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Abstract

High-resolution, quantitative data obtained by a human motion capture system can

be used to better understand the cause of many diseases for effective treatments.

Talking about the daily care of the aging population, two issues are critical. One is to

continuously track motions and position of aging people when they are at home, inside

a building or in the unknown environment; the other is to monitor their health status

in real time when they are in the free-living environment. Continuous monitoring

of human movement in their natural living environment potentially provide more

valuable feedback than these in laboratory settings. However, it has been extremely

challenging to go beyond laboratory and obtain accurate measurements of human

physical activity in free-living environments. Commercial motion capture systems

produce excellent in-studio capture and reconstructions, but offer no comparable

solution for acquisition in everyday environments. Therefore in this dissertation,

a wearable human motion analysis system is developed for continuously tracking

human motions, monitoring health status, positioning human location and recording

the itinerary.

In this dissertation, two systems are developed for seeking aforementioned two

goals: tracking human body motions and positioning a human. Firstly, an inertial-

based human body motion tracking system with our developed inertial measurement

unit (IMU) is introduced. By arbitrarily attaching a wearable IMU to each segment,

segment motions can be measured and translated into inertial data by IMUs. A

human model can be reconstructed in real time based on the inertial data by applying
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high efficient twists and exponential maps techniques. Secondly, for validating

the feasibility of developed tracking system in the practical application, model-

based quantification approaches for resting tremor and lower extremity bradykinesia

in Parkinsons disease are proposed. By estimating all involved joint angles in

PD symptoms based on reconstructed human model, angle characteristics with

corresponding medical ratings are employed for training a HMM classifier for

quantification. Besides, a pedestrian positioning system is developed for tracking

users itinerary and positioning in the global frame. Corresponding tests have been

carried out to assess the performance of each system.
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Chapter 1

Introduction

1.1 Human Motion Analysis

Human motion analysis has a wide range of applications, including telemanipulator

control, athlete training, movie making, health status diagnosis and etc. Among

these applications, biomedical related area is the most prospective and promising

application for the coming aging era. The United States experienced the Baby Boom

years during 40s to 60s in the last century (Jones (2009)). Till today, these “baby

boomers” are gradually entering their retirement age and becoming ones of the aging

population. As the age grows, especially after the age of 50, people are facing various

issues and challenges physically and mentally. Among those issues, health problem

affects the quality of daily living most and attracts significant attentions by society

in the past decades. Familiar health problems that aging people are suffering are

arthritis, stroke, Parkinson’ disease (PD) and etc. These illnesses have a common

point, which is the impact on motor functions of aging people. As the development

and deterioration of these illnesses, they are prone to be highly risky for the elderly.

It would be necessary to monitor, track and analyze body motions of these patients

by applying wearable sensors, without interrupting their free-living activities and

meanwhile keeping watching their health status continuously.
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Continuous tracking of human motions in natural environments potentially

provides more accurate and intuitive feedback than in-lab settings. At present,

however, it is difficult to achieve the goal of tracking and monitoring a patient’s motion

at anytime and anywhere. The restriction is from the tracking facilities, such as visual

motion capturing systems, are too pricy and complicated to be practically applied for

home use. Besides, a feasible motion tracking in the free-living environment is also

not achievable.

Currently, patients are required to go to a lab or a clinic to have their

treatment. An experienced clinician provides appropriate therapy based on their

in-lab observations or subjective off-lab recall from patients themselves. As a matter

of fact, aging people spend a large amount of time at home or walking outside. The

disease, such as PD, varies in severity during a day according to patient’s physical

and mental status. The insufficient assessment during a day compared with in-

lab observations is prone to induce inaccurate diagnosis, and then influence timely

treatment.

After-treatment rehabilitation is essential for patients to recover their motor

functions. It is a dynamic process to correct undesired motions by facilities and

experienced clinicians. A better way to evaluate the rehabilitation is to continuously

monitor patients’ motions so that to identify and rectify problematic motion patterns

at an early time. However, above restriction makes it unrealistic to continuously

monitor motions in a free-living environment throughout the day.

