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Abstract 

 

Neurological diseases are now the most common pathological condition and the leading cause of 

disability, progressively worsening the quality of life of those affected. Because of their high 

prevalence, they are also a social issue, burdening both the national health service and the working 

environment. It is therefore crucial to be able to characterize altered motor patterns in order to 

develop appropriate rehabilitation treatments with the primary goal of restoring patients' daily 

lives and optimizing their working abilities.  

In this thesis, I present a collection of published scientific articles I co-authored as well as two in 

progress in which we looked for appropriate indices for characterizing motor patterns of people 

with neuromuscular disorders that could be used to plan rehabilitation and job accommodation 

programs. We used instrumentation for motion analysis and wearable inertial sensors to compute 

kinematic, kinetic and electromyographic indices.  

These indices proved to be a useful tool for not only developing and validating a clinical and 

ergonomic rehabilitation pathway, but also for designing more ergonomic prosthetic and orthotic 

devices and controlling collaborative robots. 
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CHAPTER 1 

 
1. INTRODUCTION  

 

The research activity carried out during the PhD programme was based on the study and 

characterization of motor disorders, mainly resulting from neurological diseases, for the purposes 

of functional evaluation in the clinical and occupational fields. Neurological diseases are now the 

most common pathological condition and the leading cause of disability, progressively worsening 

the affected people's quality of life. They are also a social issue because of their high prevalence, 

which burdens both the national health service and the working environment. In order to fully 

characterize motor disorders caused by neurological diseases, I decided to evaluate three different 

pathologies involving the central nervous system (CNS), such as cerebellar ataxia, Parkinson's 

disease, and hemiparesis. Cerebellar ataxia is a neurological condition characterized by a lesions 

at different regions of cerebellum that plays a primary role in static and dynamic balance control 

and in modulating the rhythmic flexor and extensor muscle activity [1]. It has been showed that 

patients suffering from cerebellar ataxia exhibit several deficit in locomotion [2], such as peculiar 

spatiotemporal and kinematic features that contribute to an unstable gait [3-7], as well as a 

widened muscle activation patterns [1]. Parkinson's disease is an extrapyramidal syndrome caused 

by a malfunction of neuronal circuits in the basal ganglia that are in charge of regulating automatic 

and involuntary movements as well as motor learning [8]. Among the various symptoms, gait 

abnormality is the most invalidating for patients with Parkinson’s disease [9] and closely parallels 

disease progression, leading to a high risk of falls [10], impaired patient autonomy, and reduced 

quality of life [11]. Hemiparesis, on the other hand, is defined as a partial loss of voluntary motility 

on one side of the body caused by damage to the pyramidal system, which is responsible for 

muscle contraction [12]. Muscle tone is more pronounced as a result of this change, and 

movements are altered. For instance, stroke survivors with hemiparesis have abnormal gait 

patterns as a result of sensorimotor impairments, such as the inability to generate normal levels 

of force, spasticity, impaired motor control, and proprioceptive deficits [13-17]. Although lower 

limb amputation is an orthopedic pathology, it also involves significant neural reorganization 

within CNS [18,19], and thus the prosthetic gait reflects a mixture of deviations from normal gait.  

In light of this, it is critical to define a global characterization of these motor patterns in order to 

design an appropriate rehabilitation pathway as well as to assess the efficacy of the treatment 
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itself. In addition to the more purely clinical aspect, it is also important to consider that many 

patients with neuromuscular disorders are still working due to the increase in working age, which 

means they frequently struggle with employability, work challenges, and job loss [3,20, 21]. For 

example, Parkinson's disease, which was previously thought to be a disease of the elderly, now 

increasingly affects younger individuals as well, both for early forms and for other cases of the 

disease itself. For these reasons, a quantitative assessment of residual motor skills is necessary, 

and it could be a key factor in the design and evaluation of innovative ergonomic interventions 

for effective occupational integration/reintegration. As a result, it is important to characterize 

altered motor patterns in order to develop appropriate pharmacological, surgical, and 

rehabilitation treatments with the primary goal of restoring patients' motor performance, 

autonomy, and daily life, and if they are of working age allowing them also to return to work and 

optimize their working abilities.  

To achieve this, we used the instrumentation for motion analysis (i.e. an optoelectronic system 

that permits a three-dimensional quantitative motion analysis, dynamometric platforms that 

measure the reaction forces in space during ground contact, as well as the moments and powers 

acting on joint structures, and the surface electromyography, an instrumental approach that 

provides a comprehensive view of human movement by measuring and analyzing electrical 

activity generated by muscles). Furthermore, thanks to wearable sensors, we were able to leave 

the laboratory's enclosed setting and assess the patient/worker directly in his/her daily 

environment. Moreover, the fourth industrial revolution has recently opened up new employment 

scenarios in which, using wearable technologies and artificial intelligence, it is possible to 

characterize the motor capabilities of individuals who have motor impairments, and use these 

information to control human-robot collaboration (HRC) technologies, such as collaborative 

robots and exoskeletons. HRC technologies support workers in the workplace by adapting to their 

specific demands and individual needs.  

In this scenario, the first aim of my thesis work was to identify, using movement analysis 

technologies, appropriate indices for characterizing pathologic conditions in patients with 

cerebellar ataxia, Parkinson’s disease, hemiparesis and lower limb amputation. These indices 

could support the process for identifying the correct rehabilitation pathway and be useful for 

verifying the effectiveness of the treatment itself. The second aim was the identification of 

quantitative biomechanical and physiological indices for motor monitoring in job accommodation 

programs of people with neuromuscular disorders. 
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My overall role in the scientific articles reported in this thesis remained consistent in the following 

activities: scientific literature search and analysis; experimental procedure design; data 

recordings; data processing and analysis; statistical analysis; articles writing. Writing, 

coordination, and finalization of results have been emphasized in scientific works for which I am 

the first author. 
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CHAPTER 2 
 

2. GAIT ANALYSIS 

Gait is defined as a repetitive sequence of limb motions used to propel the body forward, with one 

limb acting as a support while the other advances to a new support site [1]. The limbs then reverse 

their roles, with both feet in contact with the ground for the transfer of body weight from one limb to 

the other. This sequence of events is repeated by each limb alternately until the desired destination is 

reached. Gait is the most common movement performed by humans, and autonomy and safety during 

gait represent an important aspect of daily life for the individual in a variety of contexts. As a result, 

a detailed characterization of gait is essential for defining motor ability.  

 

Gait analysis is a relevant discipline for the characterization of human movement, and it is a viable 

assessment tool not only used in sports science or basic biomechanical research, but has also 

expanded to be a very valuable instrument in clinical diagnostics, monitoring functional recovery and 

musculoskeletal rehabilitation [2]. In fact, it allows for the quantification of gait deviations, the 

informing of clinical decision making, the providing of useful elements to define an appropriate 

rehabilitation strategy [3,4] and the monitoring of the efficacy of therapy in movement disorders[5,6]. 

In this context, this method has long been used to treat neurological disorders such as cerebellar 

ataxia, Parkinson's disease, and post-stroke hemiplegia [7]; however, in the meantime, the benefits 

have become apparent in other medical fields such as foot surgery, orthopedic technology, and 

patients who have had lower limb amputations [2]. 

Therefore, robust investigation of impaired gait mechanisms, as well as precise measurement, may 

be critical in targeted physical and/or pharmaceutical intervention. 

 

The use of motion analysis begins in the nineteenth century, but technological and electronic 

advancements continue to provide new solutions for increasing and improving measurement 

techniques [8]. Specifically, movement analysis can currently be performed using marker-based 

systems or wearable systems, both of which will be described in this thesis. 
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CHAPTER 3 

 
3. Materials and Methods  
 

3.1 Biomechanical characterization       

Motion analysis based on the study of kinematic, kinetic and electromyographic parameters.      

 

Kinematics describes the spatial variations of anatomical references and body segments involved 

independent of the forces that cause the movement through variables such as linear and angular 

displacements, velocities, and accelerations [1-3]. 

 

The definition of space and anatomical plane with respect to which the measurement is made is 

required for the calculation of these variables. The plan chosen refers to standardized definitions 

based on the human body: three fundamental planes are defined, namely the frontal or coronal plane, 

the sagittal plane, and the transverse plane. The origin axes are defined as anteroposterior, 

mediolateral, and longitudinal (or craniocaudal) (Figure 3.1). 

 

Figure 3.1 Anatomical planes 

 



 
20 

 

Just for simplicity, the body is represented as a rigid body composed of a series of segments; the 

length of these anatomical segments is reported in the literature as a percentage of body weight, as 

defined by Drillis and colleagues [4,5] (Figure 3.2): 

 

 

Figure 3.2 The length of body segments as a function of height H 

 

Kinetics studies the forces and angular moments at the base of motor acts to describe the role of forces 

in generating movement [6]. Internal and external forces are studied, and both types play a role in 

motor performance. 

 

Surface electromyography (sEMG) has recently been used in clinical and research settings for 

assessing muscular activity, performing isometric tests, studying muscle fatigue, pain, movement 

control, and performance analysis in sports medicine [3]. sEMG is also used in the research of muscle 

tremors, muscle contraction biofeedback, and muscle spasticity. sEMG investigates the electrical 

signals produced by muscle contraction; these signals travels through the tissues and can be recorded 

on the surface.  

 

3.2 Instrumentation  
 
3.2.1 Stereo-photogrammetric system  
 
3.2.1.1 Kinematics 

The kinematics is investigated using stereo-photogrammetric systems. 
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A stereo-photogrammetric system collects kinematic data using video cameras to record movements 

in the two- or three-dimensional acquisition space. The cameras may be based on various types of 

technology, necessitating a variety of experimental setups. Markers are typically used to reconstruct 

kinematics [1-3,7], which can be both active and passive. The most common are passive markers, 

that combine ease of use and low cost with high operational reliability. The position of the markers 

in space allows for the reconstruction of the body, resulting in the so-called stick diagram, and they 

are recognized as clear spots on a homogeneous background.  

The position and number of markers must adhere to specific protocols in order to ensure a 

standardized description of the movement, and they are heavily dependent on the type of movement 

to be analyzed. 

 

The studies reported in this thesis were carried out mainly using the system SMART DX Motion 

Capture system, BTS, Milan, whose components are shown in Figure 3.3. 

This system allowed for the acquisition of synchronized and integrated kinematic, kinetic, sEMG, 

and video signals. 

 

 

Figure 3.3 Components of SMART system. 

 

The Davis protocol [8] is the most commonly used marker positioning protocol in gait analysis; 

developed in 1991 at the NCH (Newington Children 's Hospital, USA) [6], this protocol uses 22 

passive markers (Figure 3.4), which represent the minimum set-up required for the 3D description of 

the gait. The kinematics of the trunk and lower limbs are defined by the Davis protocol; in fact, the 

22 passive markers are arranged at the landmarks of these body segments, as shown in the table / 

figure. 



 
22 

 

 

Figure 3.4 Kinematic Davis model 

 

Sticks or wands varying in length from 7 to 10 cm and placed at 1/3 of the length of the body segment 

were used in addition to markers directly applied to the skin. A wand on the femur and a leg were 

used in particular, so that the plane containing the three points was parallel to the frontal plane. In 

some studies reported in this thesis , we used a modified version of the Davis protocol by adding the 

elbow and wrists as well. Anthropometric measurements were collected for each subject in order to 

determine the joint offset angles; these included the subject's mass and height, as well as the length 

of the main segments of the body as described by Winter [1]: height, weight, length of the subject's 

shank, diameter of the knee, diameter of the ankle, distance between the anterior iliac crests, and 

pelvic thickness. 

 

Multiple cameras are required for the acquisition of movement in a three-dimensional space, and in 

a motion analysis laboratory 6-12 cameras are typically used for the complete capture of the 

movements. 

The cameras are equipped with an infrared illuminator, which is typically made up of a series of 

LEDs, as well as a camera sensor, which is typically a CCD sensor; the capture volume is illuminated 

with infrared light, which is reflected by the markers and captured by the cameras [1]. The active 

infrared lights form a ring around the chamber's lens and are pulsed at 120 Hz for less than a 

millisecond. Because the light is pulsed, the images of the markers are captured at very precise times. 
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The sequence of images will allow us to reconstruct the trajectory of each marker and therefore of 

the body segments. 

It is necessary to define the reference system and the protocol on which the markers are positioned in 

order to provide an accurate and complete description of the kinematics. 

Before each acquisition, the space is calibrated using a two-step procedure. To begin, a triad of axes 

equipped with markers at a defined and known distance is positioned in a point of the capture space 

for the definition of the global reference system. The capture volume is then calibrated using a wand 

moved by an operator. 

 

Static acquisitions must be performed, as well as dynamic acquisitions, to record the individual 

recordings of the twenty-two reference points required for the protocol's construction, while dynamics 

acquisitions are required to record some samples of the subject's gait. 

 

3.2.1.2 Kinetics  

The kinetics was investigated by analyzing the ground reaction forces recorded at 1200 Hz by means 

of two force platforms (0.6 x 0.4 m; Kistler 9286B, Winterthur, Switzerland), placed at the center of 

the walkway, attached to each other in the longitudinal direction but displaced by 0.2 m in the lateral 

direction (Figure 3.5).  

 

Figure 3.5 Force platforms and ground reaction force with the three components in space 

The force platforms are made up of four load cells, each of which is placed in one of the platform's 

four angles. They are made up of three force transducers, each idealized and designed to detect only 

one of the three components of force or moment. Force transducers use sensors to convert applied 

force into deformation, which results in an electrical signal output. The ground reaction resultant is 

measured by the force platforms at the time of the subject's impact. 
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The forces were examined in the three components Fx, Fy, Fz along the anterior-posterior, medio-

lateral, and vertical directions. 

The measured forces, combined with the kinematic analysis, allowed the researchers to investigate 

the moments at the hip, knee, and ankle articulations. 

 

3.2.1.3 Surface electromyography (sEMG) 

The surface electromyography analyzed in some studies reported in this thesis was recorded at 1000 

Hz using a 16-channel wireless system (FreeEMG1000 System; BTS, Milan, Italy); to record EMG 

activity from body muscles, bipolar Ag-AgCl surface electrodes (H124SG, Kendall ARBO, Donau, 

Germany) (Figure 3.6) were prepared with electro-conductive gel (diameter 1 cm, distance between 

electrodes 2 cm) and placed over the muscle belly in the direction of the muscle fibers. 

 

 

Figure 3.6 Bipolar Ag-AgCl surface electrodes. 

A critical aspect of the surface electromyography technique is the proper placement of the electrodes. 

The sEMG signal allows information about skeletal muscle activity to be extracted, but this 

information may be incorrect if electrodes are placed near the innervation zone (IZ) or tendon regions, 

which have a strong influence on sEMG amplitude and frequency. We were able to locate the 

innervation zone using SENIAM guidelines (European Recommendations for Surface 

Electromyography) [9,10], improving the correct placement of sEMG electrodes and the quality of 

the electromyographic signal acquired. 

 

Data acquisition from the integrated surface EMG system, optoelectronic system and force platforms 

were integrated and synchronized. 

 

3.2.2 Inertial wearable sensors 

 
Wearable sensors are increasingly being used in clinical settings to obtain more objective measures 

of walking performance [11-16]. 
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Based on the inverted pendulum gait model [17], mobile inertial measurement units (IMU) with 

accelerometers, gyroscopes and magnetometers can objectively capture the ability to control the body 

center of mass while moving the base of support, resulting in an effective tool to monitor dynamic 

balance during gait [13,18]. Ideally, using several combined IMUs to analyze a subject's gait would 

improve overall accuracy, but this benefit would be offset by the wearability burden. A single lumbar-

mounted IMU, on the other hand, provides sensitive information on gait and allows clinicians to 

monitor it even in free-living conditions [19]. IMUs directly provide trunk acceleration measurements 

and make it easier to record patient gaits for many steps during follow-up clinical assessments in 

outpatient facilities, making them ideal tools for studying gait stability. 

 

The G-Walk (BTS, Milan, Italy) was used in the studies reported in this thesis. It consists of an inertial 

sensor G-SENSOR, the G-Studio software and a set of protocols for the analysis of the specific 

movements. It represents indeed one of the best solutions for fast and objective assessment of the 

walking, running and jumping parameters. Thanks to a Bluetooth connection, the sensor acquires and 

transmits the data to the PC to process and automatically create the report. The other components of 

the G-WALK are: 

o Belt with pocket for the sensor positioning;  

o Up to 2 webcam for video recording;  

o Bluetooth dongle;  

o Bluetooth extension cable;  

o USB Charge cable;  

The G-SENSOR (Figure 3.7) is a wearable device housed in a specialized belt that allows the patient 

to walk, run, and jump completely free. It is made up of a triaxial accelerometer, a magnetic sensor, 

and a triaxial gyroscope that is mounted on the L5 vertebrae and allows for functional gait analysis. 

 

 

Figure 3.7 Wearable device G-Sensor 
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G-Studio (Figure 3.8) is an easy-to-use software that allows for the easy management of patient 

databases, the organization of system acquisitions, and the creation of extensive analytical reports. 

 

 

Figure 3.8 G-Studio software screen 

 

After processing the data, the software generates a report (Figure 3.9) that includes the parameters 

calculated during the test. It is also possible to extract raw accelerometer and gyroscope data in all 

three spatial directions. 



 
27 

 

 

Figure 3.9 An example of a report generated with gait analysis results 

3.2.3 MATLAB 

 
Matlab is a high-level programming language for scientific and engineering computing, as well as a 

tool for matrix manipulation, signal processing, data classification, and graphical visualization, 

among other things. It was used for algorithm implementation, graphical visualization, and data 

classification in many processing sections of the studies described in this thesis. 

 

 

3.3 Data analysis 
 
To process data recorded by stereo-photogrammetric system, a reconstruction of the tridimensional 

position of each marker from the images of each camera was required (Figure 3.10). This procedure 

was carried out using the SMART Software Tracker (BTS, Milan, Italy), and it consists of matching 

the individual points of the Davis model to the marker represented in the file acquisition by labeling 

each marker (labeling). The first stage of data processing was the tracking operation, which 
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represented the logical connection of two successive frames in order to identify the time curve of each 

single marker. Thus, the kinematic speed and acceleration were deduced from the trajectories of the 

markers. In this step, force signals from the platform can be labeled. These signals are displayed as a 

vector with the origin in the center of pressure and magnitude and direction equal to the vector sum 

of the three components of force. 

 

 

Figure 3.10 Reconstruction of the 3D position of each marker according to Davis model (left) and tracking 

procedure (right). 

Following the tracking procedure, the data was processed using 3D reconstruction software (SMART 

Analyzer, BTS, Milan, Italy) and protocols that calculated all biomechanical parameters of interest, 

such as the relative angles between two body segments, speeds, distances, forces, and moments acting 

on the joints. During this phase, a temporal analysis of the signals was performed in order to manually 

define events in the gait cycle. The trajectories of the foot markers were used to correctly identify the 

instants of support and toe-off. 

 

3.3.1 Gait events estimation 

Gait is defined by a cyclic pattern of motor activity in the lower limbs and trunk that allows weight 

to be transferred to the limb support and forward movement against the limb-side. The gait cycle, 

which is defined as the time between two consecutive foot contacts of the same leg, is the functional 

unit of reference for gait analysis. 
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In the studies described in this thesis, heel strike (HS) was determined as the minimum point of the 

heel trajectory while the toe-off (TO) was determined by the metatarsal trajectory (Figure 3.11). 

When subjects step onto the force platforms, these kinematic criteria can be verified using information 

from the force platforms' signals. 

 

Figure 3.11 Definition of the instants of heel strike (a) and toe-off (b). 

 

Normally, two major phases of a gait cycle are distinguished (Figure 3.12): the stance phase (from 

first contact to foot-off) and the swing phase (from foot-off to the successive initial contact). Finally, 

three subphases were considered within the stance phase: 

- initial double support (first double support): both feet are in contact with the ground;  

- single support: the reference foot is in contact with the ground while the counter-side swings;  

- terminal double support (second double support): both feet are in contact with the ground 

again. 
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Figure 3.12 Normal gait cycle 

 

3.3.2 Time-distance parameters 

The most important time-distance gait parameters are listed in Table 3.1. 

 

Table 3.1 General time-distance parameters 

Gait parameters 

Walking speed (m/s)  

Cycle duration (s) Time interval between two successive initial contact of the 

same foot  

Cycle length (m) Distance between two successive supports of the same foot  

Step length (m) Distance between the heel of one foot and the heel of the 

contralateral foot  

Step width (m) Mediolateral distance between the feet 

Stance duration (s) The entire period during which the foot is in contact with the 

ground  

Swing duration (s) The entire period during which the foot is not in contact with 

the ground 
1st double support duration (s) Time in which both feet are in contact with the ground after the 

initial contact  

2st double support duration (s) Time in which both feet are in contact with the ground after single 

standby  

Cadence (steps/min) Number of steps in the time unit  
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3.3.2.1 Speed matching procedure 

 

To compare data between healthy subjects and patients, we used a matching procedure based on speed 

in our studies. In fact, because many spatio-temporal parameters are dependent on gait speed, to 

collect the largest possible sample size for speed-matched comparisons, the healthy subjects were 

also asked to walk at a slower speed [20-25]. The speed matching procedure was performed as 

follows: for each healthy subject, we considered only those trials in which gait speed fell within the 

range identified by patients mean gait speed ± standard deviation. In one of the studies 1:1 optimal 

matching procedure using propensity scores method was used. Propensity scores were calculated 

through logistic regression analysis using age and speed as covariates [26,27].  

 

3.3.3 Kinematic data 

The frontal, sagittal, and transverse plane anatomical and joint angles for the hip, knee, ankle, trunk, 

and pelvis were computed. The joint range of motion (RoM) was calculated based on these variables 

as the difference between the maximum and minimum values during the gait cycle. 

 

3.3.3.1 Energy consumption measurement 

The mechanical behavior was measured in terms of energy recovery and consumption in relation to 

the whole-body center of mass (CoM) and provides information on mechanical energy expenditure 

involving the entire skeletal muscle system while walking. the kinetic energy (Ek) associated with 

CoM displacements was calculated as the sum of kinetic energy on the x (Ekx), y (Eky), and z (Ekz) 

axes: 

𝐸𝑘 = 𝐸𝑘𝑥 + 𝐸𝑘𝑦 + 𝐸𝑘𝑧 =
1

2
𝑚(𝑣𝑥

2 + 𝑣𝑦
2 + 𝑣𝑧

2) 

 

where m and vx, vy, and vz are the mass and velocity components of the CoM, respectively. 

Furthermore, the potential energy (Ep) associated with the CoM was calculated as 

𝐸𝑝 = 𝑚𝑔ℎ 

where h is the vertical component of the CoM, and g is the acceleration of gravity (m/s2). The sum of 

Ek and Ep was used to calculate the total mechanical energy (Etot) associated with the CoM. The 

fraction of mechanical energy (R-step) recovered during each walking step was calculated as follows 

[28]: 

𝑅𝑠𝑡𝑒𝑝 =
𝑊𝑝

+ + 𝑊𝑘𝑓
+ − 𝑊𝑡𝑜𝑡

+

𝑊𝑝
+ + 𝑊𝑘𝑓

+ 𝑥100 = (1 −
𝑊𝑡𝑜𝑡

+

𝑊𝑝
+ + 𝑊𝑘𝑓

+ ) 𝑥100 
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where 𝑊𝑝
+, 𝑊𝑘𝑓

+ , and 𝑊𝑡𝑜𝑡
+  represent the positive work produced by gravitational potential energy, 

forward motion kinetic energy, and total mechanical energy, respectively. The total energy 

consumption (TEC) was then calculated as the sum of the negative (𝑊𝑡𝑜𝑡) and positive work (𝑊𝑡𝑜𝑡
+ ), 

each divided by their respective efficiencies [29], as follows: 

𝑇𝐸𝐶 =
𝑊𝑡𝑜𝑡

+

1.20
+

𝑊𝑡𝑜𝑡
−

0.25
 

Because walking is cyclical, the positive work done at each step equals the negative work, changing 

the previous formula to 

𝑇𝐸𝐶 =
𝑊𝑡𝑜𝑡

+

0.21
 

For each subject, the R-step and TEC values were normalized to the body weight and step length, 

respectively, and were averaged. 

