2,959 research outputs found

    Rehabilitative devices for a top-down approach

    Get PDF
    In recent years, neurorehabilitation has moved from a "bottom-up" to a "top down" approach. This change has also involved the technological devices developed for motor and cognitive rehabilitation. It implies that during a task or during therapeutic exercises, new "top-down" approaches are being used to stimulate the brain in a more direct way to elicit plasticity-mediated motor re-learning. This is opposed to "Bottom up" approaches, which act at the physical level and attempt to bring about changes at the level of the central neural system. Areas covered: In the present unsystematic review, we present the most promising innovative technological devices that can effectively support rehabilitation based on a top-down approach, according to the most recent neuroscientific and neurocognitive findings. In particular, we explore if and how the use of new technological devices comprising serious exergames, virtual reality, robots, brain computer interfaces, rhythmic music and biofeedback devices might provide a top-down based approach. Expert commentary: Motor and cognitive systems are strongly harnessed in humans and thus cannot be separated in neurorehabilitation. Recently developed technologies in motor-cognitive rehabilitation might have a greater positive effect than conventional therapies

    Influence of functional rider and horse asymmetries on saddle force distribution during stance and in sitting trot

    Get PDF
    Asymmetric forces exerted on the horse's back during riding are assumed to have a negative effect on rider–horse interaction, athletic performance, and health of the horse. Visualized on a saddle pressure mat, they are initially blamed on a nonfitting saddle. The contribution of horse and rider to an asymmetric loading pattern, however, is not well understood. The aim of this study was to investigate the effects of horse and rider asymmetries during stance and in sitting trot on the force distribution on the horse's back using a saddle pressure mat and motion capture analysis simultaneously. Data of 80 horse-rider pairs (HRP) were collected and analyzed using linear (mixed) models to determine the influence of rider and horse variables on asymmetric force distribution. Results showed high variation between HRP. Both rider and horse variables revealed significant relationships to asymmetric saddle force distribution (P < .001). During sitting trot, the collapse of the rider in one hip increased the force on the contralateral side, and the tilt of the rider's upper body to one side led to more force on the same side of the pressure mat. Analyzing different subsets of data revealed that rider posture as well as horse movements and conformation can cause an asymmetric force distribution. Because neither horse nor rider movement can be assessed independently during riding, the interpretation of an asymmetric force distribution on the saddle pressure mat remains challenging, and all contributing factors (horse, rider, saddle) need to be considered

    Comparison of knee loading during walking via musculoskeletal modelling using marker-based and IMU-based approaches

    Get PDF
    openThe current thesis is the result of the candidate's work over a six-month period with the assistance of the supervisor and co-supervisors, thanks to the collaboration between the Human Movement Bioengineering Laboratory Research group at the University of Padova (Italy) and the Human Movement Biomechanics Research group at KU Leuven (Belgium). Gait analysis, at a clinical level, is a diagnostic test with multiple potentials, in particular in identifying functional limitations related to a pathological path. Three-dimensional motion capture is now consolidated as an approach for human movement research studies and consists of a set of very precise measurements, the latter are processed by biomechanical models, and curves relating to the kinematics and indirect dynamics, i.e., the joint angles and the relative forces and moments, can be obtained. These results are considered fully reliable and based on these curves it is decided how to intervene on the specific subject to make the path as less pathological as possible. However, the use of wearable sensors (IMUs) consisting of accelerometers, gyroscopes, and magnetic sensors for gait analysis, has increased in the last decade due to the low production costs, portability, and small size that have allowed for studies in everyday life conditions. Inertial capture (InCap) systems have become an appealing alternative to 3D Motion Capture (MoCap) systems due to the ability of inertial measurement units (IMUs) to estimate the orientation of 3D sensors and segments. Musculoskeletal modelling and simulation provide the ideal framework to examine quantities in silico that cannot be measured in vivo, such as musculoskeletal loading, muscle forces and joint contact forces. The specific software used in this study is Opensim: an open-source software that allows modelling, analysis, and simulation of the musculoskeletal system. The aim of this thesis is to compare a marker-based musculoskeletal modelling approach with an IMUs-based one, in terms of kinematics, dynamics, and muscle activations. In particular, the project will focus on knee loading, using an existing musculoskeletal model of the lower limb. The current project was organized as follows: first, the results for the MoCap approach were obtained, following a specific workflow that used the COMAK IK tool and the COMAK algorithm to get the secondary knee kinematics, muscle activations, and knee contact forces. Where COMAK is a modified static optimization algorithm that solves for muscle activations and secondary kinematics to obtain measured primary DOF accelerations while minimizing muscle activation. Then these results were used to make a comparison with those obtained by the inertial-based approach, with the attempt to use as little information as possible from markers while estimating kinematics from IMU data using an OpenSim toolbox called OpenSense. Afterward, in order to promote an approach more independent from the constraints of a laboratory, the Zero Moment Point (ZMP) method was used to estimate the center of pressure position of the measured ground reaction forces (GRFs), and a specific Matlab code was implemented to improve this estimation. Using the measured GRFs with the new CoPs, the results of Inverse Dynamics, muscle activations, and finally knee loading were calculated and compared to the MoCap results. The final step was to conduct a statistical analysis to compare the two approaches and emphasize the importance of using IMUs for gait analysis, particularly to study knee mechanics