Wireless body sensor network (BSN) has attracted increasing attentions due to

its appealing applications, such as Figure 1.1 shows. Continuous monitoring by BSN

provides information of patients, which is critical to discover their health problem

in time. Besides, it is able to track motions and position of elders and quickly

respond to potential emergencies they are having. A BSN consists of wearable sensor

platforms, such as physiological sensors (electromyograph (EMG)) and bio-kinetic

sensors (accelerometer, gyroscope). They can be used to monitor the health status

and recognize the actions of body segments. Among these platforms, wireless inertial

2



Figure 1.1: Wide applications of BSN

sensors, such as accelerometers, gyroscopes and magnetometers, are small, easy to be

set up and less cumbersome to the subject. They release the limitation of wired body

sensors in capturing motions. Their advantage of wireless communication provides

favorable opportunities for applying remote health care.

As a critical component of human motion analysis, a human motion tracking

system with wearable inertial sensors can be developed for providing unlimited moni-

toring of uses’ status and motions. Compared with visual motion tracking technique,

wearable inertial-based tracking fully satisfies the medical need of conveniently and

continuously monitoring a patient’s motions in free-living environment: Non-intrusive

inertial sensors tracks human motions naturally and they are capable of providing

long-term monitoring of daily activities accurately.

3



Besides, human motion analysis can be applied for other purposes, such as the

quantification of PD, human positioning and etc. It effectively enables continuous

monitoring, illness quantification and evaluation in one system and sends patient’s

information to the server. Care-givers can either locally or remotely diagnose and

follow-up the progression of patient’s illness conditions. Human motion analysis

overcomes the restriction from current medical facilities. By innovating means of

timely monitoring and diagnosis, the accurate treatment will be of great help in

ameliorating the quality of elder people’s life.

1.2 Research Challenges

Real-time human motion tracking can be applied to numbers of biomedical appli-

cations, such as clinical gait analysis, rehabilitation, joint motion analysis and etc.

Several tracking technologies, such as mechanical tracking (Gypsy 7TM ∗), magnetic

tracking (LibertyTM †) and visual tracking (V icon‡, Qualisys§, OptiTrack¶) has been

in used for many years. However, the complex infrastructure of these tracking

technologies limits their usage in the controlled volume and is not practical in the

free-living environment. Inertial tracking (Xsens‖) performs in a more natural way

to track human motions in daily life. Especially as the development of sensor

technology, wireless inertial tracking system is well accepted because of its small

size, convenient installation, wireless communication, low power consumption and

accurate monitoring of daily activities.

One challenge in current research of inertial motion tracking is low computational

efficiency in motion tracking and model reconstruction. High-order calculations

require a large amount of computational time for building a complicated human

∗http://www.metamotion.com/gypsy/gypsy-motion-capture-system.htm
†http://www.polhemus.com
‡http://www.vicon.com
§http://www.qualisys.com
¶http://www.naturalpoint.com/optitrack
‖http://www.xsens.com
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model, which affects the efficiency of real-time tracking. Joint rotations are described

by using product of rotation matrixes with one matrix for each rotation axis. When

connecting multiple human segments in the system, the number of matrix increases

as more number of degree of freedom (DoF) is added for tracking. This results in the

increase of computational time during the motion reconstruction.

Similar to the function of rotation matrix, the twist representation and exponential

maps techniques are capable of describing joint rotations and connecting rigid bodies.

They have been employed in robotic manipulation and markerless visual tracking for

years. These two techniques reduce the calculation complexity in traditional method,

when reconstructing a human model by applying one matrix for each rotation joint.

However, such techniques have not been researched for inertial human motion tracking

so far and their advantages are necessary to be fully utilized.

Inertial sensors are attached to human segments for motion tracking, however,

accurately estimate the sensor placement is challenging. At present, it always takes

long to accurately estimate a placement where would be affected less by human soft

tissue artifact and the anatomical structure of joints and body segments. Besides,

arbitrary sensor placement by uses brings additional difficulty in placement estimation

and it is easy to impact on tracking accuracy. Both issues bring challenges to

researchers for discussing a way to rapidly and accurately estimate a sensor placement

where could maximally reduce the errors and robust to users’ arbitrary attachment

(Lin and Kulic (2012)).