 

3.3.4 Kinetic data 

We considered the vertical component along the y-axis of the ground reaction force recorded by the 

force platforms normalized with respect to the subject's weight [30] in the studies reported in this 

thesis. With this parameter, we analyzed the subject's behavior in terms of the force it exchanges with 

the ground. Furthermore, we considered the force data when only one foot is exactly inside the 

platform (Figure 3.13). 
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Figure 3.13 Three-dimensional representation of the data recorded by the force platform 

 

Kinetic data, in conjunction with kinematic analysis, allow for the investigation of the internal 

moments of the hip, knee, and ankle, as well as the support moment. 

 

3.3.5 Electromyographic parameter: muscle co-activation  

The recorded raw sEMG signals were band-pass filtered (3rd order Butterworth filter at 30–450 Hz), 

rectified, and low-pass filtered  (zero-lag 4th order Butterworth filter at 10 Hz).  

Muscle co-activation is the mechanism that regulates simultaneous activity of agonist and antagonist 

muscles crossing the same joint [31]and it  has been shown to be important for ensuring adequate 

spine and joint stability, movement accuracy (as in precision tasks), and energy efficiency [32,33], as 

well as adapting to environmental demands [34]. 

When significant antagonist activations counteract the agonist actions, resulting in moments that do 

not contribute to the required net joint moments, co-activation may become functionally unfavorable, 

if not harmful. It may, in fact, be a factor that contributes to the inefficiency of human movement by 

increasing the physiological and metabolic cost, lowering net moment and power development. 

Excessive muscle co-activation also increases compressive loading across the joint, which can lead 

to cartilage loss. [34-37]. 

For an accurate determination of muscle co-activation during functional movements, robust 

measurement techniques are required [38]. 
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To quantify muscle co-activation, several computational approaches have been used: ratio, 

overlapping, or cross-sectional areas of simultaneous activation of opposite muscles [39]. These 

mathematical tools are based on an agonist–antagonist approach to EMG signals recorded from two 

antagonist muscles or from two antagonist muscles in the same joint. The results of these tools are 

expressed in terms of the time of overlapping between the linear envelopes of two opposing muscles 

as well as the magnitude of muscle co-activation [40,41]. 

Furthermore, Ranavolo et al. 2015 [42] proposed a method based on the time-varying multi-muscle 

co-activation function (TMCf), which  may enable understanding of the global strategy achieved by 

the CNS in modulating the activation/deactivation of many lower limb muscles during gait, 

irrespective of both the agonist antagonist interaction at a single-joint level [23] and the modular 

architecture [43]. The TMCf is calculated as follow: 

𝑇𝑀𝐶𝑓(𝑑(𝑖), 𝑖) = (1 −
1

1 + 𝑒−12(𝑑(𝑖)−0.5)
) .

(∑ 𝑚 𝐸𝑀𝐺𝑚(𝑖)/𝑀)𝑀
1

2

𝑚𝑎𝑥𝑚=1…𝑀[𝐸𝑀𝐺𝑚(𝑖)]
 

where M is the number of muscles considered, EMGm(i) is the sEMG sample value of the mth muscle 

at instant i, d(i) is the mean of the differences between each pair among the twelve EMGm(i) samples 

at instant i: 

𝑑(𝑖) = (
∑ 𝑚 ∑ 𝑛 ⃒𝐸𝑀𝐺𝑚(𝑖) − 𝐸𝑀𝐺𝑛(𝑖)⃒𝑀

𝑚+1
𝑀−1
1

(
𝑀!

2! (𝑀 − 2)!
)

) 

where M!/(2!(M-2)!) is the total number of possible differences between each pair of EMGm(i). Next, 

starting from TMCf, we calculated synthetic indices for each condition, among which the coactivation 

index (CI) as the mean value of the TMCf [42]: 

𝐶𝐼 = ∑
𝑇𝑀𝐶𝑓(𝑑(𝑖), 𝑖)

201

201

𝑖=1

 

Other parameters are: 

-  the Full Width at Half Maximum (FWHM) which characterize the TMCf curves in terms of 

time amplitude. The FWHM is calculated as the sum of the durations of the intervals ∆tj in 

which the TMCf curve exceeded half of its maximum [44]: 

𝐹𝑊𝐻𝑀 = ∑ ∆𝑡𝑗

𝑗
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- the Center of Activity (CoA) which determine where the majority of coactivation occurs 

during the gait cycle [45]. It is calculated by combining Labini's [46] formula with the circular 

transformation, yielding the following expression: 

𝑐𝑜𝑎 = 𝑡𝑎𝑛−1 (
∑ 𝑖 𝐸𝑀𝐺𝑖 ∗ 𝑠𝑖𝑛𝜗𝑖

201
0

∑ 𝑖201
0  𝐸𝑀𝐺𝑖 ∗  cos 𝜗𝑖

) 

- the Coefficient of Multiple Correlation (CMC) which expresses the waveforms similarity, and 

it is calculated as [47,48] : 

𝐶𝑀𝐶 = √1 −
(1/ (T (N − 1))) ∑ 𝑖𝑁

1 ∑ 𝑡 (𝑦𝑖𝑡 − 𝑦̅𝑡)2𝑇
1

(1/ (T N − 1)) ∑ 𝑖𝑁
1 ∑ 𝑡 (𝑦𝑖𝑡 − 𝑦̅)2𝑇

1

 

- Deviation Phase (DP) is calculated by averaging the standard deviations of the ensemble 

TMCf curves for each group using the following equation [47]: 

𝐷𝑃 =
∑ 𝑆𝐷𝑖

𝑝
𝑖=1

𝑝
 

where p is the number of time points. 

 

All measurement techniques are susceptible to error, which can reduce validity and reliability while 

also complicating interpretation of the results. Several factors in the sEMG measurement process, 

such as signal acquisition and signal analysis procedures, may influence the establishment of 

representative envelope profiles and, as a result, the outcome of co-activation evaluated from the 

signal envelope. An important consideration is the variation of the signal-to-noise ratio (SNR) level: 

the sensitivity of the algorithm's performance may change as the SNR level varies [49]. 

Muscle joint coactivation varies throughout the gait cycle, depending on the functional role of the 

lower limb joints along gait phases, reaching higher values during weight acceptance and transition 

from stance to swing subphases [34] and lower values during mid-stance [50]. Other factors that 

influence the muscle coactivation during locomotion are age [51], speed, and motor context, i.e., 

stable vs. unstable conditions [52 ]. 

 

3.3.6 Wearable sensors parameters 

 

The “Walk+” protocol of the G-STUDIO software (G-STUDIO, BTS, Milan, Italy) was used to detect 

trunk acceleration patterns, right and left heel strikes, toe-off, spatiotemporal parameters, and pelvis 

kinematics (Table 3.2). 

 



 
36 

 

Table 3.2 Spatio-temporal and kinematic parameters recorded by the sensor 

Spatio-temporal parameters Pelvic kinematics 

Analysis duration (s)  

TILT: pelvic movement along the 

sagittal plane 

Cadence (steps/min) 

Gait cycle duration (s) 

Stride length (m) 

% Stride length (%height) OBLIQUITY: pelvic movement 

along the frontal plane Step length (%str. length) 

Stance phase (%cycle) 

Swing phase (%cycle)  

ROTATION: pelvic movement 

along the transversal plane 

Double support phase (%cycle) 

Single support phase (%cycle) 

Elaborated steps 

 

 

3.3.7 Trunk acceleration-derived indices 

 

We calculated the following indices from raw trunk acceleration data: 

 

1. Harmonic Ratio (HR) and Improved Harmonic Ratio (iHR):  

The Harmonic Ratio is an index that expresses the smoothness and rhythmicity of trunk acceleration 

patterns. The calculation of HR for continuous walking trials is based on a stride (two steps) [53]. 

Acceleration signals in AP and VT axes are characterized by the even harmonics, as trunk movements 

in these directions are biphasic for any given stride. In contrast, ML accelerations are characterized 

by the odd harmonics, as the ML movement is limb-dependent and only repeated once for any give 

stride. Therefore, using the first twenty harmonic amplitudes derived from the discrete Fourier 

transform of trunk accelerations, the HR for AP and VT accelerations is calculated by dividing the 

sum of the even harmonics by the sum of the odd harmonics while for ML accelerations, the HR is 

calculated by dividing the sum of the odd harmonics by the sum of the even harmonics. A forth order 

low-pass Butterworth filter with a 20 Hz cutoff was used to eliminate noise signals and the HR values 

were calculated as follows [54]:  

𝐻𝑅𝐴𝑃,𝑉𝑇 =
∑ 𝐴𝑖∗2𝑖

∑ 𝐴𝑖∗2−1𝑖
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𝐻𝑅𝑀𝐿 =
∑ 𝐴𝑖∗2−1𝑖

∑ 𝐴𝑖∗2𝑖
 

 

where Ai represents the amplitudes of the first 20 even harmonics and A2i−1 represents the 

amplitudes of the first 20 odd harmonics. A greater HR represents a more stable walking pattern 

[55,56]. The index definition was then modified to overcome its large variability in highly 

symmetrical gait due to the small contribution of the extrinsic harmonics (at the denominator), its 

unintuitive interpretation and its lack of mathematical rigor.  An improved Harmonic Ratio was 

therefore defined as the ratio between the power (P) of the considered k intrinsic harmonics over the 

total power of the signal, thus obtaining a normalized index, ranging from 0 (total asymmetry) to 100 

(total symmetry) [57] : 

 

𝑖𝐻𝑅𝑘 =
∑ 𝑃𝐼

𝑗𝑘
𝑗=1

∑ (𝑃𝐼
𝑗𝑘

𝑗=1 + 𝑃𝐸
𝑗
)

∗ 100 =
∑ (𝐴𝐼

𝑗
)2𝑘

𝑗=1

∑ (𝐴𝐼
𝑗
)2 + ∑ (𝐴𝐸

𝑗
)2𝑘

𝑗=1
𝑘
𝑗=1

∗ 100 

 

2. Coefficient of Variation (CV) 

To compute the Coefficient of Variation, the step length was estimated by using  the inverted 

pendulum model, in which the body’s center of mass (CoM) movements in the sagittal plane follow 

a circular trajectory during each single-support phase and its height changes depend on the step length 

[58]. Therefore, the step length is calculated as follows:  

𝑠𝑡𝑒𝑝 𝑙𝑒𝑛𝑔𝑡ℎ = 2√2𝑙ℎ − ℎ2 

 

where h is the height of the CoM and l represents the pendulum length. A double integration of the 

vertical acceleration was implemented to calculate changes in the vertical position. A fourth-order 

zero-lag Butterworth high-pass filter, with cutoff frequency of 20 Hz, was used to avoid integration 

drift. The amplitude of the changes in the vertical position [59] was calculated as the difference 

between the highest and lowest positions during a step cycle. The leg length was considered to be the 

pendulum length (l). The step length CV was computed as follows:  

 

𝐶𝑉 =
𝑆𝐷

𝑚𝑒𝑎𝑛
∗ 100 

 

where mean is the mean step length and SD is the standard deviation over all step lengths for each 

subject [60]. The higher the CV, the higher the variability in step length. 
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3. Normalized Jerk Score (NJS) 

The Normalized Jerk Score measures the time-normalized rate of change in the acceleration signals 

during stepping [61,62]. The acceleration data were first low pass filtered using a fourth-order zero-

lag Butterworth filter with a cutoff frequency of 20 Hz. We then calculated the NJS from the time 

duration between each foot contact as follows [62]: 

𝑁𝐽𝑆 =
1

𝑁
∑ √

(ℎ𝑠𝑖+1 − ℎ𝑠𝑖)5

2

𝑁

𝑖=1
∫ (𝑎)2𝑑𝑡

ℎ𝑠𝑖+1

ℎ𝑠𝑖

 

 

where hsi is the time of the ith heel strike and a is the acceleration. The next step consists of low pass 

filtering of the NJS using a fourth-order zero-lag Butterworth filter with a cutoff frequency of 5 Hz 

[61]. A high index value indicates a smoother gait.  

 

4. Log Dimensionless Jerk (LDJ) 

The log dimensionless jerk is an acceleration-based parameter examining the rate of change of 

movement acceleration and it results from the logarithm naturalis of the sum of the squared 

acceleration multiplied with the trial duration to the power of three and divided by the squared peak 

velocity [63]: 

𝐿𝐷𝐽 ≜ −ln (
𝑡2 − 𝑡1

𝑣𝑝𝑒𝑎𝑘
2  ∫ |

𝑑2𝑣

𝑑𝑡2
| 𝑑𝑡)

𝑡2

𝑡1

 

An index value closer to zero represent smoother movements. 

 

5. Recurrence Quantification Analysis (RQA) 

The Recurrence Quantification Analysis can provide useful information regarding the pattern and 

structure of system dynamics even for short duration and non-stationary data [64] . As already shown 

by Poincaré in 1890, recurrence is one of the fundamental features of dynamical systems and can be 

used to characterize the specifc behaviour of a system in phase space, including the quantification of 

deterministic structures and non-stationarity, based on the construction of recurrence plots [65]. A 

detailed description of RQA calculation was provided by Webber et al. (1994) [66]. Acceleration and 

angular velocity data are embedded in “m” dimensions using “m” copies of the original time series, 

where each copy is shifted in time by integer multiples of “τ” samples. The embedding dimension 

“m” is the first recurrence parameter estimated using the nearest-neighbor method [67], which 

compares the distances between neighboring trajectories at successively higher dimensions. “False 

neighbors” occur when trajectories that overlap in dimension mi are distinguished in dimension mi+1 
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. As i increases, the total percentage of false neighbors decrease, and m is chosen where this 

percentage approaches 0. False neighbors analysis was performed using values of Rtol = 17 and Atol 

= 2 [68,69]. We considered a maximum embedding dimension of 10, and m = 5 was considered as 

the optimal embedding dimension. “τ” represents the second recurrence parameter selected to 

minimize the interaction between the points in the measured time series. Two methods can be used 

to determine the appropriate delay, namely find the first minimum in either the (linear) autocorrelation 

function or (nonlinear) mutual information function of the continuous time series. τ was calculated 

from the first minimum of the average mutual information (AMI) function [70], which evaluates the 

shared amount of information in bits between two data sets over a range of time delays. By choosing 

the first minimum of the AMI function, adjacent delay coordinates with a minimum of redundancy 

are provided. The time delay computed by the first minimum of the AMI considered as optimal was 

10 samples [66,69]. A distance matrix is then computed by calculating the Euclidean distances 

between all embedded vectors. A recurrence matrix is computed by selecting a threshold (radius) of 

10% of the maximum distance, where all cells with values below this threshold are identified as 

recurrent points. RQA variables are used to quantify the structure of the recurrence matrix. Percent 

recurrence (RQArec) can be calculated to understand how often a trajectory visits similar locations in 

the state space and it is computed as the percentage of recurrent points in the recurrence matrix. 

Percent determinism (RQAdet) can be calculated to understand how often a trajectory repeatedly 

revisits similar state space locations and it is quantified as the percentage of recurrent points in the 

diagonal line structures (at least four consecutive points in length) parallel to the main diagonal. 

Therefore, RQArec quantifies the number of potentially recurrent points, where only a portion of these 

points recur periodically and are related to the predictability of the target dynamical system. The 

higher the RQArec and RQAdet values, the higher the predictability of the system [64]. 

 

6. Largest Lyapunov Exponent (LLE) 

The Largest Lyapunov exponent measures gait stability by calculating the average logarithmic rate 

of divergence after infinitesimal perturbations. An LLE less than zero represents the system's rate of 

convergence to its nearest neighboring trajectory, whereas an LLE greater than zero represents the 

rate of divergence. When trajectories converge, the observed system is said to be local dynamically 

stable, whereas divergence indicates local dynamically unstable. In our study, the LLE was estimated 

using the method described by Van Schooten et al [71]. To avoid the loss of spatiotemporal 

fluctuations and nonlinearities, no filtering was applied to the triaxial accelerations, and the 

accelerations were time-normalized to obtain 100 data points per stride, excluding the effects of data 
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series time duration on dynamic stability measures. For each triaxial trunk acceleration over the 

strides considered in each trial, local dynamic stability was calculated. Based on the AP, ML, and VT 

trunk accelerations, we calculated the short-term maximum finite-time LE (lmax) for each stride. 

Using the Lyaprosen MATLAB toolbox for nonlinear time series analysis, the value of lmax was 

determined using Rosenstein's algorithm for short time series. To evaluate dynamic perturbations, a 

multidimensional state space whose dimensions were determined using the classical global false-

nearest-neighbor method was reconstructed from the recorded one-dimensional time series data by 

juxtaposing the original data and delayed copies (the time delay was determined using the first 

minimum of the average mutual information function) [72]. This index's low values indicate more 

stable trunk dynamics, while high values indicate less stable trunk dynamics. 

 

7. Root Mean Square (RMS) 

The root mean square of acceleration represents a statistical measure of the magnitude of the trunk 

acceleration in each direction. It was calculated as follows: 

 

𝑅𝑀𝑆 = √
∑ 𝑎𝑖

2𝑛
𝑖=1

𝑛
 

Where ai is the acceleration measured at the i-th sampled value and n is the length of the acceleration 

vector. 

The RMSR  represents the ratio between the RMS in each direction and the RMS vector magnitude 

(RMST) and was calculated using the following equations [73]: 

 

𝑅𝑀𝑆𝑇 = √𝑅𝑀𝑆𝐴𝑃
2 + 𝑅𝑀𝑆𝑀𝐿

2 + 𝑅𝑀𝑆𝑉
2 

𝑅𝑀𝑆𝑅𝑘 =
𝑅𝑀𝑆𝑘

𝑅𝑀𝑆𝑇
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CHAPTER 4 

 
4. GAIT ANALYSIS OF PEOPLE WITH NEUROLOGICAL DISEASES 
 

4.1. Characterization of pathologies under investigation 
 
Gait analysis in subjects with motor disabilities provides critical information because it allows for the 

determination of the degree of limitation caused by the pathology and, as a result, the definition of an 

appropriate rehabilitation path. 

Walking disorders are among the most visible symptoms of the pathologies studied in this thesis. For 

example, the first symptoms of Parkinson's disease are a shorter and more crawled locomotion, as 

well as a decrease in the angular movements of the joints [1]. A progressive loss of muscle 

coordination has been observed in diseases caused by a cerebellum deficit, such as cerebellar ataxia, 

making voluntary movements difficult [2]. Furthermore, upper motor neuron syndrome caused by 

stroke involves a various of sensorimotor impairments including spasticity, impaired motor control 

and proprioceptive deficits that interfere with normal gait [3-7].  

It has also been demonstrated in subjects who have had lower limb amputations that prosthetic gait 

reflects a mixture of deviations from normal gait and adaptive and compensatory motions dictated by 

residual limb function after amputation [8]. 

Consequently, a complete characterization of these patients' locomotion could be a useful tool for 

identifying the motor strategies put in place to ensure stability and progression. 

 

4.1.1 Cerebellar Ataxia 

 
Gait ataxia is a common feature of cerebellar disorders, and patients exhibit unusual spatiotemporal 

and kinematic characteristics that contribute to an unstable gait [9-13]. 

Gait impairment has a significant impact on a person's autonomy and daily life activities, as well as 

significantly increasing the risk of falling [14,15]. Because walking is such an important function in 

everyday life, longitudinal gait assessment is critical for measuring the actual progression of gait 

impairment, determining if there are differences in the progression of gait impairment for different 

ataxic disorders, and identifying which gait parameters are more sensitive to gait decline. Modern 

motion analysis systems have recently been used to quantify the nature and degree of walking 

dysfunction in patients with cerebellar ataxia. Several abnormalities in spatiotemporal parameters, 
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muscle activation patterns, and upper body control have been observed, as well as increased 

variability in global and segmental gait parameters [9,16]. 

Furthermore, the evaluation of gait instability and fall risk is critical in the study of ataxic gait to 

prevent further disabilities, and it should be performed in a real-life environment outside the motion 

analysis laboratory for a long period of time in order to maximize and optimize the information we 

gather from such evaluation. Investigating the patterns of trunk acceleration during gait of people 

with cerebellar ataxia, in particular, may allow clinicians to quantify the level of trunk instability 

during gait as a generator of dynamic imbalance and provide clinicians with useful information for 

designing specific devices and rehabilitative interventions [17-20]. For these reasons, we examined 

the kinematics, kinetics, surface electromyography and stability in gait of subjects with cerebellar 

ataxia using both motion capture systems and wearable inertial sensors in our studies. 

 

Ataxic gait reflects both the primary deficit, which is related to the cerebellum's lost ability to process 

multisensory features and provide a "error-correction mechanism" [17,21,22], and the compensatory 

mechanisms, which patients use to maintain dynamic stability while walking [9,10,23-25]. 

One of the most important motor compensatory strategy used by patients with cerebellar ataxia (CA) 

is to increase antagonist muscle coactivation at a single-joint level. The aims of the study “Impairment 

of Global Lower Limb Muscle Coactivation During Walking in Cerebellar Ataxias” (2020) were: (i) 

to investigate the TMCf in the lower limbs during gait in patients with CA; (ii) to compare the data 

of patients with CA with those of healthy subjects (HS); and (iii) to correlate the global coactivation 

parameters with the biomechanical (i.e., Center of Mass (CoM) displacement) and clinical features. 

 

Subjects 

Twenty-three patients with degenerative CA were enrolled. Fourteen patients had a diagnosis of 

autosomal dominant ataxia (spinocerebellar ataxia [SCA]; eight with SCA1 and six with SCA2), 

whereas the other seven had sporadic adult-onset ataxia of unknown etiology (SAOA). The severity 

of the disease was rated using the Scale for the Assessment and Rating of Ataxia (SARA)[26]. No 

patient was found to have visual impairment, whereas almost all patients had oculomotor 

abnormalities such as gaze nystagmus or square wave jerks during pursuit movements. All patients 

exhibited cerebellar atrophy on magnetic resonance imaging. Moreover, all patients were able to walk 

alone without any kind of aid on a level surface and to perform the required task. Because patients 

with SCA may show signs other than cerebellar features, we only included those who exhibited gait 

disturbances that were exclusively cerebellar in nature at the initial evaluation. A total of 23 age-, 
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sex-, and speed-matched HS were also enrolled as a control group. All subjects provided informed 

consent before taking part in the study, which complied with the Helsinki Declaration and had local 

ethics committee approval. 

 

Instrumentation and procedure 

All participants involved in the study were preliminary instructed about the correct experimental 

procedures and underwent practice tests to familiarize themselves with the experimental set up. Each 

participant was asked to walk barefoot for approximately 8 m along the laboratory pathway while 

looking straight ahead. Patients with CA were asked to walk 10 trials at a self-selected, comfortable 

speed. On the other hand, the HS were asked to walk 10 times at a self-selected speed and 10 times 

at a slow speed (slower than self-selected). Because we were interested in natural locomotion, only 

general, qualitative, and verbal instructions were provided. A 1- min break was provided between 

each walking trial to avoid the onset of muscle fatigue. 

