sensing images with high
spatial resolution, such as GF-6, the different levels of semantic features should be fused and used for
classification, which is more reasonable than using advanced semantic features alone.
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5.2. Effect of Up-Sampling on Accuracy

The purpose of up-sampling is to encrypt the rough high-level semantic feature graph to generate
a feature vector for each pixel. In this study, WFCNN, U-Net, and RefineNet generated feature maps
with the same size as compared to the input image through multi-step sampling. However, WFCNN
used deconvolution to complete up-sampling, while RefineNet and U-Net used deconvolution to
perform up-sampling first and chose linear interpolation for the final up-sampling. The segmentation
results for these three models had few mis-segmented pixels within the object, but at the edges,
WFCNN’s results were significantly better. When RefineNet and U-Net processed camera images,
the edges of the object were very fine. We believe that the reason for this phenomenon is that the
structure of a remote sensing image is considerably different from that of a camera image, such that
bilinear interpolation does not achieve good results when processing the former. Since the resolution
of a camera image is generally high, when two objects are adjacent to each other, the pixel changes
across the boundary are usually gentle and the difference between adjacent pixels is small, such that
up-sampling using bilinear interpolation is more effective. In contrast, the pixel changes in a remote
sensing image are usually sharp across the boundary between two objects and the difference between
adjacent pixels is large, resulting in a poor bilinear interpolation effect. Unlike RefineNet and U-Net,
WFCNN uses deconvolution for up-picking and correction and all parameters are obtained through
learning samples, allowing the model to adapt to the unique characteristics of remote sensing images
and achieve good results.

5.3. Effect of Feature Fusion on Accuracy

WFCNN, WFCNN-1, and WFCNN-2 all used feature fusion methods to generate feature vectors
for each pixel. Since the convolution kernels used in different convolutional layer levels may be
different, potentially causing differences in the feature map depths, it is necessary to adjust the latter
before fusion. Choosing an appropriate fusion strategy can help improve the accuracy of the results.

WFCNN used a dimensional reduction strategy while WFCNN-1 used a dimensional increase.
Although both can achieve consistent depth adjustments of the feature graph, our results showed
that WFCNN performed better, indicating that dimensional reduction is more effective. Our analysis
suggests that the effect of the classifier may be influenced by a high dimensionality. In a future study, we
intend to test additional fusion strategies to further improve the accuracy of the segmentation results.

Like WFCNN, WFCNN-2 used dimensional reduction, but the former adjusted the characteristics
of the participation fusion by using the weight layer beforehand, while the latter directly used
dimensional reduction. Once the resulting feature map was fused, it was clear that the weight layer
used by WFCNN improved the accuracy of the segmentation results.

6. Conclusions

This study tested a new approach to obtain high-precision land-use information from remote
sensing images, using a new CNN-based model (WFCNN) to obtain multi-scale image features.
Experimental comparisons with the currently used SegNet and RefineNet models, along with two
variants on the original WFCNN model, demonstrated the advantages of this approach. This paper
discusses the influence of classification feature selection, up-sampling method, and fusion strategy on
segmentation accuracy, indicating that WFCNN can also be applied to other high spatial resolution
remote sensing images.

Analyzing the data characteristics of high-resolution remote sensing images allowed the effects of
spatial resolution on feature extraction to be fully considered, leading to the adoption of a hierarchical
pooling strategy. In the initial stage of feature extraction, a large cell length step was used in WFCNN
because the feature values were relatively scattered, allowing the pooling operation to accentuate the
advantages of feature aggregation. In the subsequent stage, a smaller pooling step size was adopted
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due to the large difference between the current resolution and the original image. The experimental
results showed that this strategy was more conducive to generating features with good discrimination.

The data characteristics of adjacent regions within remote sensing images were fully considered
to effectively combine low-level and high-level semantic features. The proposed WFCNN model
uses a variable-weight fusion strategy that adjusts features using a weight adjustment layer to ensure
their stability. This strategy is more conducive to extracting effective features than those adopted by
other models.

Our method requires training images to be marked pixel-by-pixel, creating a large workload.
In subsequent research, we intend to introduce a semi-supervised training method to reduce this
requirement and make the model more applicable to real-world situations.
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