Inertial human body motion tracking system can be optimized for many medical

applications. One of the potentially important applications is the quantification of PD

through its specific symptoms. PD is a degenerative disorder of the central nervous

system and it mostly occurs to the elderly over the age of 50. As PD progresses

gradually, it impacts on motor and non-motor functions to variable degrees. As the

two most apparent symptoms of PD, bradykinesia and resting tremor are usually

analyzed for the quantification of PD severity. Although the medical rating scale

for assessing symptoms of PD, such as Unified PD Rating Scale (UPDRS), has been

5



commonly used as a standard, it relies on a clinician’s subjective observations and

patients’ subjective recall.

In recent years, some research has been developed for objectively quantifying

PD symptoms with wearable inertial sensors. These inertial based works rely on

individual sensors on analyzing tremor movements and always achieve low accuracy

in quantification. Accelerometers are regularly applied since they can reflect moving

trend of body segments. As a matter of fact, the acceleration of body segments is

prone to be contaminated by subject’s intentional movements and accumulated errors.

Although based on the characteristic of tremor, gyroscopes performs much better in

measuring recurrent movement, few research considers its superiority in quantifying

resting tremor. Besides, resting tremor does not occur in only one joint, neighbor

joints are also affected. Thus, a model based approach which analyzes the rotational

movements of all involved joints simultaneously will greatly improve the accuracy

of inertial based quantification approach. However, such model based approach is

lacking in present research.

For the quantification of bradykinesia, similar to resting tremor, inertial sensors

such as accelerometers and gyroscope sensors are commonly used to measure upper

limb (wrist and finger) rotations, trunk stability and impaired gait for quantifying

bradykinesia. One challenge of this research is still the lack of model based approach

in quantification: measured inertial data is from single joint or segment for analysis.

Since PD typically impact on patients’ multiple body segments and their functions, it

is necessary to develop a model based quantification to comprehensively analyze the

motions. Moreover, a major impact of bradykinesia is on patients’ motor functions

of lower extremity (thigh and shank), but nevertheless very few research focuses on

the quantification from lower extremity movements. This brings another challenge

of current quantification of bradykinesia. Impaired lower extremity directly induces

abnormal gaits. Therefore, it is preferable to assess the motor functions in entirety

rather than from separate joints.
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A human motion analysis system can position a human and record travelled

itinerary. The wearable motion tracking only tracks human body motions locally but

lack of tracking human position globally. Although for outdoor positioning, Global

Positioning System (GPS) provides accurate and absolute position information, it

is unreliable or even not available inside a building. For indoor positioning, local

beacon positioning technique provides absolute position. However, the pre-installed

infrastructure is not available in the unknown environment and it is not economical

and practical to equip every point of such environment with beacons. Consequently,

an inertial-based human positioning technique provides the solution, so that not only

human motions can be tracked and monitored, human position also can be tracked

and recorded.

In human positioning, many techniques of reducing the sensor drift, estimating

step length and heading azimuth have made great advances, such as Zero Velocity

Update (ZUPT) technique and Pedestrian Dead Reckoning (PDR) technique. As

a newly developed technique in recent years, conventional PDR system encounters

a challenging problem. It uses gyroscopes and compasses to estimate the heading

orientation, however, the accuracy of orientation estimation by gyroscopes and

magnetic compasses is easily to be affected by sensor drift and ambient perturbance

of magnetic field. Thus, a method which can compensate the drift and magnetic

field perturbance should be developed to increase the overall positioning accuracy

and robustness.

1.3 Research Goals

This research aims to develop a human motion analysis system with wearable

inertial sensors to address the challenges. It is capable of tracking human motions,

reconstructing the human model, monitoring human health status, positioning and

recording human itinerary in free-living environment. There are four major goals

are discussed in this dissertation. The first goal is developing a wearable human
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body motion tracking; the second and the third goal are two medical applications

of body motion tracking in PD, which are the quantification of resting tremor and

lower extremity bradykinesia; the fourth goal is developing a inertial-based human

positioning.