For the acquisition of gait kinematics, a stereophotogrammetric motion analysis system with 

optoelectronic technology was used (SMART-D System; BTS, Italy, Milan). Eight infrared cameras 

(sampling rate 300 Hz) and 22 reflective markers positioned above the anatomical reference points 

were used according to Davis’ protocol. 

A wireless (Wi-Fi) 16-channel acquisition system (FreeEMG1000; BTS SpA, Milan, Italy) was used 

to measure the superficial myoelectric activity. The probes were placed over the muscles of interest 

using Ag/AgCl pregelled electrodes (H124SG; Kendall ARBO, Donau). As the motor disturbances 

were symmetrical in our patients, we focused our analyses on the right-leg locomotor output. 

Therefore, the electrodes were placed over the following right-sided muscles: gluteus medius, rectus 

femoris, vastus lateralis, vastus medialis, tensor fascia latae, semitendinosus, biceps femoris, tibialis 

anterior, gastrocnemius medialis, gastrocnemius lateralis, soleus, and peroneus longus. 

 

Data analysis 

The following parameters within the gait cycle were calculated: (i) the synthetic coactivation index 

(CI; (ii) the full width at half maximum of the TMCf (FWHMTMCf); (iii) the CoA of the TMCf 

(CoATMCf). The vertical component of GRFs was measured and normalized both to the stance phase 

duration and to each subject’s body weight. To characterize the spatial and temporal profile of the VF 

curves, the indexes of the full width at half maximum (FWHMVF) and that of the CoA (CoAVF) were 

measured. 
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Cross-correlation analysis was used to evaluate the similarity in shape and timing between the VF 

and TMCf curves. The normalized cross-correlation function (Rxy(k)) was calculated between the 

VF and TMCf mean curves of all subjects only for the stance phase. To obtain information on the 

mechanical energy expenditure involving the whole skeletal muscle system during walking, we 

measured energy recovery and energy consumption parameters. 

 

Statistical Analysis 

The Shapiro-Wilk test was used for the preliminary study of normal data distribution. The unpaired 

two-sample t test (ttest) or Mann-Whitney (MW) test was used to evaluate differences in kinematic, 

kinetic, spatiotemporal, energetic, and EMG data between patients with CA and HS. We used the 

Watson-Williams test for circular data which allows to compare mean angles with two or more 

samples and is equivalent, for angles, of an ANOVA/Kruskal-Wallis test. Specifically, we used this 

test to evaluate differences in CoA values, reported with polar representation, of both the TMCf and 

VF curves between patients with CA and HS. A p value of < 0.05 was considered statistically 

significant. Cohen’s d values were evaluated to estimate the effect size, considering small (< 0.5), 

medium (from 0.5 to 0.8), and large (> 0.8) effects. The Pearson or Spearman test was used to 

investigate any correlations between global coactivation parameters and clinical and gait variables. 

Partial correlations were used to control for gait speed. Statistical analysis was performed using 

MATLAB R2018b. 

 

Results 

The global coactivation, in terms of both CI and FWHM of the TMCf, was significantly increased in 

patients with CA compared with HS (Figure 4.1a, b). Furthermore, patients with CA shifted the global 

activation (i.e., CoATMCf) toward the initial contact (Figure 4.1c). Specifically, patients with CA 

showed CI values of 17.18 ± 3.35% vs values of 11.01 ± 1.81% of the HS (pttest < 0.001, d = 2.28; 

see Figure 4.1a) and FWHMTMCf values of 43.95 ± 9.19% vs values of 37.57 ± 8.70% of the HS (pttest 

= 0.02, d = 0.75; see Figure 4.1b), indicating a higher coactivation level. In addition, patients with 

CA showed lower values of CoA than HS (p = 0.001; Figure 4.1c), indicating a shift of the global 

activation toward the initial contact (Figure 4.1c). Moreover, the CA patients showed higher TMCf 

waveform similarity both within and between subjects: the CMCWS values were significantly higher 

than HS and the CMCBS values higher than HS. Lastly, a lower value of TMCf waveform similarity 

between groups was found. 
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Figure 4.1 Simultaneous coactivation of 12 lower limb muscles in patients with cerebellar ataxia (CA) and 

healthy subjects (HS). a Time-varying multi-muscle coactivation function (TMCf) curves: the upper graphs 

represent all TMCf curves of the 23 patient swith CA and the 23 HS, whereas the lower graphs show the 

mean values of TMCf (average value in solid line and standard deviation [SD] in light color) with the 

coactivation index (CI) (average value in solid line and SD in dotted line). b Full width at half maximum 

(FWHM) of the TMCf: the TMCf (average and SD) is presented as a polar graph and the FWHM is the 

colored area subtending the curve. All quantities shown are expressed as a percentage of the gait cycle. c 

Center of activity (CoA) of the TMCf: each dot in the circumference represents an individual subject’s mean 

CoA value, whereas the mean value and SD of the CoA of all subjects are represented by the solid line and 

the width of the circular sector (in light color), respectively. 

 

The VFs of both patients with CA and the HS are shown in Figure 4.2a as averaged curves and 

standard deviations, while Figure 4.2b and c show the mean values of FWHM (identified by the 



 
51 

 

colored area between the curves) and of CoA (average values are the solid line and SD the circular 

sector in light color), respectively. No significant difference was observed for FWHMVF whereas a 

significantly lower value of CoAVF was found in patients with CA than in HS (Figure 4.2c). 

 

 

Figure 4.2 Vertical component (VF) of the ground force reaction (GFR) in patients with cerebellar ataxia 

(CA) and healthy subjects (HS). a VF curves (average in solid line and standard deviation [SD] in light 

color). b Full width at half maximum (FWHM) of the VF: the VF (average and SD) is presented as a polar 

graph and the FWHM is the colored area subtending the curve. All quantities shown are expressed as a 

percentage of the stance phase of the gait cycle. c Center of activity (CoA) of the VF: each dot in the 

circumference represents a single subject’s mean CoA value, whereas the mean value and SD of the CoA of 

all subjects are represented by the solid line and the width of the circular sector, respectively 

Figure 4.3 shows the results of the cross-correlation between the TMCf and VF averaged curve values 

within the HS (Figure 4.3a) and CA groups (Figure 4.3b), with the maximum point (Rmax) and the 

time of its occurrence (τ*) obtained through a comparison of the curves. The figure demonstrates that 

both the groups showed a high degree of similarity: RHS_max was 0.96 and RCA_max was 0.94. 

Furthermore, the same values of τ* were observed for the two groups: τ*HS and τ*CA were 9% 

(Figure 4.3b). 
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Figure 4.3 Cross-correlation. a Mean curves of time-varying multi-muscle coactivation function (TMCf) 

(continuous line) and vertical force (VF) (dashed line), normalized to the maximum value among all 

subjects, presented in the range of 0–1. b Cross-correlation curves between the TMCf and the VF curves and 

their relative maximum value (Rmax,). The dashed lines represent the temporal shift (τ*) of the cross-

correlation. All quantities shown are expressed as a percentage of the stance phase of the gait cycle. 

 

Figure 4.4 shows the negative moderate correlation between gait speed and CI, CoATMCf and 

FWHMTMCf. Furthermore, Figure 4.4 shows a significant positive partial correlation between CI and 

both CoM mediolateral displacement values and SARA scores and between CoATMCf and both CoM 

mediolateral displacement values and SARA scores. 
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Figure 4.4 Correlations among the time-varying multi-muscle coactivation function (TMCf) parameters, gait 

parameters, and clinical scores. Only parameters that significantly differed between patients with cerebellar 

ataxia and healthy subjects are plotted in this figure. Each point on the graphs represents the value for the 

individual patient, and linear regression lines (solid line) with corresponding r and p values are reported. A 

Relationships of the coactivation index (CI), center of activity (CoA), and full width at half maximum 

(FWHM) to the mean gait speed. b CI and CoA with the Scale for the Assessment and Rating of Ataxia 

(SARA) score. c CI and CoA with the center-of-mass mediolateral displacement. 

 

In addition to altered muscle behavior, recent studies in the literature have demonstrated that upper 

body oscillations are another clinical feature of ataxic patients [2,13,27]. These oscillations shift the 

center of mass to the edges of the base of support, which can worsen gait instability, increase body 

sway while walking, and increase the risk of falling [20]. For these reasons, ataxic patients must use 

special devices designed to stabilize the upper body, reduce body sway while walking, and reduce 

walking variability. In particular, ataxic patients may benefit from using elastic or semi-rigid orthoses 

that can reduce trunk oscillations and stabilize joint trajectories without restricting lower limb 

movements during walking. 
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In the study “The effectiveness of a soft passive trunk exoskeleton on the motor coordination in 

patients with cerebellar ataxia”  (in progress) we analyzed the gait of patients with cerebellar ataxia 

using a suit made of lycra fabric woven with carbon thread, with a pocket on the back that houses a 

passive exoskeleton. We then compared the gait of these patients without and with the use of the 

device; in particular, the aim of the study was to compare the following parameters between the two 

conditions: 

(i) spatio-temporal parameters; 

(ii) kinematic of the trunk and lower limb joints;  

(iii) the device's effectiveness in terms of mechanical energy expenditure and recovery; 

(iv) vertical ground reaction force; 

(v) stability in terms of center of mass and center of pressure behavior. 

 

Subjects 

Eight patients (3 females, 5 males; mean age: 55,5 ± 9,47 years) affected by degenerative cerebellar 

ataxia were enrolled in this study. Four were diagnosed with autosomal dominant ataxia 

(spinocerebellar ataxia [SCA]; 4 patients with SCA1 ,SCA2, SCA8, SCA40) while the other 4 had 

sporadic adult-onset ataxia (SAOA). We excluded patients with major involvement of neurological 

systems other than cerebellar impairment (e.g., extrapyramidal, pyramidal, peripheral nerve, or 

muscle), as well as those with orthopedic disorders that could cause further gait impairment. The 

Scale for the Assessment and Rating of Ataxia (SARA)[26] was used to assess the disease's 

characteristics; the characteristics of patients are described in Table 4.1. All the participants gave a 

written informed consent according to the Declaration of Helsinki. The local research ethics 

committee approved the study (CE Lazio 2, protocol number 0139696/2021). 

Table 4.1 Patients’  characteristics 

Patients Age Gender Diagnosis SARA Tot SARA Gait 

P1 67 F SAOA 18 4 

P2 57 F SAOA 5 2 

P3 37 M SCA1 14 3 

P4 54 M SCA2 14 3 

P5 59 M SAOA 12 3 

P6 51 M SAOA 7 2 

P7 66 M SCA40 6 2 

P8 53 F SCA1 2 1 
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A soft passive exoskeleton made of lycra fabric woven with carbon thread is used. The textile module 

of this exoskeleton has a specific tension and force direction that is useful in ensuring the patient's 

body alignment in three-dimensional space. These typically extend from the shoulders to the hips, 

creating a force that opposes trunk movements. The passive exoskeletons designed to be 

accommodated in the patient's spine using computerized tomography and optoelectronic methods are 

attached to the textile module. Because these devices are typically made of shape memory material, 

they operate on the principle of energy restitution. 

 

Instrumentation and procedure 

A six infrared cameras optoelectronic motion analysis system at sample frequency of 340 Hz 

(SMART-DX 6000 System, BTS, Milan, Italy) was used to detect the movement of twenty-seven 

passive markers placed according to a modified Davis’ protocol [28]. The gait analysis began with a 

standing position on a platform. The procedure continued by asking the patient to walk at their 

preferred speed and in their own shoes without wearing the device; at least ten trials were recorded 

in this condition. Following that, the patients were made to wear the suit with the exoskeleton inserted, 

and was asked again to walk at least ten times at their preferred speed and in their shoes. 

 

Data analysis 

We calculated the spatio-temporal parameters, the trunk range of motions and the flexion-extension 

range of motion of hip, knee and ankle joints. We examined the vertical component of the ground 

reaction force and the corresponding FWHM for kinetics. To evaluate the effectiveness of the device 

in terms of mechanical energy recovery and expenditure, we calculated the R-step and TEC 

parameters. Finally, to evaluate the device's effect on stability, we examined the displacement of the 

center of mass (COM) as well as the bmin parameter.  The COM was calculated according to the 

reconstructed pelvis method [29] , considering the markers on the sacrum and the two anterior iliac 

spines. The bmin parameter was calculated as the difference between CoP and XCoM in the medio-

lateral direction during the double support phase. The XCoM was determined using the extrapolated 

centre of mass: 

𝜁(𝑡) = 𝑥(𝑡) +
𝑥(𝑡)̇

𝜔0
 

𝜉(𝑡) = 𝑧(𝑡) +
𝑧(𝑡)̇

𝜔0
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where ζ(t), ξ(t) and x(t), z(t) are the instantaneous anterior– posterior and lateral XCoM and CoM 

positions respectively, 𝑥(𝑡)̇  and 𝑧(𝑡)̇  are the instantaneous anterior– posterior and lateral CoM 

velocities, and 𝜔0 is the  Eigen frequency calculated by the following equation: 

𝜔0 = √
𝑔

ℎ
 

where g is the acceleration due to gravity and h is the effective height of the body’s CoM above the 

floor. For the anterior–posterior and lateral directions, h was calculated as 1.24 and 1.34 times the 

trochanteric height, respectively [30]. The center of pressure (CoP) position was calculated from the 

distribution of the forces on the platforms as the point location of the ground reaction force vector. 

Positive and negative values of bmin indicate, respectively, a condition of stability and instability.  

 

Statistical Analysis 

Statistical analysis was performed using MATLAB R2021b. All data were expressed as mean± 

standard deviation; p < 0.05 was considered statistically significant. We assessed the normality of 

distributions using the Shapiro-Wilk test. Mean and standard deviation within subjects were 

computed for all parameters. We used the independent-samples t test to compare the parameters 

calculated in the two conditions, without and with the soft passive exoskeleton.  

 

Results 

There was no statistically significant difference in the spatio-temporal gait parameters between the 

two conditions, with the exception of step length variability, which is significantly lower in the 

presence of the device (Table 4.2). 
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Table 4.2 Comparison of space-time parameters between the two conditions 

Spatio-temporal  

parameters 

Withouth 

exoskeleton 

With  

exoskeleton 

 

p-value 

Step Length (m) 0.41±0.02 0.44±0.07 >0.05 

CV Step length 6.5±0.8 5.3±1.4 0.02 

Step Width (m) 0.17±0.06 0.14±0.04 >0.05 

CV step Width 5.7±1.8 5.4±2.3 >0.05 

Stance phase (% gait cycle) 66±2.6 65±2.2 >0.05 

Swing phase (% gait cycle) 34±2.1 35±3.06 >0.05 

Double support phase (% gait cycle) 16±2.5 18±3.8 >0.05 

Speed (m/s) 0.7±0.05 0.8±0.1 >0.05 

 

Mean ± standard deviation values and the result of the independent samples t-test are reported. p values 

lower than 0,05 were considered statistically different 

 

When comparing the two conditions, statistically significant differences in trunk ranges of motion in 

the sagittal and transverse planes were found (Figure 4.5). There were no differences in the flexion-

extension ranges of motion of the hip, knee, and ankle joints (Figure 4.5). 

 

 

 

Figure 4.5 Range of motion of the trunk in three planes of space (above) and flexion-extension of the hip, 

knee, and ankle joints (below) without exoskeleton (black) and with exoskeleton (grey) 
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A comparison of the profiles of the vertical component of the ground reaction force in the two 

conditions revealed that in the presence of the device, a peak in the 10% of the stance phase 

disappeared. Furthermore, a statistically significant difference was found when comparing the 

FWHM values (Figure 4.6). 

 

 

 

Figure 4.6 Vertical ground reaction force components, means, standard deviations and statistical results of 

FWHM values without exoskeleton (black) and with exoskeleton (grey)  

 

In terms of energy behavior, statistically significant differences were found for both energy 

consumption and energy recovery, with the parameters improving in the presence of the device 

(Figure 4.7). 
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Figure 4.7 Means, standard deviations, and statistical results of fraction of mechanical energy recovered (R-

step) and total energy consumption (TEC) values without exoskeleton (black) and with exoskeleton (grey) 

 

No significant differences were found for the stability index bmin. However, there were significant 

differences in the displacement of the COM in the medio-lateral direction (COMML displacement 

without exoskeleton= 0.123±0.02, COMML displacement with exoskeleton= 0.094±0.02, p=0.018) , 

which is statistically smaller in the presence of the device (Figure 4.8). 

 

Figure 4.8 a)Boxplot of dynamic stability index in both conditions (black: without exoskeleton, grey: with 

exoskeleton) during the double support phase in the medio-lateral direction. b)center of mass displacement 

in medio-lateral direction for both conditions for a representative patient. 

 

As a result, patients with cerebellar ataxia exhibit peculiar spatiotemporal and kinematic 

characteristics, as well as muscle activation patterns that contribute to an unstable gait [9-11,31]. 

Furthermore, ataxic gait is extremely variable across gait cycles [9] and exhibits inefficient 

coordination between upper and lower body segments, even in the absence of external disturbances 
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[32]. Given these circumstances, it is reasonable to hypothesize that when perturbation occurs in 

ataxic patients, the risk of falling increases, and the gait pattern can be classified as unstable.   

The evaluation of gait instability and fall risk is thus critical in the study of ataxic gait to prevent 

further disabilities, and it should be performed in a real-life environment outside the motion analysis 

laboratory to maximize and optimize the information we gather from such evaluation. In this context, 

wearable magnetic and inertial measurement units (MIMUs), consisting of a three-axial 

accelerometer, a gyroscope, and a magnetometer, represent a self-contained  alternative to 

conventional laboratory-based motion capture systems [33-35]. 

 

The study “Exploring Risk of Falls and Dynamic Unbalance in Cerebellar Ataxia by Inertial Sensor 

Assessment” (2019) evaluated whether and how wearable inertial sensors can describe the gait 

kinematic features among ataxic patients.  

 

 

Subjects 

Seventeen patients affected by primary degenerative cerebellar ataxia were enrolled in the study. The 

complete neurological assessment included (1) cognitive evaluation according to mini-mental state 

examination (MMSE) scale, (2) cranial nerve evaluation, (3) muscle tone evaluation, (4) muscle 

strength evaluation, (5) joint coordination evaluation, (6) sensory examination, (7) tendon reflex 

elicitation, and (8) disease severity measured by International Cooperative Ataxia Rating Scale 

(ICARS) and Scale for the Assessment and Rating of Ataxia (SARA) [26].  All patients were able to 

walk alone without any kind of assistance or aid, and were receiving physical therapy, including 

active and passive exercises for upper and lower limbs as well as balance and gait re-education. The 

number of falls in the last year was used for correlation analysis. Sixteen age-matched healthy adults 

were enrolled as the control group. We obtained informed consent from each patient and healthy 

subject, which complied with the Helsinki Declaration and was approved by the local ethics 

committee. 

 

Instrumentation and procedure 

We acquired data with an inertial sensor (BTSGWALK, BTS, Milan, Italy), attached to an ergonomic 

belt placed around the pelvis at the level of the L5 vertebra, connected to a portable computer via 

Bluetooth. The sampling rate was 100 Hz, and the sensor, endowed with a tri-axial accelerometer (16 

bit/axes), a tri-axial magnetometer (13 bit), and a tri-axial gyroscope (16 bit/axes), measured the linear 
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trunk accelerations and the trunk angular velocities in three space directions. 

Before starting the experimental session, participants were asked to walk along a predetermined route 

in order to familiarize themselves with the procedure. Recordings of all the patients were obtained 

during overground walking. We asked participants to walk along a corridor (3 m wide and 20 m long) 

at their preferred speed. Control subjects were asked to walk at a low speed in order to match the two 

groups for speed. 

 

Data analysis 

The ‘walking protocol’ of the inertial sensor (G-STUDIO, BTS, Milan, Italy) was used to detect: (1) 

trunk acceleration patterns, (2) right and left heel strikes, and (3) toe-off. The HR and the CV were 

calculated using MATLAB software (MATLAB 7.4.0, MAthWorks, Natick, MA, USA). 

 

Statistical Analysis 

We used the SPSS 17.0 software (SPSS Inc. Chicago, IL, USA) for statistical analysis. All data were 

expressed as mean ± standard deviation; p < 0.05 was considered statistically significant. We assessed 

the normality of distributions using the Shapiro-Wilk test. Mean and standard deviation within 

subjects were computed for speed and stability indexes. We used the independent-samples t test to 

look for differences between the stability indexes of ataxic patients vs. controls. Cohen’s d index was 

used to assess the effect size of the stability indexes int he three spatial directions. We used  the 

Pearson’s test to investigate any correlation. We used the Pearson test to investigate any correlation 

of acceleration HR and step length CV with age, height,  weight,  disease duration,  total ICARS and 

SARA scores and number of falls in the last year. 

 

Results 

HR in all three directions and step length CV were all significantly different when compared to the 

controls (Table 4.3). Briefly, the HR of patients was lower than the HR of healthy subjects, meaning 

a less harmonic and rhythmic acceleration pattern of the trunk, while the CV of step length was greater 

in patients than in the controls, indicating a more variable step length in ataxic patients. Both HR and 

CV of step length showed a high effect size in distinguishing patients and controls, but HR in all three 

directions showed a higher effect size score when compared to the CV (Table 4.3). 
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Table 4.3. Comparisons of the stability indexes between 17 ataxic patients and 16 controls at matched gait 

speed. 

 

Mean ± standard deviation values, the results of the independent samples t-test and Cohen’s d are reported. 

Values of p lower than 0.05 were considered statistically significant. HR-AP: harmonic ratio in the anterior–

posterior direction; HR-ML: harmonic ratio in the mediolateral direction; and HR-VT: harmonic ratio in the 

vertical direction. 

Surprisingly, no correlation was found between HR in all directions, falls/year, and clinical severity 

(ICARS and SARA scores) (Table 4.4), while a significant positive correlation was found between 

the CV of step length and the falls/years and ICARS and SARA scores (Figure 4.9). 

 

Table 4.4. Correlation analysis between HR in all directions and ICARS, SARA, and falls/year. 

 

The reported values represent Pearson correlation value (R) and statistical significance value (p). HR-AP: 

harmonic ratio in the anterior–posterior direction; HR-ML: harmonic ratio in the mediolateral direction; 

and HR-VT: harmonic ratio in the vertical direction. 

 

 

Figure 4.9 Correlations between the maximum step-to-step coefficient of variation and the falls/year, ICARS-

total, and SARA-total scores in 17 ataxic patients. Pearson’s R coefficient (R) and significance (p) are 

reported. 

 

The sample and number of stability indices analyzed were expanded in the subsequent study 

“Identification of Gait Unbalance and Fallers Among Subjects with Cerebellar Ataxia by a Set of 
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Trunk Acceleration-Derived Indices of Gait” (2022), and their correlation with clinical and kinematic 

variables was investigated. 

 

Subjects 

Thirty-two subjects with primary degenerative CA (pwCA), 13 females and 19 males, aged 5 1.87 ± 

12.54 years, were included in this study. All subjects were assessed at the Academic 

Neurorehabilitation Unit of the Traumatic Orthopedic Surgical Institute (ICOT), Latina, Italy. The 

Scale for the Assessment and Rating of Ataxia (SARA) [26] was administered to assess disease 

severity, and data on the patient-reported number of falls during the last year were collected [36]. We 

only included subjects who were able to walk without assistance and who had gait problems that were 

exclusively cerebellar in nature at the time of their initial evaluation within a broader group of CA 

patients from a rare disease center. Because many spatio-temporal parameters are dependent on gait 

speed and we expected a slower gait speed in pwCA , to avoid any bias due to this feature, a 1:1 

optimal data matching procedure using the propensity score difference method. After the matching 

procedure, 32 age- and speed-matched healthy subjects (HSmatched) were included as the control group. 