    Sport Biomechanics Applications Using Inertial, Force, and EMG Sensors: A Literature Overview

    Get PDF
    In the last few decades, a number of technological developments have advanced the spread of wearable sensors for the assessment of human motion. These sensors have been also developed to assess athletes’ performance, providing useful guidelines for coaching, as well as for injury prevention. The data from these sensors provides key performance outcomes as well as more detailed kinematic, kinetic, and electromyographic data that provides insight into how the performance was obtained. From this perspective, inertial sensors, force sensors, and electromyography appear to be the most appropriate wearable sensors to use. Several studies were conducted to verify the feasibility of using wearable sensors for sport applications by using both commercially available and customized sensors. The present study seeks to provide an overview of sport biomechanics applications found from recent literature using wearable sensors, highlighting some information related to the used sensors and analysis methods. From the literature review results, it appears that inertial sensors are the most widespread sensors for assessing athletes’ performance; however, there still exist applications for force sensors and electromyography in this context. The main sport assessed in the studies was running, even though the range of sports examined was quite high. The provided overview can be useful for researchers, athletes, and coaches to understand the technologies currently available for sport performance assessment

    JNER at 15 years: analysis of the state of neuroengineering and rehabilitation.

    Get PDF
    On JNER's 15th anniversary, this editorial analyzes the state of the field of neuroengineering and rehabilitation. I first discuss some ways that the nature of neurorehabilitation research has evolved in the past 15 years based on my perspective as editor-in-chief of JNER and a researcher in the field. I highlight increasing reliance on advanced technologies, improved rigor and openness of research, and three, related, new paradigms - wearable devices, the Cybathlon competition, and human augmentation studies - indicators that neurorehabilitation is squarely in the age of wearability. Then, I briefly speculate on how the field might make progress going forward, highlighting the need for new models of training and learning driven by big data, better personalization and targeting, and an increase in the quantity and quality of usability and uptake studies to improve translation

    Human Motion Analysis with Wearable Inertial Sensors

    Get PDF
    High-resolution, quantitative data obtained by a human motion capture system can be used to better understand the cause of many diseases for effective treatments. Talking about the daily care of the aging population, two issues are critical. One is to continuously track motions and position of aging people when they are at home, inside a building or in the unknown environment; the other is to monitor their health status in real time when they are in the free-living environment. Continuous monitoring of human movement in their natural living environment potentially provide more valuable feedback than these in laboratory settings. However, it has been extremely challenging to go beyond laboratory and obtain accurate measurements of human physical activity in free-living environments. Commercial motion capture systems produce excellent in-studio capture and reconstructions, but offer no comparable solution for acquisition in everyday environments. Therefore in this dissertation, a wearable human motion analysis system is developed for continuously tracking human motions, monitoring health status, positioning human location and recording the itinerary. In this dissertation, two systems are developed for seeking aforementioned two goals: tracking human body motions and positioning a human. Firstly, an inertial-based human body motion tracking system with our developed inertial measurement unit (IMU) is introduced. By arbitrarily attaching a wearable IMU to each segment, segment motions can be measured and translated into inertial data by IMUs. A human model can be reconstructed in real time based on the inertial data by applying high efficient twists and exponential maps techniques. Secondly, for validating the feasibility of developed tracking system in the practical application, model-based quantification approaches for resting tremor and lower extremity bradykinesia in Parkinson’s disease are proposed. By estimating all involved joint angles in PD symptoms based on reconstructed human model, angle characteristics with corresponding medical ratings are employed for training a HMM classifier for quantification. Besides, a pedestrian positioning system is developed for tracking user’s itinerary and positioning in the global frame. Corresponding tests have been carried out to assess the performance of each system

    Motor patterns evaluation of people with neuromuscular disorders for biomechanical risk management and job integration/reintegration

    Get PDF
    Neurological diseases are now the most common pathological condition and the leading cause of disability, progressively worsening the quality of life of those affected. Because of their high prevalence, they are also a social issue, burdening both the national health service and the working environment. It is therefore crucial to be able to characterize altered motor patterns in order to develop appropriate rehabilitation treatments with the primary goal of restoring patients' daily lives and optimizing their working abilities. In this thesis, I present a collection of published scientific articles I co-authored as well as two in progress in which we looked for appropriate indices for characterizing motor patterns of people with neuromuscular disorders that could be used to plan rehabilitation and job accommodation programs. We used instrumentation for motion analysis and wearable inertial sensors to compute kinematic, kinetic and electromyographic indices. These indices proved to be a useful tool for not only developing and validating a clinical and ergonomic rehabilitation pathway, but also for designing more ergonomic prosthetic and orthotic devices and controlling collaborative robots
    • …
    corecore