Figure 1.2: The goal and structure of this dissertation

Figure 1.2 illustrated 4 detailed goals of this dissertation. Our developed

Inertial Measurement Unit (IMU) measures human body motions when attached to

body. Captured inertial data and estimated quaternion by an embedded orientation

estimation algorithm are employed for the first work and the fourth work in this

research. A quaternion representation is introduced in the book by Kuipers (2002).

The first goal is to develop a wearable human body motion tracking system.

Human body motions are captured and measured inertial data from IMUs are

transmitted to computer via Bluetooth for processing by proposed motion tracking

techniques. Joints’ quaternions are translated into rotations and translations relative

to neighbor joints. Limb kinematic chains are formed by connecting body segments
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by joints. Finally, a human model is built by connecting chains to body trunk. By

applying reconstructed human model, human joints are able to be located in a local

tracking frame and absolute joint angles are easily estimated. Reconstructed model

can simultaneously represent human motions and concrete rotational information

around any joint axis is easily achieved from the joint quaternion representation for

valuable joint analysis.

The second goal is a practical application of motion tracking system, which is

developing a model-based approach for quantifying resting tremor of PD patient.

Both wrist and elbow joint angles during some designed postures are measured from

the reconstructed human body model. Selected features extracted from these angles

are correlated with the severity of resting tremor. A trained classifier is capable of

distinguishing the correlation from continuous features. Finally, by only analyzing

upper extremity motions, resting tremor is going to be quantified.

The third goal is to apply the model-based approach for the quantification of

lower extremity bradykinesia of PD. Both hip and knee joint angels during walking are

measured. According to the difference of extracted features from healthy subjects and

patients in various severities, proposed approach is going to quantify lower extremity

bradykinesia based on pre-trained classifier.

The fourth goal is to develop a inertial-based human positioning system with

our developed IMU. This work is mainly focusing on developing an orientation

optimization method, in order to improve the accuracy of heading estimation and the

robustness against both the accumulated gyroscope error and traditional fluctuation

of magnetic field. Meanwhile, developed human positioning system records human

travelled itinerary and positions human location for indoor or unknown environment.

1.4 Contributions

The major contributions of this dissertation are focusing on addressing the research

challenges we mentioned. The details are specified as follows.
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1. A wearable human body motion tracking system is developed based on a BSN

consists of previously developed IMUs. IMUs are attached to body segments

and measure the joint motions after a well-designed IMU calibration procedure.

By applying twist and exponential maps techniques for representing segment

motions and articulating segment chains, a human model is reconstructed by

articulated segments and its motions are demonstrated by rotating joints within

the global frame. Detailed contributions are summarized as follows

(a) The twist representation and exponential maps techniques are applied for

estimating joint rotations and articulating neighbor segments by joints.

Compared with traditional method that uses rotation matrix, proposed

techniques are advanced by low-order calculations in building a human

model. The highly efficient estimation guarantees the motion tracking in

real time.

(b) A calibration procedure is designed for optimally estimating the position

and orientation of attached IMUs. With the execution of this procedure,

the spatial position of IMUs correlated to corresponding body segments

can be estimated, regardless knowing the exact IMU placement by the

subject. It significantly reduces the complexity in configuring the system

and makes it simple to use for anyone.

2. Based on developed human body motion tracking technique, reconstructed

human model is employed in developing a quantification method for resting

tremor of PD. The model-based approach assesses a patient’s resting tremor

more complete from joint rotation of all involved joints, rather than from

only one joint rotations. Moreover, specially selected features for analyzing

joint rotations and trained Hidden Markov Model (HMM) for classifying those

features from different severities obtain a high accuracy in discriminating

severities of resting tremor that rated by the medical standard. Detailed

contributions are summarized as follows
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(a) According to the character of resting tremor, absolute joint rotation angles

are estimated by body motion tracking system. Compared with relative

angular velocity or acceleration of single joint, absolute angle data is more

promising for quantification and robust to human intentional movements.