In accordance with the Declaration of Helsinki, informed consent was obtained from both pwCA and 

HS before the experimental procedure. The study was approved by the local ethics committee (CE 

Lazio 2, protocol number 0139696/2021). 

 

Instrumentation and procedure 

An inertial sensor (BTS GWALK, BTS, Milan, Italy) positioned at the L5 level through an ergonomic 

belt was used to acquire the data. The “Walk+ ” protocol of the G-STUDIO software (G-STUDIO, 

BTS, Milan, Italy) was used to detect the linear trunk acceleration patterns during gait at a sampling 

rate of 100 Hz in the antero-posterior, medio-lateral and vertical directions, spatio-temporal 

parameters, and pelvis kinematics. The sensor was equipped with a triaxial accelerometer and 

gyroscope (16 bit/axes) and a triaxial magnetometer (13 bits). Subjects were asked to walk barefoot 

along a 30-m-long corridor at a self-selected speed. Since natural locomotion was the focus of this 

study, subjects were free to choose their preferred speed without interfering with their pacing or 

rhythm through external sensory cues. To facilitate the largest sample for speed-matched comparison, 

HS were also asked to walk at a slower speed .  
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Data analysis 

MATLAB software (MATLAB 7.4.0, MAthWorks, Natick, MA, USA) was used to calculate the gait 

stability indices:  HR, CV, RQA, NJS, LDLJ-A, RMS and RMSR in all three directions (AP: anterior-

posterior, ML: medio-lateral, V:vertical).   

 

Statistical Analysis 

An unpaired sample t-test or Mann–Whitney U test was performed to identify significant differences 

in the gait stability indexes between pwCA and HSmatched. Cohen’s d was calculated to assess the 

magnitude of the differences. To assess the ability of the gait stability indices to characterize the gait 

of pwCA compared to that of HSmatched and characterize the gait of pwCA who reported a history of 

frequent falls, receiver operating characteristic (ROC) curves were plotted, and the area under the 

curve (AUC) was calculated. AUC values greater than 0.60, with a confidence interval lower bound 

greater than 0.50, were considered for sufficient overall discriminative ability. The optimal cutoff 

point was calculated as the point of the ROC curve, maximizing the sum of sensitivity and specificity. 

Positive and negative likelihood ratios (LR+ and LR− , respectively) were calculated and transformed 

into positive and negative post-test probabilities using Fagan’s nomogram [37]. We used the 35.6% 

prevalence of frequent fallers among people with CA walking without support as the prior probability 

in the post-test probabilities calculations, to improve the generalizability of the findings. To assess 

the speed-independent correlation between the identified discriminant indexes, SARA scores, history 

of falls, and gait variables, a partial correlation analysis excluding the effects of gait speed was 

performed. Because eventual correlations between the gait indexes and the history of falls could be 

reflective of general motor disability rather than a specific relationship between the trunk behavior 

and the risk of falls, we also performed a partial correlation analysis excluding the effects of the 

SARA PG scores. The significance level was set at 95% confidence level. Statistical analysis was 

performed using IBM SPSS Statistics for Windows, version 27.0. (IBM Corp, Armonk, NY, USA) 

and NCSS 2020 statistical software (2020) (NCSS, LLC. Kaysville, Utah, USA). 

 

Results 

After the matching procedure, no significant differences in age and gait speed between the pwCA and 

HSmatched groups were found. Significant differences between pwCA and HSmatched were found for 

HR, RMS, and sLLE in the three directions, RMSRAP and RMSRML, CV and LDLJ-A in the V 

direction. The HRs and CV showed a good ability to discriminate between pwCA and HS (AUCs > 

0.80, Table 4.5). The sLLE and RMS in three directions, RMSRAP, RMSRML, and LDLJAV, showed 
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sufficient ability to discriminate between pwCA and HS (AUCs > 0.60; Table 4.5). HRs, CV, RMSAP, 

RMSV, and RMSRAP showed the highest probabilities of characterizing the gait of pwCA at the 

optimal cutoff point, regardless of gait speed. HRs and sLLEs were also able to characterize the gait 

of fallers (AUCs ≥ 0.70; Table 4.5 and Figure 4.10). HRAP values ≤ 1.53, HRML values ≤ 1.80, and 

HRV values ≤ 1.87 characterize the gait of fallers with 71%, 61%, and 61% probability, respectively.  

 

Table 4.5. Discriminative ability and cutoff analysis 

 

AUC , area under the receiver operating characteristics curve; OCP, optimal cutoff point; Se, sensitivity; Sp, 

specificity; CI, confidence interval; LR + , positive likelihood ratio; LR − , negative likelihood ratio; PTP + 

, positive post-test probability; PTP − , negative post-test probability; pwCA, persons with cerebellar ataxia; 

HS, speed-matched healthy subjects; HR, harmonic ratio; CV, coefficient of variation; sLLE, short-term 

largest Lyapunov exponent; RMS, root mean square of the acceleration signals; RMSR, root mean square 

ratio; LDLJ-A, acceleration-based log dimensionless jerk 
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Figure 4.10 Harmonic Ratios values for each of the considered strides in the antero-posterior (a), medio-

lateral (b), and vertical (c) and 3D-reconstructed state space of the acceleration and its time-delayed copies 

(time delay of 10 data samples) in the antero-posterior (d), medio-lateral (e), and vertical (f) directions of a 

representative ageand-speed-matched healthy subject (blue), a non-faller subject with CA (red), and a faller 

subject with CA (black) 

 

The results of the partial correlation analysis are presented in Table 4.6. HRs were significantly 

correlated with the history of falls, SARAPG, stance, swing, and double support duration by 

excluding gait speed. CV was significantly correlated with SARAPG, stance, and swing duration. 

sLLEAP correlated with step length, and pelvic rotation. sLLEML was pelvic tilt and pelvic rotation. 

sLLEV was correlated with pelvic tilt and rotation. The RMS values in the AP direction were 

correlated with step length (Table 4.6). LDLJ-Av did not show any correlation with clinical and 

kinematic parameters. The HRAP, HRML, and HRV still correlated with the history of falls when 

excluding the effects of SARAPG scores. 
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Table 4.6. Partial correlation analysis 

 

SARA , scale for the assessment and rating of ataxia; SARA PG, posture and gait subscore of the SARA 

scale; HR, harmonic ratio; CV, coefficient of variation; LLE, short-term largest Lyapunov exponent; RMS, 

root mean square of the acceleration signals; RMSR, root mean square ratio; LDLJ-A, acceleration-based 

log dimensionless jerk. Significant speed-independent correlation coefficients at p < 0.05 are highlighted in 

bold 

 

 
4.1.2 Parkinson’s Disease 

 
Patients with Parkinson's disease (PwPD) have gait deficits, which are one of the most debilitating 

aspects of the disease because they inevitably deteriorate over time, increasing the risk of falls and 

significantly reducing patient autonomy and quality of life. The mechanism underlying gait 

impairment is multi-factorial, involving both the dopaminergic and non-dopaminergic mechanisms 

related to bradykinesia, rigidity, impaired balance and postural control, visual motor deficiency, and 

cognition [38,39]. 

Because of these characteristics, as well as the impact of social and economic costs, treating gait 

abnormalities should be one of the primary foci of intervention in patients with Parkinson's disease. 

Gait analysis has become an essential tool for objective evaluation of gait performance in recent years; 

in particular, a single lumbar-mounted IMU provides sensitive information on the gait of PwPD and 

allows clinicians to monitor their gait even when they are free-living [40]. IMUs directly provide 

trunk acceleration measurements and make it easier to record patient gaits for many steps during 

follow-up clinical assessments in outpatient facilities, making them ideal tools for studying gait 

stability in people with Parkinson's disease. 

 

Therefore, the purpose of the study "Ability of a Set of Trunk Inertial Indexes of Gait to Identify Gait 

Instability and Recurrent Fallers in Parkinson's Disease" (2021) was to determine the accuracy of a 

set of trunk stability indexes in detecting gait instability in PwPD compared to healthy subjects, to 
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assess the ability of each index to characterize the gait of PwPD who fall recurrently, and to 

investigate the correlations of each index with clinical and biomechanical variables. 

 

Subjects 

We collected data samples from 62 subjects diagnosed with idiopathic PD who enrolled for our study 

at “ICOT” in Latina Italy, and the “IRCCS Mondino Foundation” in Pavia, Italy. The inclusion 

criteria were defined as follows: (i) diagnosis of idiopathic PD according to the UK bank criteria, (ii) 

Hoehn and Yahr (HY) stages 1 to 3 , (iii) ability to walk independently for at least 8 m along a 

laboratory pathway without exhibiting gait freezing and the ability to perform repeated walking trials 

with at least 10 consecutive strides, and (iv) on a stable drug program and acclimated to their current 

medication use for at least two weeks. For group comparisons, a group of 55 HS were recruited. Each 

HS repeated the tests twice: once walking at a self-selected speed and once walking at a slower 

directed speed. 

Informed consent was obtained from all participants in compliance with the Helsinki Declaration and 

local ethics committee approval was obtained (CE Lazio2, protocol number: 0053667/2021). 

 

Instrumentation and procedure 

An inertial sensor (BTS GWALK, BTS, Milan, Italy) attached to an ergonomic belt placed around 

the pelvis at the level of the L5 vertebra and connected to a laptop via Bluetooth was used to acquire 

data. This sensor is equipped with a tri-axial accelerometer (16 bit/axes), tri-axial magnetometer (13 

bits), and tri-axial gyroscope (16 bit/axes). Linear trunk accelerations and trunk angular velocities in 

the three directions were measured at a sampling rate of 100 Hz. To familiarize themselves with the 

experimental procedure, the participants were asked to walk on the ground along a predetermined 

pathway before the experimental session. Both the PwPD and HS were asked to walk barefoot at a 

self-selected speed along a corridor (approximately 3 m wide and 10 m long). To avoid the influence 

of gait speed on other gait parameters and collect the largest possible sample size for speed-matched 

comparisons, the HS were also asked to walk at a slower speed . 

 

Data analysis 

The “Walk+” protocol of the G-STUDIO software (G-STUDIO, BTS, Milan, Italy) was used to detect 

trunk acceleration patterns, right and left heel strikes, toe-off, spatiotemporal parameters, and pelvis 

kinematics. The HR, RQA, CV, NJS, and LLE were calculated using MATLAB (MATLAB 7.4.0, 

MAthWorks, Natick, MA, USA). 
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Statistical Analysis 

After checking the normality of the distributions and homoscedasticity of the variances using the 

Shapiro-Wilk test for all variables and Levene’s test, respectively, univariate ANOVA with 

Bonferroni’s post-hoc analysis and the Kruskal-Wallis H test with Dunn’s post-hoc analysis was 

performed to identify differences in the gait stability indexes between PwPD and HSmatched, as well as 

across the HY stages within the PwPD. To assess the ability of the identified indexes to discriminate 

between PwPD and HSmatched, characterize the gait of PwPD according to the HY stages, and 

characterize the gait of recurrent fallers, ROC curves were plotted and AUCs were calculated with 

the presence of PD, HY stages, and a reported number of falls ≥5 as anchors, respectively. AUC 

values greater than 0.60 with a confidence interval lower bound greater than 0.50 were considered 

for sufficient overall discriminative ability. The optimal cutoff points (OCPs) for each discriminative 

index were calculated as the points on the ROC curves that maximized the sum of sensitivity (Se) and 

specificity (Sp) values. Positive and negative likelihood ratios (LR+ and LR-) were also computed 

and transformed into post-test probabilities by using Fagan’s nomogram to analyze the probability of 

being correctly classified by a given index at the OCP. Because the prevalence of recurrent fallers in 

our sample was low, to improve the generalizability of our results, the previously reported 39% 

prevalence of recurrent fallers in the general PD population was used to calculate post-test 

probabilities for the identification of recurrent fallers. Partial correlation coefficients (r) after 

removing the effects of age and gait speed were calculated to identify correlations between the 

identified indexes and UPDRS-III scores, history of falls, and spatiotemporal and kinematic 

parameters. Statistical analyses were performed using the IBM SPSS ver. 27 and NCSS 2019 

software. 

 

Results 

After the matching procedure, 55 walking trials from PwPD and 55 age-and-speed matched walking 

trials from 30 HS (HSmatched) were included in our analysis. The final PwPD group consisted of 16 

females and 39 males diagnosed with PD. Twelve subjects were assessed at the HY = 1 disability 

stage, 19 subjects at the HY = 2 stage, and 24 at the HY = 3 stage. The mean UPDRS-III score was 

39.48 ± 16.91. Nineteen subjects had experienced at least one fall in the previous year with 1.63 ± 

4.54 falls an average. Seven subjects reported more than five falls during the past six months and 

were classified as recurrent fallers [41]. The final HSmatched group consisted of 55 walking trials from 

a sample of 30 subjects. Eighteen of the 55 HSmatched trials were recorded at self-selected speeds and 

37 were recorded at a reduced speed. No significant overall differences between group means were 
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identified for age or gait speed after the matching procedure. Post-hoc analysis revealed no significant 

differences for and gait speed between the HY stage subgroups and HS, neither between the HY 

subgroups. 

 

Significant main effects of the group on HRAP (H = 9.48, p = 0.024), HRML (H = 10.24, p = 0.017), 

HRV (H = 14.30, p = 0.003), RQAdet in the AP direction (RQAdetAP) (H = 8.27, p = 0.041), and CV 

(H = 10.41, p = 0.015) were identified (Figure 4.11, Table 4.7). 

 

Figure 4.11  (a) Graphical representation of the Harmonic Ratios in the antero-posterior, medio-lateral, and 

vertical directionsof a representative age-and-speed-matched healthy subject (blue) and a subject with PD at 

Hoehn and Yahr stage = 3 (red);(b) recurrence matrices in the antero-posterior direction of the same 

representative subject. 

Post-hoc analysis revealed significant differences in HRAP between PwPD at HY stage = 3 and 

HSmatched , between PwPD at HY = 3 and HY = 1, and between PwPD at HY = 3 and HY = 2. A 

significant difference was identified in HRML between PwPD at HY = 3 and HSmatched. Significant 

differences were identified in HRV between PwPD at HY = 3 and HSmatched, and between PwPD at 

HY = 3 and HY = 2. Significant differences were identified in RQAdetAP between PwPD at all HY 

stages and HSmatched. A significant difference in CV was identified between PwPD at HY = 3 and 

HSmatched (Table 4.7). 
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Table 4.7: Comparison of the gait stability indexes between subjects with PD and HSmatched. 

 

* significant differences between subjects with PD and HSmatched; #, significant differences between 

subjects with PD at HY 1,2 and HY 3; HY, Hoehn and Yahr disease staging classification system; HR, 

harmonic ratio; RQArec, recurrence quantification analysis, percent recurrence; RQAdet, recurrence 

quantification analysis, percent determinism; CV, coefficient of variation of the step length; NJS, normalized 

Jerk score; LLE, largest Lyapunov exponent. 

 

A good ability (AUC > 0.70) to discriminate between PwPD at HY = 3 and HSmatched was identified 

for HRAP, HRML, HRV, CV (Table 4.8, Figures 4.12 and 4.13). A moderate ability (AUC = 0.65) to 

discriminate between PwPD at HY = (1, 2, 3) and HSmatched was identified for RQAdetAP (Table 4.8, 

Figure 4.9). HRAP values ≤ 1.50 identified PwPD at HY = 3 with 67% probability, HRML values ≤  

1.58 identified PwPD at HY = 3 with 54% probability, HRV values ≤  1.74 identified PwPD at HY = 

3 with 57% probability, and CV values ≥ 38.06 identified PwPD at HY = 3 with 58% probability. 

RQAdetAP values ≤  38.85 identified PwPD with 67% probability, regardless of the HY stage. 
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Table 4.8: ROC curve and cutoff analysis results. 

 

AUC, area under the ROC curve; OCP, optimal cutoff point; Se, sensitivity; Sp, specificity; LR+, positive 

likelihood ratio; LR-, negative likelihood ratio; PTP+, positive post-test probability; PTP-, negative post-test 

probability; HR, harmonic ratio; RQAdetAP. Recurrence quantification analysis, percent determinism in the 

antero-posterior direction; CV, coefficient of variation. of the step length. 

 

 

Figure 4.12 ROC curves for the HRs in identifying PwPD vs. HSmatched, PwPD at HY = 3 from milder HY and 

recurrent fallers. The red line represents the HRAP, the blue line the HRML, and the green line the HRV fallers. 

The red line represents the HRAP, the blue line the HRML, and the green line the HRV. 
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Figure 4.13 ROC curves of the CV (a) and RQAdetAP (b) in discriminating PwPD from HSmatched. 

HRAP exhibited a good ability to discriminate between PwPD at HY = 3 and HY = (1, 2) (Table 4.8, 

Figure 4.8). HRAP values ≤ 1.50 discriminated PwPD at HY = 3 from subjects at lower HY stages 

with 73% probability. Furthermore, HRAP exhibited a strong ability to identify recurrent fallers  

(Table 4.8, Figure 4.8). HRAP values ≤ 1.50 identified frequent fallers with 77% probability.  

After removing the effects of gait speed and age, HRAP was negatively correlated with the history of 

falls (r = -0.45, p = 0.004) and positively correlated with pelvic obliquity (r = 0.37, p = 0.024) and 

pelvic rotation (r = 0.31, p = 0.040). RQAdetAP was negatively correlated with gait cadence (r = -0.35, 

p = 0.031) and positively correlated with stride time (r = 0.36, p = 0.030) and UPDRS III score (r = 

0.385, p = 0.004). HRML, HRV, and CV exhibited no correlations with clinical features or gait 

kinematics. 

 

This study showed that the Harmonic Ratio, which measures the smoothness of the trunk acceleration 

patterns, the percent determinism in the antero-posterior direction of the accelerative pattern, which 

expresses the predictability of acceleration trajectories during the gait, and the coefficient of variation 

of the stride length, which reflects the continuous step-by-step adjustments of the gait strategy 

accurately characterize the gait of PwPD with a mild-to-moderate disability. Furthermore, HRAP was 

discovered to be a potential marker of fall risk and to correlate with trunk rigidity and a decrease in 

pelvic motion [42]. These gait instability indexes could be useful outcome measures for evaluating 

the efficacy of rehabilitative interventions. However, before suggesting these indices as outcome 

measures in a clinical setting, their ability to change meaningfully over time and to parallel clinical 

changes following a rehabilitation intervention [43] should be studied. 
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As a result, the primary goal of the study “Harmonic ratio is the most responsive trunk-acceleration 

derived gait index to rehabilitation in people with Parkinson’s disease at moderate disease stages” 

(2022) is to evaluate the internal responsiveness to rehabilitation of HR, RQAdetAP, and CV. 

Furthermore, we intend to determine: the external responsiveness of the gait stability indexes, as well 

as the minimal clinically significant differences that characterize PwPD who approach normative 

values after rehabilitation; the baseline gait parameters that predict the improvements of the gait 

stability indexes and the spatiotemporal and kinematic gait parameters that correlate with the 

improvements in the gait stability indexes following rehabilitation. 

 

Subjects 

We collected data samples from 21 subjects diagnosed with idiopathic PD (9 females and 12 males) 

with the following inclusion criteria: i) a diagnosis of idiopathic Parkinson’s disease (PD) based on 

UK bank criteria; ii) HY stage 3; iii) the ability to walk repeatedly without assistance for at least 10 

walking strides without exhibiting gait freezing;  and iv) a stable and accustomed drug program for 

at least two weeks before baseline. Subjects with cognitive deficits (Mini Mental State Examination 

< 26), moderate-to-severe depression (Back Depression Inventory > 17), orthopedic and/or other gait-

affecting diseases, including other neurological diseases, clinically defined osteoarthritis referring 

pain in hip or knee joints, reduced hip internal rotation, visible anatomic abnormalities of the joints, 

or total hip joint replacement, were all ruled out. The severity of PD was assessed using the HY 

disease staging system and the motor examination section of the Unified Parkinson’s Disease Rating 

Scale (UPDRS-III) at baseline (T0) and after (T1) the rehabilitation period. For group comparison, a 

1:1 optimal data matching procedure using propensity score difference method was performed to 

match pwPD with a dataset of 89 walking trials recorded in healthy subjects (HS). The propensity 

scores were computed using logistic regression analysis with age and speed as covariates. Following 

the matching procedure,21 age-and-speed-matched healthy subjects were included as a control group. 

Informed consent was obtained from all participants in compliance with the Helsinki Declaration and 

local ethics committee approval was obtained (CE Lazio2, protocol number: 0053667/2021). 

 

Instrumentation and procedure 

The data acquisition instrumentation is the same as in the previous study. Before the experimental 

session, the participants were asked to walk on the ground along a predetermined pathway to become 

acquainted with the procedure. PwPD were asked to walk at their self-selected speed along a corridor 
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(approximately 3 m wide and 30 m long) with no external sensory cues to interfere with their pacing 

and rhythm. PwPD were assessed before (T0) and at the end (T1) of their scheduled rehabilitation 

period during their “ON phase”.  

 

 

Data analysis 

HRs in the three spatial directions, RQAdetAP, and CV were calculated using MATLAB (MATLAB 

7.4.0, MathWorks, Natick, MA, USA) at T0 and T1. Walking trials with at least 10 consecutive 

correctly recorded strides were input into the analyses. 

 

Statistical Analysis 

After checking for the normality of the distributions through the Shapiro-Wilk test, a paired T-test or 

Wilcoxon test was performed to identify significant modifications in clinical and gait parameters at 

T1. Cohen’s d with Hedge’s correction was calculated to assess internal responsiveness. Unpaired t-

test or Mann-Whitney test was used to identify significant differences between PwPD and HSmatched 

at T0 and normalization at T1. Changes in gait variables and UPDRS-III scores at T1 were expressed 

as delta (Δ) values according to the following formula: 

∆= 100 ∗
𝑣𝑎𝑙𝑢𝑒𝑇1 − 𝑣𝑎𝑙𝑢𝑒𝑇0

𝑣𝑎𝑙𝑢𝑒𝑇0
 

Multiple linear regression analysis with “backward” procedure was performed to identify the clinical 

and gait parameters that predicted the improvements of the gait stability indexes. Spearman’s 

correlation coefficients were calculated to identify the correlations between the Δs of the modified 

gait stability indexes and the Δs of the clinical, spatio-temporal, and kinematic gait parameters. To 

exclude a carry-over effect of Δgait speed on the Δgait stability indexes, partial correlation analysis 

adjusting for the Δgait speed was also performed. An anchor-based method was used to assess the 

external responsiveness of the normalized parameters. AUCs were calculated to assess the ability of 

the correlated Δs to identify the subjects who improved and normalized the modified stability indexes, 

using the normalization of the gait stability indexes as the anchor. Each improved subject with PD 

was individually categorized as having the gait stability indexes “normalized” at T1 if the thresholds 

characterizing PwPD at HY3 had been exceeded. The minimally clinically important differences 

(MCID) were calculated as the Δvalues that maximize the sum of sensitivity and specificity. Positive 

and negative likelihood ratios (LRs) were calculated at the MCID value and transformed into post-

test probabilities through Fagan’s nomograms. The probability to be identified as PwPD by the 
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threshold values was used as pre-test probabilities. All the statistical tests were set at 95 % 

significance level and 80 % power. Statistical analyses were performed using the IBM SPSS ver. 27 

and NCSS 2019 software. 

 

Results 

No differences in age and gait speed between PwPD and HSmatched were found, as shown in Table 4.9.  

Table 4.9 Results of the assessments at baseline and at T1 in PwPD and comparison with HSmatched. 

 

*Significant difference between pwPD and HSmatched (p < 0.05); pwPD, persons with Parkinson Disease; 

HSmatched, age-and-speed matched healthy subjects; T0, baseline assessment; T1, assessment at the end of the 

rehabilitation period; AP, antero-posterior direction; ML, medio-lateral direction; V, vertical direction; HR, 

harmonic ratio; RQAdet, %determinism in the recurrence quantification analysis; CV, step length coefficient 

of variation; DS, double support phase; SS, single support phase; p-value, 95 % significance level of the 

paired samples tests; d, Cohen’s effect size. 

At T0, there were significant differences in HRs, CV, stride length, and pelvic rotation between PwPD 

and HSmatched. After rehabilitation, PwPD improved in HRAP, HRML, gait speed, stride length, cadence, 

pelvic obliquity, pelvic rotation, and UPDRS-III, with medium-to-large effect sizes. At T1, HRAP, 

HRML, stride length, and pelvic rotation were no different from HSmatched, suggesting a normalization 

of these parameters. According to the multiple linear regression analysis models, lower HRs values, 

and higher pelvic rotation values at baseline predicted ΔHRAP and ΔHRML (Table 4.10). 
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Table 4.10 Multiple regression analysis findings. 

 

With regard to correlations, Figure 4.14 show that ΔHRAP correlated with ΔHRML, and both were 

positively correlated with Δstride length and Δpelvic rotation, regardless of Δgait speed.  

 

Figure 4.14 a) Spearman’s correlation coefficients between the improvements in gait parameters; b) Partial 

Spearman’s correlation coefficients excluding the effects of the improvements in gait speed. 

 

Assuming the normalization of the gait stability indexes as anchor, HRAP, HRML, stride length, and 

pelvic rotation revealed good-to-optimal responsiveness to rehabilitation (Table 4.11). Eight (38 %) 

and 6 (28 %) pwPD normalized their HRAP and HRML values at T1, respectively. At the analysis of 

MCID, ΔHRAP ≥ 21.47 %, ΔHRML ≥ 11.31 %, Δstride length ≥ 10.09 %, and Δpelvic rotation ≥ 8.59 

% were needed to normalize HRAP with 95 %, 88 %, 74 %, and 81 % probability, respectively (Table 

4.11). ΔHRML ≥ 36.94 %, ΔHRAP ≥ 16.79 %, Δstride length ≥ 22.67 %, and Δpelvic rotation ≥ 37.67 
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%, were needed to normalize HRML with 92 %, 71 %, 73 %, and 90 % probability, respectively (Table 

4.11). 

Table 4.11 External responsiveness and minimal clinically important differences (MCID) analysis of 

normalized parameters. 

 

Δ, difference between T1 and T0 values; HRAP, harmonic ratio in the antero-posterior direction; HRML, 

harmonic ratio in the medio-lateral direction; AUC, area under the receiver operating characteristics curve; 

CI, confidence interval; MCID, minimal clinically important difference; Se, sensitivity; Sp, specificity; LR+ , 

positive likelihood ratio; LR-, negative likelihood ratio; PTP+ , positive post-test probability; PTP-, negative 

post-test probability. 

In recent years, an innovative approach to assessing quantitative gait measures to qualitative clinical 

features for clinical practice purposes has been the use of quantitative machine-learning techniques 

such as artificial neural networks (ANNs), which, like real neural networks, are mathematical models 

that represent a distributed adaptive system built using multiple interconnecting processing elements 

[44,45]. However, few studies have attempted to identify and classify gait deficits using machine-

learning approaches in neurological disorders such as Huntington's disease [46] and Parkinson's 

disease [47-49]. 

 

The goals of the study "An artificial neural network approach to detect the presence and severity of 

Parkinson's disease via gait parameters" (2021) were to develop a diagnostic algorithm based on 

machine-learning techniques (i.e., ANNs) capable of classifying the gait deficit of PwPD according 

to disease progression as assessed by the H–Y staging system and to identify the minimum set of gait 

time distance and kinematic parameters capable of distinguishing the H–Y stage gait pattern from 

each other. 

 

Subjects 

This study enrolled 76 PwPD. Clinical evaluation of the severity of Parkinsonism included 

neurological and functional assessments using the UPDRS III (18±12) and the H-Y staging 

system[26] (20 with H-Y = 1, 17 with H-Y = 2, 27 with H-Y = 3), and 12 with H-Y = 4. The inclusion 

criteria were: a diagnosis of idiopathic PD according to the UK Brain Bank Diagnostic Criteria [50], 

H-Y stages 1–4, stable drug program and the ability to walk independently on at least the laboratory 

pathway without showing freezing of gait. The exclusion criteria were: cognitive deficit (defined as 
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scores <24 on the Mini-Mental State Examination, moderate or severe depression (defined as scores 

≥ 20 on the Beck Depression Inventory), and presence of orthopedic and/or other gait-influencing 

conditions such as arthrosis or total hip joint replacement. Medication was kept constant throughout 

the trial period and all interventions were performed at the same time of day for each patient during 

the “ON phase.” The participants were asked to maintain their usual activity levels and current 

medication dosage when not in the laboratory. The assessments for both clinical and instrumental 

evaluations were not involved in the treatment of the patients and were blinded to the time of the 

evaluation. The patients were on oral levodopa (16 patients), dopamine agonists (27 patients), or both 

(33 patients) and were recorded to be in the “ON phase.” Sixty-seven healthy subjects (HS) were 

enrolled as the healthy control group. All participants provided written informed consent before 

taking part in the study, which was approved by a local ethics committee (Sapienza University of 

Rome, Policlinico Umberto I, UP 00988_2020) and complied with the principles of the Declaration 

of Helsinki.  

 

Instrumentation and procedure 

An optoelectronic motion analysis system (SMART-DX 6000 System, BTS, Milan, Italy) consisting 

of six infrared cameras (sample frequency, 340 Hz) was used to collect data from the movement of 

twenty-two passive spherical markers covered with reflective aluminum powder placed over 

prominent bony landmarks, according to the International Society of Biomechanics recommendations 

and Davis’s protocol.  

The patients and controls were asked to walk barefoot at a comfortable, self-selected speed  along a 

walkway approximately 10 m in length while looking forward; the HSs were also instructed to walk 

at low speeds in order to compare the parameters between groups without potential velocity bias. For 

PwPD, at least ten trials were recorded. For HSs, at least ten trials were recorded at a self-selected 

speed and ten trials at a slow speed. To avoid potential velocity bias, gait speed was matched between 

groups. 

 

Data analysis 

After each acquisition performed by Smart Capture (BTS, Milan, Italy), three-dimensional marker 

trajectories were reconstructed using a frame-by-frame tracking system (SMART Tracker, BTS, 

Milan, Italy). Then, the data were processed using SMART Analyzer (BTS, Milan, Italy) and 

MATLAB (version 7.10.0, MathWorks, Natick, MA, USA) software. In this study, heel strike and 

toe-off events were determined by maximum and minimum limb angle excursions. The limb angle 
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was calculated as the angle between the vertical axis from the greater trochanter and a vector drawn 

from the greater trochanter to the lateral malleolus projected on the sagittal plane: a 0˚ limb angle 

meant that the leg was positioned vertically under the body; positive angles denoted and negative 

angles denoted extension. After this preprocessing procedure, the time-distance and kinematic 

parameters were evaluated and the kinematic data were normalized to the duration of the gait cycle 

(defined as the interval between two successive foot contacts of the same leg) and interpolated to 101 

samples using a polynomial procedure. 

The following time-distance gait parameters were calculated: for each subject and for each stride: 

walking speed (m/s), cadence (step/s), step width (m), step length (m) (defined as the distance from 

the heel strike of a limb and the subsequent heel strike of the other limb), stance, swing, and double 

support phase durations (expressed as percentages of the gait cycle duration). Step length and step 

width were normalized to the limb length of each subject. For each subject, the average value of each 

gait feature was calculated. 

The anatomical joint angles of the hip, knee, ankle, trunk, and pelvis (frontal, sagittal, and transverse 

planes) and the corresponding ranges of motion (RoMs) of the joints (defined as the differences 

between the maximum and minimum values during the gait cycle) were computed. For each subject, 

the average value of each RoM was calculated. 

ANN approach for the diagnosis and staging of the gait deficit in PwPD. HS vs PwPD classification. 

A principal component analysis (PCA), using a threshold of 98% on the cumulative variance was 

used to define a subset of features starting from all time-distance and kinematic HS and PwPD 

features. An ANNs approach based on Levenberg-Marquardt back-propagation algorithm [51], was 

used for diagnosis of Parkinson disease using the features selected by PCA. We trained different 

topologies of feedforward networks with different numbers of hidden layers (HL) and different 

numbers of neurons (N) in each HL. Thus, the combination of L layers and N nodes in the first HL 

hidden layer led to the six different network architectures. To verify the repeatability of our results, 

each of the six network topologies was trained ten times by using a random 10% of samples as the 

validation set and a random 10% as the testing set. For each trained network, a confusion matrix was 

calculated based on the real value (HS or PwPD) and the one estimated on the randomly extracted 

testing set. The mean 2×2 confusion matrix was then obtained by averaging the confusion matrixes 

of the trained ANNs. A performance parameter (P) was calculated as the mean (%) of the elements 

on the diagonal of the mean confusion matrix, where 100% indicates the absence of 

misclassifications. Furthermore, the sensitivity and specificity of each group were calculated. 
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The entire system is schematically described in Figure 4.15. Then, to reduce the features, we also 

used subsets of features from the selected features with PCA and, for each subset, we trained the six 

ANNs ten times to evaluate the confusion matrix and performance. An ANN approach was also used 

to stages the gait deficits in PD in terms of the H-Y scale using the features selected by PCA and 

walking speed. We trained the six different topologies of feedforward networks. For each trained 

network, a confusion matrix was calculated based on the real H-Y value and the one estimated on the 

randomly extracted testing set. The mean 4×4 confusion matrix was then obtained by averaging the 

confusion matrices of the trained ANNs and the P was calculated. To reduce the features, we also 

used subsets of features from among the features selected by PCA and, for each subset, we trained 

the six ANNs ten times, evaluating the confusion matrix and performance. We started with all 

combination of two features subsets and continued until we found a subset whose performance was 

no different from that of the set with all features selected by PCA (Figure 4.15). 
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Figure 4.15 Description of experimental set-up and methodological approach. A schematic description of 

the walking and artificial neural network method used to map time-distance and kinematic features on the 

H&Y (1, 2, 3 and 4) levels 

 

Statistical Analysis 

The Shapiro–Wilk test for normal distribution was preliminarily executed on all gait parameters. 

Unpaired two-sample t-tests or Mann–Whitney tests (two-tailed) were used for assessment of 

between-group differences in the time-distance parameters and joint kinematics values. Then, we 

performed a two-way analysis of variance (ANOVA) test with L and N as factors to determine the 

possible significant effects on ANN performance, sensitivity and specificity caused by the listed 

factor. Separate ANOVAs test were performed for performance, sensitivity and specificity. Post-hoc 
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analysis with Bonferroni’s corrections was performed when significant differences were observed in 

the ANOVA results. P values < 0.05 were considered statistically significant. Statistical analysis was 

performed to check if the results of the performance obtained using all features of PCA differed 

significantly from those obtained considering the subsets of two, three, or four features. As a 

confirmative analysis, independent samples t-tests and univariate ANOVA with Bonferroni post-hoc 

analysis were performed to test the ability of the identified minimum sets of gait parameters to 

differentiate between PwPD and HS, and PwPD across the H-Y stages, respectively. Receiver 

operating characteristic (ROC) curves were plotted to assess the discriminative ability of the 

identified minimum sets of gait parameters in differentiating PwPD from HS and PwPD across the 

H-Y stages. Area under the curve (AUC), sensitivity and specificity, and positive (LR+) and negative 

(LR-) likelihood ratios were calculated. The optimal cutoff points (OCP) for the cumulative indices 

of the combinations of gait parameters included in the identified sets were calculated as the point of 

the ROC curve where the sum of sensitivity and specificity was highest. Post-test probabilities were 

inferred by transforming LRs into odds ratios using the Fagan nomogram [52,53]. 

 

Results 

Compared with HCs, PwPD showed significantly lower step length; stride length; hip, knee, and 

ankle RoMs; trunk flexion-extension; trunk rotation and pelvis rotation values; and higher cadence 

(Table 4.12) 
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Table 4.12: kinematic parameters 

 

Mean ± SD of time-distance and kinetic parameters in patients with Parkinson disease (PwPD) patients and 

healthy subjects (HS). * p-value<0.05. 

The PCA showed that a set of nine features (stance duration, swing duration, step length, ankle, knee, 

hip, trunk rotation, pelvis rotation, and pelvis tilt RoM) expressed 98% of the cumulative variance of 

the data (Figure 4.16A). 

The ANNs analysis revealed a mean performance range of 82–98% (Figure 4.16A), a mean sensitivity 

range of 81–89% (Table 4.13), and a mean specificity range of 81–89% (Table 4.13) for all features 

detected by PCA for each number of neurons and HL. The number of neurons did not affect the 

performance (F1 = 0.15, p = 0.699), sensitivity (F1 = 0.5, p = 0.482), or specificity (F1 = 0.5, p = 

0.482) in two-way ANOVA. Furthermore, the HL did not affect the performance (F2 = 0.48, p = 

0.621), sensitivity (F2 = 0.32, p = 0.724), or specificity (F2 = 0.48, p = 0.621) in two way ANOVA. 

By analyzing all the possible combinations, we found that one combination of two features was the 

minimum set of gait parameters able to distinguish PwPD from controls (knee RoM, trunk rotation 

RoM) and whose performance (Figure 4.16A) did not significantly differ (p>0.05) from that of all 

PCA features. 



 
85 

 

 

Figure 4.16 Accuracy of artificial neural networks and the best mean confusion matrix. For diagnosis (A) 

and staging (B), in the first row the accuracy of artificial neural networks and in the second row the best 

mean confusion matrixes considering all PCA features as INPUT (a1 and b1) and subset of 2 features (knee 

RoM and trunk rotation RoM (a2)) and subsets of 4 features (walking speed, hip, knee and ankle RoMs (b2); 

walking speed, hip, knee and trunk rotation RoMs (b3)). Six different architectures of neural networks were 

represented by varying the numbers of hidden layers (1, 2, or 3) and the numbers of neurons in each hidden 

layer based on the numbers of nodes N in the first hidden layer. 

 

The results of the independent sample t–test and ROC curve analysis confirmed that the combination 

of knee and trunk rotation RoM values could significantly differentiate between PwPD and HS (t-

statistic = −5.34, p<0.00) and to have good discriminative ability (AUC = 0.77). The numerical sum 

of knee and trunk rotation RoMs ≤ 66.23 was able to identify PwPD from HS with a 75% probability 

(Table 4.14). 

 

The ANNs analysis revealed a mean performance range of 66.16–77.2% (Figure 4.11B), mean 

sensibility range of 66–77% (Table 4.13) and mean specificity range of 85–91% (Table 4.13) for all 

features detected by PCA for each number of neurons and HLs. The number of neurons had no effect 

on the performance (F1 = 2.82, p = 0.099), sensitivity (F1 = 0.41, p = 0.522), and specificity (F1 = 
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0.59, p = 0.448) in two-way ANOVA. Furthermore, the HL had no effect on the performances (F2 = 

0.66, p = 0.522), sensitivity (F2 = 0.7, p = 0.499), and specificity (F2 = 0.29, p = 0.749) in two-way 

ANOVA. 

By analyzing all the possible combinations, we found that two combinations of four features (walking 

speed and hip, knee, and ankle RoMs; walking speed and hip, knee, and trunk rotation RoMs) were 

the minimum set of gait parameters able to distinguish H-Y stage gait patterns from one another and 

whose performances (Figure 4.11B) did not differ significantly (p>0.05) from that of all PCA 

features. All combinations of two or three features showed a significant difference (p<0.05) from that 

of all PCA features. The numerical sums of speed, hip RoM, knee RoM, and ankle RoM (SET1) and 

speed, hip RoM, knee RoM, and trunk rotation RoM (SET2) were able to differentiate PwPD 

according to H-Y stage (F = 7.59, p<0.00 and F = 9.27, p<0.00, respectively).  

 

Table 4.13 Sensitivity and specificity. 

 

Sensitivity and Specificity of set with all PCA features for HS vs PwPD classification and for PwPD staging 

classification. 

Post-hoc analysis revealed that SET1 was significantly different between H-Y stages 1 and 4 (p<0.00) 

and stages 3 and 4 (p = 0.02), while SET2 was able to differentiate between H-Y stages 1 and 2 (p = 

0.03), 1 and 3 (p = 0.03), 1 and 4 (p<0.00), and 3 and 4 (p = 0.03). The AUCs, OCPs, sensitivity, 

specificity, LRs, and post-test probabilities of each set to discriminate PwPD across the H-Y stages 

are summarized in Table 4.14.  
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Table 4.14 Ability to discriminate between PwPD and HS and between disability levels.  

 

HS = Healthy Subjects; PwPD = people with Parkinson’s Disease; HY = Hoehn & Yahr disability stage; 

SET = Knee RoM+Trunk rotation RoM; SET1 = combination of gait speed, hip, knee and ankle Roms 

values; SET2 = combination of gait speed, hip, knee and trunk rotation RoMs values; AUC = area under the 

curve; OCP = optimal cutoff point; Se = sensitivity; Sp = specificity; LR+ = positive likelihood ratio; LR- = 

negative likelihood ratio; +PTP = positive post-test probability: the probability to identify a true positive at 

OCP; -PTP = negative post-test probability: the probability to identify a false negative at OCP. 

 

Briefly, PwPD at H-Y stage 1 were identified by cumulative SET1 values ≥ 111.71 and SET2 values 

≥105.42, PwPD at H-Y stage 2 by cumulative SET2 values ≥ 103.91 and ≤ 105.42, PwPD at H-Y 

stage 3 by SET2 values ≥ 81.35 and ≤ 103.91, and PwPD at H-Y stage 4 by SET1 values ≤ 99.28 

and SET2 values ≤ 81.35. 

 

4.1.3 Hemiparesis 

 
Patients with hemiparesis (HP), like those with Parkinson's disease and cerebellar ataxia, have 

abnormal gait patterns that include increased gait asymmetry, resulting in imbalance, inefficiency, 

risk of musculoskeletal injury in the nonparetic limb, loss of bone mass density in the paretic leg, 

difficulties maintaining a stable gait, and a high risk of falling [54]. Gait asymmetry has been 

quantified using spatiotemporal gait parameters such as step length, stance time, swing time, or an 

intralimb swing/stance time ratio. Furthermore, one of the main symptoms of hemiparetic gait is a 

change in trunk and pelvic biomechanics, which results in impaired trunk function, or as a secondary 

compensatory change caused by lower limb impairment during gait [55,56]. The aim of the study 

“Ability of a set of trunk-acceleration derived gait indexes to characterize gait instability and 

asymmetry in stroke survivors” (in progress) is to observe which of the trunk-acceleration indexes 

can accurately characterize the gait abnormalities of HP and reflect the gait asymmetry.  
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Subjects 

Thirty-five stroke survivors (17 males, 18 females, aged 63.57 ± 15.31 years) were enrolled for this 

study at “ICOT” in Latina, Italy. 27 subjects suffered from ischemic stroke, 8 suffered from 

hemorrhagic stroke since 14.48 ± 22.71 months. 18 subjects were affected by right hemiparesis, 17 

from left hemiparesis. Inclusion criteria were: (i) first ever subacute or chronic stroke; (ii) hemiparesis 

caused by a left or right subcortical or cortical lesion in the middle cerebral artery's territory; (iii) 

residual ability to walk independently for at least 30 meters. The control group consisted of 35 age-

speed-matched healthy subjects (HS). All the participants were required to give their informed 

consent before they started the study, which complied with the Helsinki Declaration and was 

approved by the local ethics committee (CE Lazio2, protocol number: 0213481/2021). 

 

Instrumentation and procedure 

To collect data, an inertial sensor (BTS GWALK, BTS, Milan, Italy) was attached to an ergonomic 

belt at the level of L5 and Bluetooth-connected to a portable computer. At a sampling rate of 100 Hz, 

the sensor measures linear trunk accelerations as well as trunk angular velocities and displacements 

in three space directions (anterior-posterior, latero-lateral, and vertical). 

Both patients and HS were asked to walk barefoot along a corridor at their self-selected speed 

(approximately 3 m wide and 30 m long). To avoid the effect of gait speed on other gait parameters, 

the HS repeated the tests a second time at a slower speed. 

 

Data analysis 

We calculated the following trunk-acceleration indexes: HR, iHR, CV, NJS, LDJ, RQA,LLE, RMS. 

To assess symmetry, we calculated the following indexes: 

- Symmetry Index (SI) considering  stance time, swing time and double support time. This 

index was calculated using the following equation [57]: 

𝑆𝐼 = [
(𝑉𝑝𝑎𝑟𝑒𝑡𝑖𝑐 − 𝑉𝑛𝑜𝑛 𝑝𝑎𝑟𝑒𝑡𝑖𝑐)

0.5 ∗ (𝑉𝑝𝑎𝑟𝑒𝑡𝑖𝑐 + 𝑉𝑛𝑜𝑛 𝑝𝑎𝑟𝑒𝑡𝑖𝑐)
] ∗ 100 

 

The smaller the index value, the greater the gait symmetry. 

- Symmetry Angle (SA) calculated using the angular ranges of pelvic movement in three 

directions of space as a parameter, distinguishing between the paretic and non-paretic side, 

according to the following equation [58]: 
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𝑆𝐴 =

[(45° − arctan (
𝑉𝑝𝑎𝑟𝑒𝑡𝑖𝑐

𝑉𝑛𝑜𝑛 𝑝𝑎𝑟𝑒𝑡𝑖𝑐
)) ∗ 100]

90
 

 

An SA value of 0% indicates perfect symmetry, while 100%indicates that the two values are equal 

and opposite in magnitude. 

- Pelvis Symmetry Index (SIpelvis) obtained from the correlation between the measures of the 

pelvic angles, using the following formula: 

𝑆𝐼 =
(𝑟 + 1) ∗ 100

2
 

Where r is the Pearson’s correlation coefficients between the mean normalized pelvic angles 

signal of the left and right gait cycles, extracted from the whole pelvic angle signals. SIpelvis 

values range from 0 to 100: the higher the symmetry index value, the more similar the pelvic 

angular displacements between the two sides will be. 

- Step Regularity (SR) calculated used an unbiased autocorrelation procedure to measure the 

correlation of the acceleration signal for each step at different periods of time across each of 

the three accelerometer axes [59,60]. Step regularity was defined as the correlation between 

the original acceleration signal and the acceleration signal phase shifted to the average step 

time, and its values range from 0 to 1.  

 

Statistical Analysis 

We used MATLAB R2021b for statistical analysis. All data were expressed as mean ± standard 

deviation; p < 0.05 was considered statistically significant. We assessed the normality of distributions 

using the Shapiro-Wilk test. Mean and standard deviation within subjects were computed for all 

calculated indexes. We used the independent-samples t test to look for differences between the 

stability and symmetry indexes of HP vs. HS. Cohen’s d index was used to assess the effect size of 

the stability and symmetry indexes in the three spatial directions. To assess the ability of the identified 

indexes to discriminate between HP and HS, area under the curves (AUCs) was calculated. The 

optimal cutoff points (OCPs) for each discriminative index were calculated as the points on the ROC 

curves that maximized the sum of sensitivity (Se) and specificity (Sp) values. Positive and negative 

likelihood ratios (LR+ and LR-) were also computed and transformed into post-test probabilities 

(PTP) by using Fagan’s nomogram to analyze the probability of being correctly classified by a given 

index at the OCP. Partial correlation coefficients (r) after removing the effects of age and gait speed 

were calculated to identify correlations between the stability and symmetry indexes. 
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Results 

Significant main effects (p<0.05) were identified on different gait stability indexes, as shown in Table 

4.15. HR and RMSR, in particular, differ significantly between HS and HP in all three directions 

(Figure 4.17). 

 

Figure 4.17 (a) Graphical representation of the first 20 amplitude harmonics in the antero-posterior, medio-

lateral, and vertical directions of a representative age-and-speed-matched healthy subject (grey) and a 

hemiplegic patient (black); (b) boxplot of the RMSR in the three directions. 
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Table 4.15 Comparison of the gait stability indexes between HP and HSmatched 

 
Mean ± standard deviation values, the results of the independent samples t-test and Cohen’s d are reported. 

HS, Healthy Subjects; HP, Patients with Hemiparesis; HR, harmonic ratio; CV, coefficient of variation; iHR, 

improved Harmonic Ratio; LDJ, Log Dimensionless Jerk; LLE, largest Lyapunov exponent; RMS, Root 

Mean Square; RMSR, Root Mean Square Ratio; NJS, normalized Jerk score; %rec, percent recurrence; % 

det, percent determinism; SR, Step Regularity. 

 

Statistically significant differences were also found for the symmetry parameters, specifically the SI 

calculated for the stance and swing parameters and the SA calculated for the pelvic obliquity, all in 

comparison to the respective parameters calculated in healthy subjects (Table 4.16). 
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Table 4.16 Comparison of the symmetry indexes between HP and HSmatched 

 

Mean ± standard deviation values, the results of the independent samples t-test and Cohen’s d are reported. 

HS, Healthy Subjects; HP, Patients with Hemiparesis; SI, Symmetry Index; SA, Symmetry Angle; SIpelvis, 

pelvis Symmetry Index. 

Finally, when the paretic and healthy sides of the HP were compared to the respective HS, significant 

differences in pelvic tilt of the paretic side compared to healthy subjects, as well as pelvic obliquity 

of both the healthy and paretic sides compared to healthy subjects, were observed. (Table 4.17). 

 

Table 4.17 Comparison of the spatiotemporal and pelvic parameters between HP and HSmatched 

 

Mean ± standard deviation values, the results of the independent samples t-test and Cohen’s d are reported. 

HS, Healthy Subjects; HP, Patients with Hemiparesis. 

A good ability (AUC > 0.70) to discriminate between HP and HS was identified for HRAP,ML,V, 

iHRAP,ML,V, CV, RMSML and RMSRML,V. HS and HP were discriminated by HRAP values< 1.67 with 

82% probability, HRV values with 80% probability, HRML values<1.49, iHRAP values<67.43 and 

iHRV <68.04 with 81% probability (Table 4.18). 
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Table 4.18 Discriminative ability and cutoff analysis 

 

AUC, Area Under the ROC; OCP, optimal cutoff point; Se, sensitivity; Sp, specificity; LR-, negative 

likelihood ratio; PTP+, positive post-test probability; PTP-, negative post-test probability.HR, Harmonic 

Ratio; iHR, improved Harmonic Ratio; CV, Coefficient of Variation; RMS, Root Mean Square; RMSR, Root 

Mean Square Ratio; SR, Step Regularity. 

   

After removing the effect of velocity, we obtained the following results by correlating the stability 

and symmetry indices (Table 4.19): 

• a negative correlation between HRV and SIST, HRAP,ML,V and SISW and a positive correlation 

between HRV and SIpelvis rotation; 

• a negative correlation between iHRAP,V and SISW and a positive correlation between iHRAP,ML 

and SIpelvis rotation; 

• a negative correlation between RMSML and SIpelvis obliquity and SIpelvis rotation; 

• a negative correlation between SRAP and SISW. 
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Table 4.19 Correlation analysis results between the stability indices and the symmetry indices 

 

The coefficient (r) and significance (p) of the correlations are reported. SI, Symmetry Index; SA, Symmetry 

Angle; SIpelvis, pelvis Symmetry Index. 
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CHAPTER 5 
 

5. GAIT ANALYSIS OF PEOPLE WITH LOWER LIMB AMPUTATION 
 

Lower limb amputation causes considerable neuronal remodeling within the central nervous system 

(CNS), owing mostly to the loss of sensory function produced by the amputation [1,2]. From a motor 

control standpoint, people with amputation must adapt their walking patterns to their new physical 

conditions, and this adaptation may result in changes in the way the central nervous system (CNS) 

controls the movement. The two factors influencing the gait in people with amputation are the level 

of the amputation [3,4] and the type of prostheses [5,12]. People with amputations above the knee 

appear to be more asymmetric than those with amputations below the knee, with increased 

compensatory strategies that may be detrimental to individuals over time [13]. In terms of prosthesis 

design, materials, and technology, advancements have been made in recent years to make them more 

effective in terms of ambulation efficiency, asymmetries reduction, and compensatory movements 

reduction. Actually, subjects with lower limb amputation wear different type of prostheses, such as 

the old concept mechanical prostheses or the most recent and technologically advanced prostheses 

(Microprocessor Controlled Knees (MPKs)), i.e. CLeg and Genium [7, 14, 15]. Taking these aspects 

into account, quantifying and characterizing the gait of persons with a prosthesis is an essential 

element to improve the development of new and ergonomic prosthetic devices, and to optimize the 

rehabilitation programs [16-19].  

 

 

In the perspective article “Characterizing the Gait of People With Different Types of Amputation and 

Prosthetic Components Through Multimodal Measurements: A Methodological Perspective” (2022) 

we provide a methodological perspective related to multimodal prosthetic gait assessment reporting 

and discussing the results obtained in a series of studies in which we investigated the kinematic, 

kinetic and electromyographic aspects of the gait of subjects with unilateral lower limb amputation. 

 

In this study we considered the results of 5 studies with a total of 57 recordings of subjects with 

unilateral TFA, 20 recordings of subjects with unilateral TTA and 40 recordings of age–sex–speed 

matched healthy subjects , all performed at the Rome site of the INAIL Prosthesis Centre at the CTO 

Andrea Alesini hospital in Rome. 
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Subjects with TFA wore three different types of prosthesis: mechanical prosthesis (TFAM) and two 

types of prosthesis microprocessor-controlled knees (MPK), namely C-Leg (TFAC) and Genium 

(TFAG) (Ottobock, Duderstadt, Germany). 

 

Walking tests were conducted on a 9-m long walkway equipped with two force platforms at a self-

selected comfortable speed (Kistler 9286AA, Winterthur, Switzerland). To match the TFA and TTA 

groups, control subjects were also asked to walk at a slower speed. An optoelectronic motion analysis 

system with six infrared cameras (SMART-DX 6000 System, BTS, Milan, Italy) was used, with 

passive spherical markers placed according to a modified Davis' protocol [20]. The amputated limb 

markers were placed over symmetrical points with respect to the position of the homologous marker 

on the non-amputated limb in subjects with TTA and TFA. A wireless system (FreeEMG 1000 

System, BTS, Milan, Italy) was used to record electromyographic (EMG) signals. The activity of 12 

muscles on the sound side was recorded (right side for the controls) in accordance with Atlas of 

Muscle Innervation Zones [21] and the European Recommendations for Surface Electromyography 

[22]. 

 

5.1. Kinematic, Kinetic, and Energy Consumption  

 

In the study “Common and specific gait patterns in people with varying anatomical levels of lower 

limb amputation and different prosthetic components” (2019) fifty-five subjects with lower limb 

amputation were analyzed, including 15 subjects with transtibial amputation and 40 subjects with 

transfemoral amputation. Forty healthy subjects were recruited as a control group and matched for 

age-sex-velocity to subjects with TFA, and of these 12 were matched for age-sex-velocity to subjects 

with TTA. We calculated time-distance parameters, kinematic and kinetic data and energy 

consumption measurement.  

 

5.1.1 Kinematic data 

 

5.1.1.1 Spatio-temporal parameters 

Significantly increased step width, step length, and double support duration in both sides were found 

in both TTA and TFA groups compared to the C (CmTTA and CmTFA). Stance duration was 

significantly increased in the NA side in both TTA and TFA groups, and significantly decreased in 

the A side in the TFA group. Conversely, the swing duration was significantly decreased in the NA 
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side in both TTA and TFA groups, and significantly increased in the A side in TFA group (Table 

5.1). Significantly shorter stance duration and longer swing duration were found in the A side than in 

the NA side (Table 5.1, Fig. 5.1) in TTA and TFA groups. 

Table 5.1 The means, standard deviations, and statistical results (p value) of walking speed, cadence, step 

width, step length, stance duration, swing duration, and double support duration. 

 

CmTTA: healthy subjects age-sex-speed matched with TTA; TTA: subjects with transtibial amputation; CmTFA: 

healthy subjects age-sex-speed matched with TFA; TFA: subjects with transfemoral amputation; TFAM: 

subjects with transfemoral amputation with mechanical prosthesis; TFAC: subjects with transfemoral 

amputation with CLeg prosthesis; TFAG: subjects with transfemoral amputation with Genium prosthesis; 

TFAm: a subgroup of 13 age-sex-speed matched subjects with a subgroup of TTA; TTAm: a subgroup of 13 

age-sex-speed matched subjects with a subgroup of TFA. 
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Figure 5.1 Pelvic obliquity, pelvic tilt, pelvic rotation, trunk lateral bending, trunk flection-extension, and 

trunk rotation in both sides were found in both TTA and TFA groups compared to controls. CmTTA: healthy 

subjects age-sex-speed matched with TTA; TTA: subjects with transtibial amputation; CmTFA: healthy 

subjects age-sex-speed matched with TFA; TFA: subjects with transfemoral amputation. 

A significant effect of the type of prosthesis on the step length of the NA side was detected. Post hoc 

analysis revealed higher values for the Genium prosthesis compared to mechanical prosthesis (Table 

5.1). A significantly shorter step length in A side than in the NA one (Table 5.1) was found in TFAG 

subgroup. Furthermore, significantly shorter stance duration and longer swing duration in the A side 

than in the NA one (Table 5.1) were found in all three TFAM, TFAC and TFAG subgroups 

. 

A significant effect of the type of amputation (TTAm vs. TFAm) on the stance and swing duration was 

found in both sides, with the stance significantly increased and the swing significantly decreased in 

the NA side in TFAm group compared to TTAm group, (Table 5.1). Conversely, the stance 

significantly decreased and the swing significantly increased in the A side in TFAm group compared 

to TTAm group (Table 5.1). Significantly shorter stance duration and longer swing duration in the A 

side than in the NA one (Table 5.1) were found both in TTAm and TFAm. 

 

5.1.1.2 Joint angles 

Significantly increased hip and knee RoMs in NA side were found in TFA compared to CmTFA (Figure  

5.2). Furthermore, significantly decreased ankle RoMs in A side were detected in both TTA and TFA 

compared to the speed matched C (CmTTA and CmTFA) (Figure 5.2). Significantly increased pelvic 

obliquity, trunk lateral bending, and trunk rotation RoMs of both sides were found in both TTA and 

TFA groups compared to C (Figure 5.1 and 5.2). Moreover, pelvic tilt, pelvic rotation, and trunk 

flection-extension RoMs of both sides were significantly increased in TFA group compared to CmTFA 
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group (Figure 5.1 and 5.2). Figure 5.1 also shows that people with amputation walked with the pelvis 

and trunk ante-flexed (flexed in a forward direction) compared to C. A significantly shorter hip and 

knee RoMs were found in the A side than in the NA side (Figure 5.2) in TFA group. Furthermore, a 

significantly shorter ankle RoMs were found in the A side than in the NA side ( Figure 5.2)in both 

TTA and TFA groups.

 

Figure 5.2 The means, standard deviations, and statistical results of range of motion for the hip, knee, ankle, 

pelvic, and trunk for each group. CmTTA: healthy subjects age-sex-speed matched with TTA; TTA: subjects 

with transtibial amputation; CmTFA: healthy subjects age-sex-speed matched with TFA; TFA: subjects with 

transfemoral amputation; TFAM: subjects with transfemoral amputation with mechanical prosthesis; TFAC: 

subjects with transfemoral amputation with CLeg prosthesis; TFAG: subjects with transfemoral amputation 

with Genium prosthesis; TFAm: a subgroup of 13 age-sex-speed matched subjects with a subgroup of TTA; 

TTAm: a subgroup of 13 age-sex-speed matched subjects with a subgroup of TFA. 

 

Figure 5.2 depicts increased hip and knee RoMs in TFA on the NA side compared to CmTFA, and 

significantly decreased ankle RoMs in TTA and TFA on the A side compared to the control group. 

When compared to healthy subjects, both TTA and TFA groups had significantly higher pelvic 

obliquity, trunk lateral bending, and trunk rotation RoMs on both sides (Figure 5.2). Furthermore, the 

TFA group had significantly higher pelvic tilt, pelvic rotation, and trunk flection-extension RoMs on 

both sides than the CmTFA group. In the TFA group, the A side had significantly shorter hip and knee 
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RoMs than the NA side. Furthermore, in both TTA, the A side had significantly shorter ankle RoMs 

than the NA side. 

 

A significant effect of the type of prosthesis on the hip and knee RoMs in the A side and on the pelvic 

obliquity RoM was found in both sides. Post hoc analysis revealed higher values of the hip and knee 

RoMs in the A side of TFAG subgroup compared to TFAM subgroup (Figure 5.2) and lower values of 

the pelvic obliquity RoMs for the Genium prosthesis (TFAG) compared to mechanical prosthesis 

(TFAM) in both sides (Figure 5.2). Significantly decreased knee and ankle RoMs in the A side than 

in NA side were found in TFAM, TFAC, and TFAG subgroups (Figure 5.2). Furthermore, a 

significantly decreased hip RoM in A side than in NA side (Figure 5.2) was detected in TFAG 

subgroup. 

 

A significant effect of the type of amputation (TTAm vs. TFAm) on the knee, pelvic tilt, and trunk 

flexion-extension RoMs was found, with the knee RoM significantly decreased in the A side in TFAm 

subgroup compared to TTAm subgroup (Figure 5.2) and the pelvic tilt and trunk flexion-extension 

RoMs significantly increased in both sides in TFAm subgroup compared to TTAm subgroup (Figure 

5.2). A significantly shorter hip and knee RoMs were found in the A side than in the NA side (Figure 

5.2) in TFAm subgroup. Furthermore, a significantly shorter ankle RoM was found in the A side than 

in the NA side (Figure 5.2) in both TTAm and TFAm subgroups. Significantly shorter trunk lateral 

bending, trunk flexion-extension, and trunk rotation RoMs were found in the A side than in the NA 

side (Figure 5.2) in both TTAm and TFAm subgroups. 

 

5.1.2 Kinetic data 

The curves of the vertical force for CmTTA and TTA (Figure 5.3A) and for CmTFA and TFA (Figure 

5.3B) are shown in Cartesian coordinates as mean curves (Figure 5.3 a.1 and b.1), and in polar 
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coordinates as mean curve (a.2 and b.2), as well as single and mean CoA values (a.3 and b.3), all 

expressed as percentage of gait cycle. 

The means, standard deviations, and statistical results of VF for each group are reported in Table 5.2.

 

Figure 5.3 Curves of the vertical force for CmTTA and TTA and for CmTFA and TFA shown in Cartesian 

coordinates as mean curves (a.1 and b.1), and in polar coordinates as mean curve (a.2 and b.2), as well as 

single and mean CoA values (a.3 and b.3), all expressed as percentage of gait cycle. CmTTA: healthy subjects 

age-sex-speed matched with TTA; TTA: subjects with transtibial amputation; CmTFA: healthy subjects age-

sex-speed matched with TFA; TFA: subjects with transfemoral amputation 

 

A significantly increased Peak1VF value in NA side and a significantly decreased Peak2VF value in A 

side were found in TTA group compared to CmTTA group (Table 5.2). Significantly increased 

Peak1VF, CoAVF, and FWHMVF values in NA side were found in TFA compared to CmTFA (Table 

5.2). Furthermore, significantly increased Peak1VF value and significantly decreased FWHMVF and 

CoAVF values in A side were found in TFA compared to CmTFA (Table 5.2). Peak1VF was significantly 

lower in the A side than in the NA side (Table 5.2) in TTA group. A significantly lower Peak2VF 

value was found in the A side than in the NA side (Table 5.2) in both TTA and TFA groups. 

Furthermore, significantly higher Peak1VF and lower FWHMVF and CoAVF values were found in the 

A side than in the NA side (Table 5.2) in TFA. 
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Table 5.2 The means, standard deviations, and statistical results (p value) of parameters evaluated on 

vertical force (VF) curves (Peak1VF and Peak2VF: 2 peaks, CoAVF: center of activity and FWHMVF: full width 

at half maximum). 

 

CmTTA: healthy subjects age-sex-speed matched with TTA; TTA: subjects with transtibial amputation; CmTFA: 

healthy subjects age-sex-speed matched with TFA; TFA: subjects with transfemoral amputation; TFAM: 

subjects with transfemoral amputation with mechanical prosthesis; TFAC: subjects with transfemoral 

amputation with CLeg prosthesis; TFAG: subjects with transfemoral amputation with Genium prosthesis; 

TFAm: a subgroup of 13 age-sex-speed matched subjects with a subgroup of TTA; TTAm: a subgroup of 13 

age-sex-speed matched subjects with a subgroup of TFA. 

 

No significant effects of the type of prosthesis on the VF values were detected for both sides (Table 

5.2). A significantly increased Peak1VF value was found in A side than in the NA side (Table 5.2) in 

TFAC and significantly decreased (p < 0.05) Peak2VF values were found in A side than in the NA side 

(Table 5.2) in TFAC and in TFAG subgroups. Furthermore, significantly decreased FWHMVF and 

CoAVF values were found in A side than in the NA side (Table 5.2) in all three TFAM, TFAC, and 

TFAG subgroups. 

 

A significant effect of the type of amputation (TTAm vs. TFAm) on the VF values was detected. 

Peak1VF was significantly decreased in the NA side in TFAm group compared to TTAm group (Table 

5.2). FWHMVF was significantly increased in the NA side and significantly decreased in the A side 

in TFAm group compared to TTAm group (Table 5.2). Significantly lower values were found in the A 

side than in the NA side for Peak1VF and Peak2VF in TTAm, for FWHMVF in both TTAm and TFAm 

group, and for CoAVF in TFAm (Table 5.2). 
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5.1.3 Energy consumption 

A significantly lower value of R-step in TFA subgroup compared to CmTFA subgroup was found 

(Figure 5.4). No significant differences of TEC values were detected. 

No significant effects of the type of prosthesis were found on both R-step and TEC (Figure 5.4). 

A significant effect of the type of amputation on R-step was found, with R-step value of TTAm 

subgroup being significantly higher than that of TFAm. Instead, no significant effect of the type of 

amputation on TEC was detected (Figure 5.4). 

 

Figure 5.4  Means, standard deviations, and statistical results of fraction of mechanical energy recovered 

during each walking step (R-step) and total energy consumption (TEC) values for each group. CmTTA: 

healthy subjects age-sex-speed matched with TTA; TTA: subjects with transtibial amputation; CmTFA: 

healthy subjects age-sex-speed matched with TFA; TFA: subjects with transfemoral amputation; TFAM: 

subjects with transfemoral amputation with mechanical prosthesis; TFAC: subjects with transfemoral 

amputation with CLeg prosthesis; TFAG: subjects with transfemoral amputation with Genium prosthesis; 

TFAm: a subgroup of 13 age-sex-speed matched subjects with a subgroup of TTA; TTAm: a subgroup of 13 

age-sex-speed matched subjects with a subgroup of TFA. 

 

Thus, abnormal patterns found in the gait of subjects with lower limb amputations, and in particular 

in TFA, are associated with a decreased ability to recover mechanical energy (R-step) [23] and an 

increased metabolic cost of walking [24,25], both of which contribute to decreased autonomy [26] 

and a reluctance to use the prosthesis [27]. Prosthetic advances have resulted in devices that improve 

walking performance by reducing compensatory patterns while optimizing energetic cost [16]. 

Understanding which biomechanical gait abnormalities are primarily and specifically associated with 

energy recovery is important for developing prosthetic devices aimed at restoring the most 

effective gait function. 
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The aims of the study “Pelvic obliquity as a compensatory mechanism leading to lower energy 

recovery: Characterization among the types of prostheses in subjects with transfemoral 

amputation”(2020) were to identify the spatiotemporal and kinematic gait variables most strongly 

associated with energy recovery in TFA subjects and to assess the ability of such parameters to 

discriminate between TFA and healthy subjects based on prosthesis type. 

We used the data from the previous study, specifically those related to TFA. Each parameter for the 

prosthetic and sound side was calculated for TFA subjects. Parameters for the control group were 

evaluated without regard to side. The walking speed (m/s), cadence (step/s), step width (m), step 

length (m), and durations of the stance, swing, and double support phases were calculated for each 

subject. The difference between the maximum and minimum joint range of motion values during the 

gait cycle was used to calculate the anatomical and prosthetic joint angles for the hip, knee, ankle, 

trunk, and pelvis (frontal, sagittal, and transverse planes). Energy recovery was measured trough the 

R-step parameter.  

 

Table 5.3 Correlations between R-step, spatio-temporal and kinematic parameters. 

 

R-step: The fraction of mechanical energy recovered during each walking step; r: correlation coefficient; p: 

95 % significance level; A: prosthetic limb; NA: sound limb; B: unstandardized coefficients; CI: confidence 

interval; Adjusted R2: goodness of fitting parameter; F: Fisher’s test in ANOVA. 

 

Pelvic obliquity on both sides, stance and double support duration of the prosthetic limb, and knee 

range of motion of the prosthetic side showed significant positive correlations with R-step. In 

contrast, gait speed showed a negative correlation (Table 5.3). After correcting for gait speed, partial 
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correlation analysis showed a fair but significant positive correlation only between pelvic obliquity 

of the prosthetic side and Rstep. Among gait variables, only pelvic obliquity of the prosthetic side 

was significantly associated with the R-step value (Table 5.3). 

 

Pelvic obliquity of the prosthetic side showed an excellent ability to discriminate TFA from CmHS 

subjects (AUC=0.90; Table 5.4, Figure 5.5/a). Pelvic obliquity values ≥ 6.13° identified subjects with 

TFA with a 74 % probability. Pelvic obliquity showed an excellent discriminative ability to identify 

TFAm and TFAc subjects from CmHS subjects (AUC=0.97 and 0.92, respectively; Table 5.4, Figure 

5.5/b). Values ≥ 11.10° and ≥ 6.37° identified TFAm and TFAc subjects from CmHS subjects, 

respectively, with 89 % and 59 % probability. Pelvic obliquity showed a good discriminative ability 

to identify TFAg from CmHS subjects (AUC=0.84; Table 5.4, Figure 5.5/b). Values ≥ 5.56° identify 

TFAg subjects with a 45 % probability 

 

Table 5.4 Discriminative ability of pelvic obliquity and cut-off analysis. 

 

AUC: area under the receiver operating characteristics curve with 95 % Confidence Intervals (CI); OCP: 

optimal cutoff point; Se: sensitivity; Sp: specificity; LR+: positive likelihood ratio; LR-: negative likelihood 

ratio; +PTP: positive post-test probability; -PTP: negative post-test probability; CmTFA: healthy subjects 

age-sex-speed matched with TFA; TFA: subjects with transfemoral amputation; TFAm: subjects wearing a 

mechanical prosthesis; TFAc: subjects wearing C-Leg prosthesis; TFAg: subjects wearing Genium 

prosthesis. 
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Figure 5.5 Receiver operating characteristics curve. Ability of pelvic obliquity to discriminate between 

CmHS and subjects with TFA. This figure illustrates the area under the receiver operating characteristics 

curve (AUC) of pelvic obliquity in identifying subjects with TFA from CmHS, irrespective of the type of 

prosthesis (a) and according to the type of prostheses (b). The diagonal black line represents the non–

significance threshold of AUC=0.50, the colored lines represent the true positive rate and the false positive 

rate at each threshold. AUC values and their 95 % confidence intervals (CI) are reported. 

 

5.2. Electrophysiological Features of Prosthetic Gait 

One of the primary goals of gait analysis studies in people with amputation should be to improve the 

development of new and ergonomic prostheses, as well as the people's ability to adapt to the most 

recent and technologically advanced prosthetic devices [ 7,16,28]. The ideal prosthetic device should 

enable people with amputation to maintain an efficient and ecological gait function while also 

minimizing gait asymmetries and reducing the need for compensatory activation of the muscles of 

the sound limb. However, no studies on the effect of various prosthetic devices on muscle activation 

in the sound limb have been conducted thus far. Such studies are required to determine the amounts 

of compensation in the neuromuscular strategies used for various prostheses. 

 

The goal of the study “Global Muscle Coactivation of the Sound Limb in Gait of People with 

Transfemoral and Transtibial Amputation” (2020) was to investigate the effect of three different 

types of prosthetic devices (mechanical, electronic, and bionic) on the activation of the sound limb 

muscles. The time-varying multimuscle coactivation function (TMCf) method [29,30] was used, 

which is a compact indicator that allows one to understand the central nervous system's (CNS) global 

strategy in modulating the simultaneous activation/deactivation of many lower limb muscles during 
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gait, regardless of the magnitude of the single muscle activation, to the agonist-antagonist interaction 

at the single joint level, and to the modular architecture. 

 

Forty eight subjects with lower-limb unilateral TFA and TTA, consequent to workplace traumatic 

accidents, were enrolled from the Rome branch of the Prosthetics Center of Italian Workers’ 

Compensation Authority (INAIL). Twenty two healthy subjects were enrolled as the control group 

(C) and were age-sex-speed matched with people with amputation.  

Walking tests were performed using a six infrared cameras optoelectronic motion analysis system at 

sample frequency of 340 Hz (SMART-DX 6000 System, BTS, Milan, Italy). Twenty-seven passive 

spherical markers were placed on the following prominent bony landmarks, according to a modified 

Davis’ protocol [20], as shown in Figure 5.6.  

 

Figure 5.6 Modified Davis’ protocol for marker placement. 

 

Gait analysis started with the standing position on a platform. Subsequently, controls and subjects 

with amputation were asked to walk at their preferred speed with their shoes. Furthermore, controls 

were asked to walk also at a slower speed. At least ten trials, at each velocity, were recorded for both 

subject groups.  

We recorded sEMG signals using a bipolar 16-channel wireless system (FreeEMG 1000 System, 

BTS) with a sample frequency of 1000 Hz from the sound limb of the people with amputation and on 

the dominant side of the controls on the gluteus medius, rectus femoris, vastus lateralis, vastus 
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medialis, tensor fascia latae, semitendinosus, biceps femoris, tibialis anterior, gastrocnemius 

medialis, gastrocnemius lateralis, soleus, and peroneus longus in accordance with Atlas of Muscle 

Innervation Zones [21] and the European Recommendations for Surface Electromyography [22]. 

 

We calculated the time-varying multimuscle coactivation function (TMCf) and the Coactivation 

Index to evaluate the global muscle coactivation, and two indexes, FWHM and CoA, to characterize 

in terms of time amplitude the TMCf curves and to understand where most coactivation is 

concentrated within the gait cycle. We also calculated the Coefficient of Multiple Correlation to 

evaluate the waveform similarity of the curves.  

The following time-distance parameters were calculated for each subject with amputation: walking 

speed (m/s), cadence (steps/s), step length (m), and step width (m) normalized to the limb length; 

stance, swing, and double support phase duration expressed as percentages of the gait cycle duration. 

Symmetry index was calculated for each time-distance parameter. Mechanical energy expenditure 

and recovery was also assessed by calculating the TEC and R-step parameters. 

 

Both TFA and TTA groups showed significantly higher CI values when compared with the 

corresponding controls (Table 5.5). 

 

Table 5.5 The means, standard deviations, and statistical results (p-values) of parameters evaluated on 

TMCf curves 

 

CI: coactivation index, CMCIS: coefficient of multiple correlation intra-subjects, DP: deviation phase. 

People with transfemoral amputation (TFA), control group matched with TFA (CTFA), people with transtibial 

amputation (TTA), control group matched with TTA (CTTA), people with transfemoral amputation with 

mechanical (TFAM), CLeg (TFAC), and Genium prostheses (TFAG). 

 

Both TFA and TTA groups showed significantly higher FWHM values when compared with the 

corresponding controls (TFA vs. CTFA: p = 0.03 and TTA vs. CTTA: p = 0.04) (Figure 5.7). Both TFA 

and TTA groups showed significantly higher DP values than those of the corresponding controls 

(Table 5.5). No significant differences in the CMCIS were found between the TFA and TTA groups 

when compared with the corresponding controls (Table 5.5). The level of amputation had no 

statistically significant effect on CoA evaluated on TMCf curves (Figure 5.7).  
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Figure 5.7 (A) Time-varying multimuscle coactivation function (TMCf) curves shown as mean curves with 

standard deviations for people with transfemoral amputation (TFA), the control group matched with TFA 

(CTFA), for people with transtibial amputation (TTA), and the control group matched with TTA (CTTA). (B) 

Full width at half maximum (FWHM) of the TMCf for each group shown in polar coordinates. (C) Center of 

activity (CoA) of the TMCf for each group: each dot represents the mean CoA value of a subject, whereas 

the solid line and the width of the circular sector represent the mean and standard deviation values of the 

CoA of all subjects, respectively. All parameters are shown as percentages of the gait cycle. 

 

A significant main effect of the type of prosthesis was found on the CI values. TFAC showed lower 

values when compared with both TFAM and TFAG at post-hoc analysis (Table 5.5). A significant 

main effect of the type of prosthesis was found on the FWHM values (Figure 5.8). TFAC showed 

lower values when compared with both TFAM and TFAG at post-hoc analysis (p = 0.036). A 

significant main effect of the type of prosthesis was found on DP values. TFAC showed lower values 

when compared with TFAM and TFAG (Table 5.5). No significant effect of the type of prosthesis was 

found on CMCIS values (Table 5.5). The type of prosthesis had no statistically significant effect on 

CoA evaluated on TMCf curves (Figure 5.8). 
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Figure 5.8 (A) TMCf curves shown as mean curves with standard deviations for people with transfemoral 

amputation with mechanical (TFAM), CLeg (TFAC), and Genium prostheses (TFAG). (B) Full width at half 

maximum (FWHM) of the TMCf for each group shown in polar coordinates. (C) Center of activity (CoA) of 

the TMCf for each group: each dot represents the mean CoA value of a subject, whereas the solid line and 

the width of the circular sector represent the mean and standard deviation values of the CoA of all subjects, 

respectively. All parameters are shown as percentages 

 

A moderate positive correlation was found between CI and gait speed values in people with TFA (p 

= 0.03, r = 0.36). Correcting for gait speed, partial correlation analysis showed a moderate positive 

correlation between CI and stance duration values (p = 0.04, r = 0.38). Furthermore, people with TFA 

also showed a moderate positive correlation between CI and TEC values (p = 0.04, r = 0.52) and a 

negative correlation between the DP and symmetry index evaluated on double support duration (p = 

0.04, r = -0.33) 

 

 

All of the considerations from the related studies emphasize the importance of using a multimodal 

approach when analyzing gait in people who have had a lower limb amputation; in fact, despite the 

massive scientific effort of the last two decades, this condition is still partially unknown to date, and 
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the compensations that are required for achieving stable gait with a prosthesis are highly complex and 

cannot be characterized as a whole without a complete record. 
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CHAPTER 6 
 

6. JOB INTEGRATION/REINTEGRATION OF PEOPLE WITH 

NEUROMUSCULAR DISORDERS  
 

Individuals of working age with neuromuscular illnesses frequently struggle with employability, 

work challenges, and premature job stoppage [1–3]. In any case, employment integration and 

reintegration have been shown to improve pathological people’s overall quality of life [1, 4, 5]. 

Indeed, increasing their working life should be an important element of neuromuscular disorder care 

in terms of psychological, social, and health wellness [6]. An increase in self-esteem and social 

wellness, as well as a reduction in workplace prejudice against disabled people, can be achieved by 

designing an adequate job accommodation [7– 9], assistance and improving, among other things, the 

social environment, support from colleagues and supervisors, job expectations, and ergonomic 

interventions [10]. Furthermore, understanding of specific work-related difficulties, as well as 

focused rehabilitative, ergonomic, and training interventions, can enable individuals to return to work. 

Rehabilitation can play a constructive role by removing barriers to obtaining, retaining, or returning 

to work [11– 18]. This concept is supported by these people’s contextual ability to maintain an 

effective motor strategy by adopting different compensatory behaviors during the disease, despite 

disease progression and motor decline [19–22]. Neuropathies, multiple sclerosis, stroke, spastic 

paraplegia, cerebellar ataxia, dystonia, traumatic spine and brain lesions, and encephalitis are 

degenerative and acquired neurological diseases that can impact motor function throughout working 

age and severely limit workers’ autonomy and efficiency [6, 23–27]. Therefore, workers with 

neurological illnesses may have motor impairment in numerous motor domains, including hand 

function, balance, and locomotion, placing a significant burden on society in terms of lower job 

productivity and expense. Clinicians manage their patients’ premature work interruptions [28, 29] by 

developing appropriate standard and new pharmacological, surgical, and rehabilitation treatments, 

such as robotic rehabilitation, virtual reality, and neuromodulation [30–34]. Indeed, these treatments 

have the primary goal of restoring patients’ motor performance, autonomy, and everyday life, 

allowing them to return to work and optimize their work capabilities. Furthermore, novel ergonomic 

solutions, such as work task rehabilitation and workplace interventions, are being added to job 

accommodation plans [35–37]. Indeed, the fourth industrial revolution has lately opened up new 

occupational scenarios in which crucial human–robot collaboration (HRC) technologies, such as 

collaborative robots and exoskeletons, aid workers in their workplaces [3]. When a worker affected 
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by a neurological pathology with motor disorders is reintegrated at work, an exhaustive assessment 

of his/her residual motor function is of primary importance to design and/or optimally adapt his/her 

workplace. Therefore, biomechanical and physiological indexes are useful for monitoring motor and 

muscle performance and verifying the effectiveness of interventions for job integration/reintegration 

[3]. Furthermore, the efficiency Furthermore, the efficiency of these ergonomic interventions should 

be verified and monitored throughout time [3]. Kinematic, kinetic, and surface electromyography 

(sEMG) measurements are now widely used in research laboratories by movement scientists and 

could be used more and more in clinical practice by health operators, to define quantitatively the 

form and degree of motor dysfunction, assess the complicated interaction between the fundamental 

deficit and the adaptive and compensating mechanisms, categorize patients based on their specific 

neurological condition, and finally monitor pre–post-treatment [3]. 

 

The aim of the study “ Indexes for motor performance assessment in Job Integration/Reintegration 

of People with Neuromuscular Disorders-A Systematic Review” (2022) is to identify which of these 

indexes are the most suited for assessing the effectiveness and efficiency of return-to-work programs. 

This research employs a systematic literature review process to suggest present and future important 

indexes to achieve this purpose. 

 

6.1 Materials and Methods 

This study was performed using the systematic review method proposed by the Preferred Reporting 

Items for Systematic Reviews and Meta-Analysis (PRISMA) [38]. 

 

Literature search strategy 

This systematic review considered English articles published from 2011 to March 30, 2021, and the 

literature search was performed in a systematic manner using the following selected databases: 

Scopus, Web of Science, and PubMed. According to the database, the annual article production 

related to this research is starting to grow significantly from 2011, which is the starting year of the 

analyzed period. There were four issues of interest in this systematic review [39]: job reintegration, 

indexes, neurological, and quality. For each issue identified according to the method proposed in the 

study mentioned in [39], the following keywords were identified as related to that topic and used for 

online database searching: 

• Job Reintegration: “Job Integration,” “Job Reintegration,” “work Integration,” “work 

Reintegration,” “workplace,” “Return to work Rehabilitation,” “work ability”; 
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• Indexes: “kinematic index,” “kinetic index,” “force index,” “sEMG index,” “surface 

electromyography index,” “motor index”; 

• Neurological: “Neurological motor disease,” “Neurological motor disorders,” 

“Neuromuscular motor disease,” “Neuromuscular motor disorders”; 

• Quality: “performance,” “monitoring,” “ergonomics,” “quantitative,” “instrumental”. 

 

Screening criteria 

A total of two, three, and four groups of keywords (one for each issue) were combined in the literature 

search (1,657 combinations). We then entered each combination of one, two, three, or four keywords 

into each of the selected online databases (PubMed, Scopus, andWeb of Science) to search for 

articles. The articles obtained were imported into Mendeley, and duplicates were removed. Our search 

was limited to peer-reviewed journal publications, reviews, chapters of books, and conference 

proceedings. The collected publications were then screened in three steps: (i) the titles were assessed 

for relevance; (ii) the abstracts were considered; and (iii) the complete text were downloaded when 

the information was deemed relevant. 

 

Inclusion and exclusion criteria of articles in the review 

Studies were considered eligible if they were written in English, and they investigated subjects using 

biomechanical and physiological quantitative indexes. The common goal of these eligible studies was 

to perform a quantitative evaluation of programs/strategies to make patients sufficiently able to return 

to work. Excluded were narrative and systematic reviews or meta-analyses and purely clinical studies 

not aimed at evaluating job placement/reintegration. Furthermore, the studies with the following 

characteristics were also excluded: 

• studies that do not consider indexes (biomechanical and physiological indexes) of motor 

performance for job integration/reintegration; 

• studies on simulated data and not on people; 

• studies with all or almost all participants of non-working age (>67 years, since the maximum 

range of retirement age in Italy is 67 years for most professions); 

• studies on children/teenagers (<18 years, since in Italy, it is forbidden to work if you are 

younger than 18 years); 

• studies on only work risks assessment. 

In addition to searching databases with the aforementioned keywords, once the authors had identified 

articles for inclusion in the systematic review, they also examined the bibliography of the selected 
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articles to check whether there were any additional articles that could be included in this systematic 

review.  

 

Data extraction 

From the articles selected as eligible, the authors extracted the data that provided detailed information 

for each study, using the Population Intervention Comparison Outcome (PICO) framework as a guide 

when analyzing the eligible articles [40]. More in detail, the authors followed the following steps to 

extract the data from the selected articles: 

• The authors looked for an existing extraction form or tool to help guide them and used existing 

systematic reviews on our topic to identify what information to collect if they are not sure 

what to do [41, 42]. 

• Train the review team on the extraction categories and what type of data would be expected. 

• The authors performed a pilot extraction to ensure data extractors were recording similar data 

and revised the extraction form if needed. 

• The authors discussed any discrepancies in extraction throughout the process. 

• The review team documented any changes to the process or the form, kept track of the 

decisions the team made, and the reasoning behind them. 

At the end of this procedure, the extracted information included the following: 

• characteristics of the participants involved in the study: number of subjects (N), gender (F and 

M), age (years), height (H) in meters, weight (W) in kg, and/or body mass index (BMI) in 

kg/m2; 

• measurement details: motor task, parameters/indexes names and acronyms if applicable, 

instrumentation used, and investigated body part; 

• aims of the study; 

• findings of the study. 

 

Assessment of bias 

A bias represents a characteristic of a study that can introduce a systematic error in the magnitude or 

direction findings. The potential risk of bias was assessed independently by the authors  according to 

the Cochrane Handbook for Systematic Reviews of Interventions [43] and by using the tool ROBINS-

I [44, 45], which was developed for the risk of bias assessment of nonrandomized studies of 

interventions. The authors assessed the following risks of bias [44, 45]: 
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• confounding [D1]: occurs when one or more prognostic factors can also predict the baseline 

intervention; 

• selection of participants into study [D2]: even though the effects of the interventions are the 

same, there will be a connection between interventions and outcomes when exclusion of some 

eligible participants, initial follow-up times for some participants, or certain outcome events 

are connected to both the intervention and the outcome; 

• classification of interventions [D3]: by misclassification of intervention status; 

• deviation from the intended study [D4]: when there are consistent discrepancies between 

experimental intervention and comparison groups, which represent a deviation from the 

intended intervention; 

• missing data [D5]: when later follow-up or information is missing for individuals initially 

included and followed; 

• measurement of outcomes [D6]: introduced by errors in measurement of outcome data; 

• selection of the reported result [D7]: selective reporting of results in a way that depends on 

the findings. 

 

6.2 Results 

The study selection process started from the results of the literature database search that yielded 

231,793 records, as shown in Figure  6.1. In particular, 71,317 were found on Scopus, 93,406 on Web 

of Science, and 67,070 PubMed. After removing the duplicates, the articles were 142,968. These 

articles were screened by deleting articles on the basis of not connected words (e.g., animal, 

astronomy, and human resources) and journals([e.g., International Journal of Molecular Science), 

obtaining 4,119 articles. These articles were screened based on their title, obtaining 1,187 articles. 

From this group, abstracts were read, and 1,133 were excluded by the screening criteria. 

Consequently, 54 full text articles were assessed for eligibility. Finally, after having removed 39 

articles by the eligibility criteria, a total of 15 articles were included in this systematic review. 
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Figure 6.1 PRISMA flowchart related to the steps of a systematic review provided by the journal Frontiers 

in Neurology. 

 

Table 6.1 shows an overview of the main characteristics of the 15 considered studies [46–60] 

following the PICO model [40] and highlighting the biomechanical and physiological indexes used. 

All the articles that met the eligibility criteria are very recent: five were published in 2020, one in 

2019, six between 2013 and 2016, and three, the oldest, in 2012. A total of 1,300 subjects were 

recruited in the included studies, with 618 males (M) and 612 females (F), and only in one study [60], 

the gender was not specified. The subjects’ mean age varied from <21.36 [57] to 74 [55] years. A 

total of eight studies dealt with subjects with low back pain (LBP) [46, 49, 52, 53, 56, 58–60], two 

studies considered subjects who have survived stroke (SS) [50, 55], one study considered subjects 

with multiple sclerosis (MS) [48], three subjects with spinal cord injury (SCI) [51, 52, 57], and finally, 

two addressed healthy subjects (HS) [47, 54]. All studies were carried out in the laboratory [46–60], 

and three of them also in real-life environments [47, 52, 55]. The following tasks were analyzed (see 

Table 6.1): 
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• lifting task, one study [60]; 

• rehabilitation exercises, three studies [46, 53, 56]; 

• daily activities, two studies [47, 55]; 

• walking task, two studies [47, 48]; 

• balance, three studies [54, 57, 59]; 

• reaching and grasping activities, three studies [50, 51, 57]; 

• typical working activities, one study [52]; 

• lumbar flexion–extension, one study [49]; 

• physical performance task, one study [54]; 

• trunk stability test, one study [58]; 

• gross arm and fine hand movements, one study [47]; 

• sitting test, one study [57]; 

• dexterity task, one study [59]. 

In total, 41 different kinematic [46–55, 57, 60], 12 kinetic [51, 53, 54, 57], 5 sEMG [46, 56, 59, 60], 

3 postural [55, 57], and 4 other indexes [47, 49, 50] were investigated (see Tables 6.1, 6.2). 

 

Table 6.1. Descriptive analysis of the studies considered in the review according to the PICO method. 
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6.2.1 Kinematic parameters 

In 13 studies, five on LBP [46, 49, 52, 53, 60], two on SS [50, 55], one on MS [48], three on SCI [51, 

52, 57], and two on HS [47, 54], 31 kinematic indexes were reported as useful for motor performance 
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assessment (Table 2). More in detail, with regard to the gait: velocity [46, 48, 54], number of steps 

[55], gait duration [55], cadence [46], step length [46], step time [46], single support time [46], stride 

length [48], and phase coordination index [48]. With regard to other motor tasks, different from gait: 

limb-use intensity [47], flexion angle [49], bending/flexion speed [49], peak reach velocity [50], reach 

time [50], contact velocity [50], peak aperture [50], peak grip force [50], fingers range of motion [51], 

movement duration [52], hand peak velocity [52], torso peak velocity [52], time at torso peak velocity 

[52], shoulder-to-hand distance at hand peak velocity [52], precedence index [52], lumbar ROM [53], 

Schober’s flexion [53], neck flexion/extension [54], shoulder external rotation [54], hip flexion, 

internal/external rotation [54], knee flexion/extension [54], virtual time to contact (VTC) [57], and 

maximum angular displacement [60]. The following kinematic parameters were found to be less 

significant for characterizing the motor performance of analyzed subjects. Regarding the gait: 

velocity [55], single support time [48], stance [48], swing [48], double support time [48], and walk 

distance [54]. In other tasks: bending/flexion speed [49], torso travel distance [52], hand travel 

distance [52], time at hand peak velocity [52], shoulder internal rotation [54], ankle plantar/dorsi 

flexion [54], and functional boundary [57]. 

 

6.2.2 Kinetic parameters 

In three studies, one on LBP [53], one on SCI [51], one on HS [54], and five kinetic indexes have 

been identified as useful for the assessment of motor functions in tasks not including gait: palmar 

maximum grasp strength [51], pinch maximum grasp strength [51], maximal voluntary isometric 

torque [53], muscle strength knee flexor/extensor [54], and muscle strength toe flexor [54]. Other 

kinetic indexes [Table 2] were found to be less significant for characterizing the motor performance 

of analyzed subjects: muscle strength shoulder internal/external rotators [54], muscle strength elbow 

flexors/extensor [54], muscle strength hip abductors [54], muscle strength hip internal/external 

rotators [54], muscle strength ankle plantar flexors/dorsiflexors [54], center of pressure (CoP) 

velocity [57], and CoP root mean square (RMS) [57]. 

 

6.2.3 sEMG parameters 

In three studies [56, 58, 60], four sEMG indexes were identified to be useful results for guiding 

therapy and determining the level of return to work of subjects with LBP: muscle onset [56], latency 

time [56], principal component score [58, 60]; and EMG ensemble average waveforms [60]. The 

other sEMG parameter (Table 6.2), mean muscle activation [59], was found to be less significant for 

characterizing the motor performance of LBP subjects. 
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6.2.4 Postural parameters 

In two studies, three indexes referring to posture were identified, which provide novel information 

concerning the effectiveness of various rehabilitation approaches for individuals with SS [55] and 

SCI [57], with the aim of adequate job reintegration: postural transition duration [55], aborted postural 

transition attempts [55], and instability index [57]. 

 

6.2.5 Other parameters 

In two studies, one on HS [47] and one on SS [50], three other indexes were identified to be useful 

for assessing motor performance: mean of magnitude ratio of activity intensity [47], upper-limb 

performance [47], and reach path ratio [50], while the flexion/extension ratio evaluated in Cimarras-

Otal et al. [49] was found to be less significant for characterizing the motor performance of LBP 

subjects (Table 6.2). 

 

Table 6.2 Description of all the outcome parameters from the eligible studies. 
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6.2.6 Risk of bias 

The results of the risk of bias assessment are reported in the risk of bias summary (Figure 6.2)—

where the authors’ judgments are shown for all the seven considered domains and for each study 

included in this review, according to Higgins and Green [43], McGuinness [44], and Sterne et al. 

[45]—and in the risk of bias graph (Figure 6.3), where the authors’ judgments are reported for each 

risk of bias as percentages across the different studies included in this review. None of the studies 

considered was associated with the risk of bias due to confounding [D1], in classifications of 

interventions [D3], due to deviations from intended interventions [D4], due to missing data [D5], and 

in selection of the reported result [D7]. Instead, there was a moderate risk of bias due to participant 

selection [D2] in a single study [47], owing to a poor description of the subjects involved. 

Furthermore, due to a lack of results for some of the subjects studied, three studies [49, 53, 56] had a 

moderate risk of bias in outcome measurement [D6]. 
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Figure 6.2 Risk of bias summary: authors’ judgments for 15 included studies and for each considered 

domain 

 

Figure 6.3  Risk of bias graph: authors’ judgments for each risk of bias reported as percentages of the 

different studies included in the review. 
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CHAPTER 7 
 

7. DISCUSSION AND CONCLUSION 

 

Below I describe the kinematic, kinetic, and electromyographic indices implemented, and the 

behavior assumed and highlighted in literature studies.  

 

7.1 Kinematic indices 

The kinematic analysis mainly involves the study of the instantaneous angular positions in the sagittal, 

frontal and transverse planes and the ranges of motions (RoMs) understood as joint excursions. 

Additional useful information is represented by spatio-temporal parameters and energy variables such 

as energy recovery and consumption. The former is an index of the capacity to store and reuse kinetic 

energy during walking while the letter is an index of energy expenditure per unit distance walked. 

Many studies in the literature have shown these parameters to be altered and thus distinctive of the 

motor disorders that characterize neurological disease [1]. This is why we decided to include these 

kinematic indices in our research. 

 

Spatio-temporal parameters 

• Patients with cerebellar ataxia (PwCA), compared to healthy subjects (HS), show significantly 

lower values of stride length and higher values of stride width, as well as a high variability of 

stride length, stride width and step length [2]. These findings support previous research [3,4] 

and are distinct features of ataxic gait developed to compensate for poor balance and dynamic 

stability [4-7]. Patients who wear the passive soft trunk exoskeleton, on the other hand, have 

less variability in step length [8], which is likely due to the device's restraining properties, 

which allow them to take more regular steps while walking. 

 

• In patients with Parkinson's disease (PwPD), we found a lower stride length and higher 

cadence [9,10] and a lower stride length [9]. These findings support those found in the 

literature [11,12], and these temporal alterations in gait are thought to be neural system 

strategies to reduce the risk of falls, allowing greater postural control.  
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• People with transfemoral (TFA) and transtibial (TTA) amputation, in general, regardless of 

the level of amputation and type of prosthesis, showed a common gait pattern characterized 

by a symmetric increase of step length, step width and double support duration. Almost all 

these gait deficits reflect compensatory mechanisms adopted by people with amputation 

presumably to increase their stability in the frontal plane (increased step width), to maintain 

the most stable configuration (increased double support duration), while increasing the time 

of the stance and in the unaffected limb.  

People with TFA showed a specific gait pattern that differed from that of HS and people with 

TTA; in particular  they reduced the duration of the stance and increased the duration of the 

swing in the prosthetic limb.  

Altogether these findings deeply reflect the essence of the asymmetric gait [14]  that 

characterizes people with lower limb amputation. 

 

Joint Range of Motion 

• Several studies have examined the biomechanical characteristics of PwCA, discovering 

significant variability in all values of global and segmental gait parameters, such as marked 

trunk oscillations [4-7]. As a result, we examined trunk ROMs to assess the effectiveness of 

the passive soft exoskeleton [8]. We observed a significant improvement in trunk movements 

in all three planes of space, which is most likely due to the soft passive exoskeleton's 

restraining factor, which ensures a better and more physiological trunk oscillation. 

 

• One of the hallmark symptoms of Parkinson's disease (PD) is decreased amplitude of joint 

movement [15,16]. This affects not only the distal joints but also the trunk [17-19], affecting 

the patients' performance in daily activities and function [20,21]. Trunk mobility is an 

important component of physical therapy treatment in Parkinson's disease patients, so an 

accurate measurement of trunk range of motion [ROM] is frequently regarded as an essential 

component in a rehabilitation context [22]. Confirming these considerations, we obtained 

improved pelvic rotation and obliquity after rehabilitation [10], which is consistent with 

studies in the literature indicating that trunk-focused excercises have beneficial effects on both 

trunk and pelvic mobility [23].  We also found that PwPD had decreased hip, knee, and ankle 

ROM, as well as decreased trunk and pelvic rotation [9]. We demonstrated how a small set of 

these parameters, specifically knee and trunk rotation ROM, can distinguish patients from 
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healthy subjects using machine learning algorithms. Thus knee and trunk rotation RoM 

abnormalities characterize the gait pattern of PwPD, as found in  previous studies [23-28]. 

 

• People with TFA and TTA showed a symmetric increase of pelvic obliquity, trunk lateral 

bending, and trunk rotation range of motions with increased pelvis and trunk ante-flexed 

posture [13]. These features reflect the compensatory mechanisms used by patients to help lift 

the affected limb. The reduced range of motion of the ankle joint in the prosthetic limb, which 

is the common prosthetic joint in both TTA and TFA subjects, on the other hand, is directly 

related to the use of the prosthesis. However, it is not possible to exclude that the lack of 

sensory feedback [29] might have played a role in determining a hypermetric foot placement 

in the prosthetic limb, which, in turn, would have influenced the foot placement of the 

unaffected limb, as adaptive mechanism of the new support base schema [30,31]. 

People with TFA wearing Genium prosthesis (TFAG) showed an increased hip and knee range 

of motions in the prosthetic side compared to subjects with mechanical prosthesis, who, 

conversely, showed a symmetric increased pelvic obliquity. These findings indicate that the 

type of prosthesis influences the gait pattern of people with amputation both in terms of gait 

performance and adaptation [32]. In this view, the increased hip and knee ranges of motion, 

together with other parameters, might reflect a better gait performance for the Genium vs 

mechanical prostheses. Conversely, the increased pelvic obliquity seems to reflect a greater 

compensatory effort in subjects with mechanical prostheses, likely aimed to lift the limbs 

during the gait progression. 

We also demonstrated that pelvic obliquity was positively correlated with the energy recovery 

during walking and had an optimal discriminative ability between people with TFA and HS. 

These findings strongly indicate that it may be one of the most appropriate parameter to be 

considered for monitoring a subject’s adaptation to a prosthesis. 

 

 

Energy variables 

• In terms of energy behavior, we discovered that PwCA had significantly lower R-Step values 

than HS [2], indicating that the compensation strategies used prevent the patient from 

recovering energy while walking. Our study evaluating the passive trunk exoskeleton, on the 

other hand, demonstrated how the device, by improving other kinematic parameters, allows 

for greater recovery and lower energy expenditure [8]. 
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• Subjects with lower limb amputation, and in particular people with TFA, showed significantly 

lower R-step values than healthy matched subjects [13]. This could be related to the fact that 

the specific gait patterns that characterize these subjects prevent them from recovering energy. 

 

Harmonic Ratio 

The Harmonic Ratio (HR) is a measure used to quantify smoothness of walking [33-35]. In gait 

research, the HR is most commonly extracted from trunk accelerations in the anteroposterior (AP), 

vertical (VT) and mediolateral (ML) directions. HRs have discriminated between the gait of young 

and older adults [ 36,37], older adults who have and have not fallen [33], and the gait of healthy older 

adults and individuals with neurologic disorders [38-40]. 

 

• In our study we found that HR of PwCA significantly differed from that of HS in all three 

spatial planes [41] .  This means that ataxic patients, compared to healthy subjects, exhibit a 

substantial reduction of trunk movement smoothness. This result suggest that HR can 

substantially describe trunk accelerative behavior abnormalities among patients with 

degenerative ataxia, as shown by other studies in the literature [42]. However, we found no 

correlation between HR and the number of falls and the severity of the disease. This is 

probably due to the small sample size. Indeed, by increasing the sample size, we confirmed 

that HR is the most appropriate accurate trunk acceleration-derived marker for detecting the 

loss of the ability to organize a fluid and rhythmically effective gait in PwCA due to cerebellar 

degeneration, which leads to inter- and inter-segmental incoordination [43].  

We also found that HR values were correlated with the history of falls, SARA gait and posture 

subscores, and temporal gait instability variables, confirming the results of other studies 

reporting the HRs of trunk acceleration during gait as predictors of falls among older people 

[44] or persons with Parkinson’s disease [45], multiple sclerosis [46], and stroke survivors 

[47]. 

 

• In PwPD we found that the HRs calculated for the three spatial planes were able to 

discriminate between PwPD at moderate stages of disease progression and HS [45]. HRAP, in 

particular, was also able to discriminate between PwPD at the moderate disability stage and 

PwPD at lower disability stages.  Furthermore, HRAP exhibited good ability to characterize 
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the gait of recurrent fallers. These results are in line with those from previous studies reporting 

that PwPD exhibit disruptions in the rhythmicity of pelvic acceleration [ 38,39]. 

In a subsequent study [10] we found that the HRAP and the HRML, can significantly improve 

up to normative values after rehabilitation, with medium-to-high internal and optimal external  

responsiveness. Our results are consistent with previous studies reporting the HRAP and the 

HRML to significantly improve after rehabilitation [48]. In particular Lowry et al. [ 39] showed 

that internal cognitive and verbal amplitude-based cueing aiming to increase stride length is 

effective in improving HRs.  

 

• Even in patients with hemiparesis [HP] [49], we discovered that HR values in all three 

directions can distinguish patients from HS with high accuracy. We found that HP showed 

decreased HR values and it may occur as a result of various compensation strategies due to 

the force deficit that does not allow patients to exploit the pendular mechanism of walking for 

generating harmonic movements [47].  

 

Coefficient of Variation of step length 

The coefficient of variation of step length is a measure of gait spatial variability that has been studied 

in several studies in the literature [50,52]. 

 

• In PwCA we found that the CV of step length was higher than the controls and significantly 

correlated with the clinical scales scores and with the number of falls per year [41,43]. In fact, 

it has been shown in the literature that during the progression of the disease subjects with 

degenerative ataxia tend to lose the ability to both enlarge their step width and fasten their 

walking speed and they shorten their step length in order to reduce their single support time  

[53], with a significant increase in step length CV that can lead to an increased risk of falls.  

 

• We found significantly altered values of the coefficient of variation of step length only in 

patients with a severe stage of Parkinson's disease [45], which is consistent with previous 

studies that did not observe step length CV alterations in subjects at milder disease stages 

[53]. However, the low probability of correctly discriminating PwPD (58%) at the cutoff value 

and a lack of correlations with clinical variables and spatiotemporal gait parameters do not 

allow us to consider this index as a marker of gait stability that is independent of speed. 
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Simultaneously, we discovered no improvement in the parameter following rehabilitation 

treatment [10]. 

 

• CV step length was found to be a good parameter to discriminate HP from HS [49], confirming 

the variety in gait ability and compensatory strategy among the stroke patients.  

 

Largest Lyapunov Exponent 

The LLE quantifies gait stability as the average logarithmic rate of divergence of the system's 

trajectory to its nearest neighboring trajectory. When trajectories converge, the observed system is 

considered to have local dynamic stability, whereas divergence indicates local dynamic instability. 

 

• We found that higher values of LLE, as calculated in the three spatial directions, characterize 

the gait of PwCA, regardless of gait speed [43]. Our results are in line with previous studies 

[54,55] reporting higher LLEs values in subjects with cerebellar involvement, compared with 

non-speed-matched healthy subjects, as an expression of gait instability due to the inability to 

recover from small perturbations. However, LLE is highly influenced by lower gait speed [56-

58], leading to higher LLE values. Because we did not find speed-independent correlations 

between the LLEs and the disease severity or the history of falls, we can further confirm that 

the LLE is dependent on the gait speed compensation experienced by PwCA and cannot be 

considered as a marker of fall risk, regardless of gait speed. 

 

• We identified no differences for LLE in PwPD when compared with HS [45]. In contrast, 

other studies have reported significant group differences between PwPD and HS [59] and 

between walking at self-selected speeds and dual-task walking in terms of LLE. These 

contrasting results can be attributed to varying matching procedures and testing conditions. 

Given that the goals of the these studies were different, combining their interpretations with 

our results may suggest that the gait of PwPD is characterized by dynamic instability, but that 

LLE is speed dependent.  

 

Root mean square 

The RMS and RMSR quantify the magnitude of the acceleration signals [60,61] as an expression of 

the degree of body sway during gait [59].  
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• In our study [43], we found that these indices can capture the inability of the trunk of the 

PwCA to damp the gait-related oscillations and the transmission of accelerations in all 

directions [62,63], regardless of gait speed. However, because of the lack of speed-

independent correlation with the history of falls, our results confirm that RMS and RMSR are 

speed-dependent parameters [61] and cannot be considered indexes of fall risk, regardless of 

gait speed. 

 

• Furthermore, we identified RMS and RMSR as good indices to discriminate HP from HS [49]. 

These results show that HP are characterized by altered movement patterns of the trunk. This 

is most likely due to compensatory strategies that, on the one hand, allow for an increase in 

gait ability but, on the other hand, reduce gait stability [47]. 

 

Recurrence Quantification Analysis 

RQA is a nonlinear technique that can provide useful information about system dynamics patterns 

and structures. It characterizes a variety of features of a given time series, including the quantification 

of deterministic structures and non-stationarity, using recurrence plots. 

 

• It represents how often a subject’s trunk accelerations revisit similar locations in the three 

spatial planes during their gait. Previous studies [64-66] have shown that RQAdet is the most 

convenient RQA index for objectively separating PwPD from HS. Accordingly, we identified 

lower RQAdet values in the AP direction in PwPD compared to HSmatched, regardless of the 

disability stage [45]. Therefore, we can argue that PwPD exhibit disruptions in the quasi-

periodic recurrence of their gaits in the early stages of PD, which reflects the early temporal 

gait alterations experienced by PwPD [67]. This consideration is further reinforced by the 

correlation we identified between RQAdetAP and temporal gait parameters, such as cadence 

and stride duration. Since the earliest stages of PD, PwPD exhibit shorter step lengths and 

stride times with an increased cadence [28, 68] as a part of the abnormal gait pattern that 

progressively deteriorates into festination [69]. The reduced predictability of AP trunk 

accelerations may reflect systemic instability caused by altered temporal gait patterns. 

Therefore, RQAdetAP can be considered as a temporal marker of gait stability that can identify 

PwPD independently of gait speed. Therefore, the positive correlation between RQAdetAP and 

UPDRS-III may reflect its ability to capture gait impairment besides other symptoms such as 

reduced hand dexterity, facial mimicry, or altered posture. 
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However, in a subsequent study [10] we obtained that RQAdetAP did not show significant 

modifications after the rehabilitation period, so our results do not allow it to be considered as 

an outcome measure in rehabilitation trials and clinical contexts. 

 

Normalized Jerk Score and Log Dimensionless Jerk 

The NJS is an index that provides information on the smoothness of trunk accelerations. 

 

• In PwCA we found that NJS and LDJ-A failed to accurately describe the loss of smoothness 

of the trunk acceleration patterns during walking [43]. One possible explanation is that they 

better reflect upper limb motor impairment with fast changes in directions and jerks during 

rhythmic task-oriented movements [70]. 

 

• Previous studies have reported [71,72] significantly lower NJS values in the ML and V 

directions in PwPD compared to age-matched HS. These differences have been interpreted as 

a reflection of PD-related bradykinesia, which parallels lower gait speed and reduced arm 

swing movements. Furthermore, the NJS in the ML and V directions has been reported to be 

responsive to dopaminergic medication in subjects with improved gait speed. In our study 

[45], we identified no differences in NJS between PwPD and age-and speed-matched HS, 

indicating that NJS is a marker of a general loss in complexity of the motor control system 

that depends on gait speed. 

 

Kinematic parameters appear to be the most commonly used for biomechanical characterization, and 

many of these are chosen for motor performance assessment, as demonstrated by our systematic 

review. The wide use of kinematics is likely to be associated with easier use even directly in the work 

environment, thanks to wearable technologies that are becoming increasingly popular in recent years 

and that are also easy to use even with user-friendly interfaces. 

 

7.2 Kinetic indices 

 

The ground reaction force data in vector form is surely the most important signal studied in the kinetic 

analysis of movement. This force represents a global information because it represents the 

environment's reaction to the actions of the entire human system. The components of this force 
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provide important information to clinicians about load acceptance and forward propulsion generation 

capabilities [1]. 

 

• In PwCA, when compared with HS, we found a significant decrease in the center of activity 

of the ground reaction force, but no correlation with muscle activity [2]. This may imply that 

PwCA have the same spatiotemporal relationship between muscle activation and foot-ground 

interaction torque as HS, suggesting that the cerebellum is not involved in such motor control 

mechanism. 

In the second study [8], we obtained for PwCA a ground reaction force profile while walking 

without the exoskeleton with a peak even at 10% of the stance phase, as Martino et colleagues 

demonstrated [3]. This indicates an imbalance in control and foot touch preparation. This 

peak, as well as the FWHM of the reaction force, disappears in  presence of the device. This 

is most likely due to the device's characteristics, which allow the subject to have more control 

of limb loading. 

 

• People with TFA showed a significant increase in the first peak of the ground reaction force 

in the affected limb, which seems to indicate their inability to control the prosthesis during 

the heel strike, likely caused by a reduced deceleration of the prosthetic limb from the late 

swing to initial contact [13]. In contrast, the FWHM of the reaction force decreases, showing 

that the amputated limb is unable to produce and maintain an appropriate force during the 

stance phase. As a compensation, the FWHM of the reaction force of the healthy limb 

increases, as it produces a more intense and longer-lasting force. Overall, these findings reflect 

the greater effort made by people with TFA to compensate for reduced motor performance by 

increasing movement and force production in the unaffected limb. 

 

Kinetic parameters, which are mainly limited to the laboratory environment, are still used very little 

in the evaluation of workers' motor performance in job integration/reintegration programs. Sensorized 

shoes that can replace force platforms have become increasingly popular in recent years [ 74], and it 

is therefore essential to include this type of evaluation in order to develop an ergonomic rehabilitation 

pathway. 
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7.3 Surface electromyography indices 

 

Surface electromyography [sEMG] is a tool that can detect muscle contractions in agonist and 

antagonist muscles and monitor their evolution over time [75,76]. As a result, we decided to 

investigate muscle coactivation, the mechanism that controls the simultaneous activity of agonist and 

antagonist muscles crossing the same joint [77].  

To quantify muscle co-activation, several computational approaches have been used: ratio, 

overlapping, or cross-sectional areas of simultaneous activation of opposite muscles [75]. These 

mathematical tools are based on an agonist-antagonist approach to EMG signals recorded from two 

antagonist muscles or from two antagonist muscles in the same joint. In our study we used the method 

proposed by Ranavolo et al. [78] based on the time-varying multi-muscle co- activation function 

(TMCf). In some ways, this approach could be studied together with muscle synergies, a mechanism 

that demonstrates how the central nervous system manages the complex musculoskeletal system’s 

high number of degrees of freedom to best organize movement [79].  

Many studies in the literature have demonstrated that the spinal motor system is actively involved in 

the production of movements ranging from simple to complex. These findings have confirmed the 

existence of modules whose combination results in movement. This modular structure of spinal cord 

circuits is based on functional units known as muscle synergies, which generate motor output by 

imposing together a specific pattern of muscle activations. This is an interesting method, but in our 

studies, we chose to use the synthetic approach provided by the TMCf, which is a time-varying 

function capable of expressing global stiffness and does not need to distinguish between agonist and 

antagonist muscle, allowing us to study the coactivation of more than two muscles at the same time. 

The decision to investigate this parameter in our studies stems from the fact that other studies in 

literature have shown that patients with various central nervous system lesions, such as Parkinson's 

disease [80] and hereditary spastic paraparesis, have high levels of muscular coactivation and how 

this is related to the primary deficits of the disease. In particular, we investigated muscle coactivation 

using TMCf in patients with cerebellar ataxia and lower limb amputation. 

 

• In the case of PwCA, we obtained high values of muscle coactivation in terms of both the 

synthetic indexes of TMCf, such as the coactivation index and the FWHM [2]. Another 

significant finding is that the TMCf center of activity shifts toward the earlier subphase of the 

gait cycle in comparison to HS. These findings appear to imply that PwCA increase 

coactivation as a compensatory mechanism primarily during the loading response subphase, 
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which represents the most difficult biomechanical condition, when body weight is shifted 

from one limb to another. Furthermore, the increase in muscle coactivation could be a global 

compensatory mechanism to cope with the enlarged lateral body sway resulting from the lack 

of interjoint coordination and hypotonia, which are caused by cerebellar degeneration.  

 

• The same synthetic indices of coactivation and FWHM appear to have high values even in 

subjects with lower limb amputation [81], indicating their need to increase the level of the 

simultaneous activation of many muscles and for a longer time when compared with HS. This 

is an expected result and well reflects the compensatory increase in stiffness demonstrated in 

previous studies [82]. The coactivation function's characteristic shape curve, combined with 

the lack of significant differences in CoA values when compared to the control, suggests that 

the global coactivation temporal profile in people with amputation is similar to that of healthy 

subjects. The observation that the spatiotemporal modular architecture of muscle synergies in 

the sound limb is preserved in people with TFA reinforces this notion [83]. In addition, we 

found elevated DP values, which express the variance of the global coactivation curves and 

thus indicate an increased inter-subject variation in the global coactivation function. Together 

with the lack of a significant difference in intrasubject variability, it suggests that people with 

amputation exert a variable compensatory increase in global coactivation of the sound limb 

muscles from subject to subject, but remains stable within each subject. 

Furthermore, we found that people with TFA wearing C-Leg prosthesis (TFAC) performed 

better than people with TFA wearing Genium prosthesis (TFAG). This finding may come as a 

surprise given that previous research [84] found that TFAG demonstrated greater flexibility, 

balance, and upper body strength than TFAC during both walking and stair climbing. Previous 

findings suggest that coactivation of the sound limb muscles is less necessary in TFAG than 

in TFAC. In our case, the increased muscle activation found in the TFAG could have a 

multifactorial interpretation: the Genium device, by allowing for the programming of multiple 

activities, could cause performance losses on specific tasks. Two other factors stem from the 

device's technical features: the increased weight of the prosthesis and the introduction of a 

pre-bending of the knee in the double stance phase, which is frequently not well managed by 

the patient 
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Based on these findings, it is possible to conclude that the global coactivation measure may 

be a useful tool for characterizing motor control and improving physicians' ability to optimize 

rehabilitation treatment and design new types of orthoses and prostheses. 

 

The results of our systematic review of motor performance indices used in return to work programs 

revealed that those derived from surface electromyography are still underutilized. This is most likely 

due to technical, methodological, and cultural limitations. Fortunately, there are tutorials and other 

materials available to  overcome these challenges, so the sEMG approach should be included in return 

to work rehabilitation plans. 
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In conclusion, I believe that the indices identified in this thesis work can be an effective tool for 

proposing appropriate clinical and ergonomic rehabilitation interventions. They are also a reliable 

tool to: (i) assess the rehabilitation efficacy by comparing their values before and after treatment; (ii)  

provide useful clinical information regarding gait instability or alterations in  subjects with motor 

disorders, which are not directly observable through routine clinical assessments; (iii) design of new 

and ergonomic prostheses and orthoses; (iv) control collaborative robots that can support people to 

carry out their activities. 

Finally, because new technologies are becoming more transparent and accepted by individuals, we 

now have the opportunity of evaluating motor patterns not only in the laboratory but directly in the 

patient's/worker's daily life environment. 
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