(b) Angle related features are specially selected and extracted from absolute

angle data. Those features can best describe the character of tremor

movements.

(c) A discrete HMM classifier is chosen and trained with previously extracted

features and their corresponding medical ratings. The training with

multiple features greatly increases the classification accuracy of single

feature training. Consequently, high accuracy of preliminary tests validates

proposed quantification approach.

3. Based on developed human body motion tracking system, reconstructed

human model is also employed in developing a quantification method for

lower extremity bradykinesia of PD. The model-based approach assesses

patient’s motor functions of lower extremity by analyzing hip and knee joints

motions. Specially selected features and HMM classifier are used to fulfill

the quantification. The performance of proposed approach is validated with

simulated data by leave-one-out mechanism.

4. A wearable inertial-based indoor positioning system is developed. By detecting

step occurrence, estimating step length and heading azimuth, a subject’s

position and travelled itinerary can be tracked and monitored within the

global frame, which is of great use for positioning a subject in the unknown

environment where local positioning infrastructure is unavailable. Detailed

contributions are summarized as follows

(a) Zero Velocity Update (ZUPT) technique is implemented to correct the

walking velocity. By resetting the walking velocity to zero at each step
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stance phase, this technique lowers the accumulated drift in step length

estimation and limits the error rate within a certain level.

(b) A discrete HMM is introduced to detect step occurrence and classify the

walking states by standing, walking, going upstairs and going downstairs.

(c) In order to improve the accuracy of estimating heading azimuth in conven-

tional Pedestrian Dead Reckoning (PDR) system, a novel combination of

lateral acceleration and angular velocity are used for the estimation, which

avoids the perturbance to magnetometer from local disordered magnetic

field.

1.5 Inertial Measurement Unit

Inertial sensors can measure rigid kinematic motions, such as acceleration by

accelerometers, angular velocity by gyroscopes and magnetic field intensity by

magnetometers. A IMU is developed in our lab and introduced in the work of Hu et al.

(2010), as is shown in Figure 1.3. It contains an integrated 6-axis motion tracking chip

(InvenSense MPU-6000) which combines a 3-axis gyroscope, 3-axis accelerometer

and a Digital Motion Processor. It also contains a 3-axis magnetometer (Honeywell

HMC5843) and an embedded ARM-based processor (STM32F103) for computations.

The sample rate for all the inertial sensors are 60 Hz and the interface between

sensors and a computer is via Bluetooth. A micro-SD slot is optional to install on

the board, so that if necessary the inertial data can be stored in the micro-SD when

the communication is unavailable.

An embedded orientation estimation algorithm was proposed by our lab mate

and the detail is introduced by Tian et al. (2012); Tian and Tan (2012). In this

algorithm, an adaptive-gain complementary filter is combined with Gauss-Newton

optimization algorithm to determine the gyroscope error and magnetic distortion and
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Figure 1.3: The top view of IMU and its coordinate

compensate gyroscope measurements. The quaternion representation is outputted

from the algorithm to describe the 3-dimension rotations of a joint.

1.6 Dissertation Outline

This dissertation consists of four correlated papers which are arranged in the order

as research goals summarized in Section 1.3. It is organized as follows:

Chapter 2 introduces the development of a human body motion tracking system

with wearable inertial sensors. A well designed calibration procedure is effective

to estimate the IMU position and orientation, regardless of arbitrary placement

on the body segment. The twist and exponential maps techniques describe body

movements and articulate segment chains to reconstruct a human model. Compared

with traditional high-order product of rotational matrixes, low-order calculations

from proposed techniques guarantee the real-time motion tracking. A series of

upper extremity and full body motion tracking experiments are conducted, and the
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comparisons with commercial systems validate the accuracy of developed wearable

human body motion tracking.

Chapter 3 and Chapter 4 introduce two potential medical applications of developed

motion tracking respectively, which are the quantification of two most apparent PD

symptoms: resting tremor and bradykinesia. The upper extremity movements for

resting tremor and lower extremity movements for bradykinesia are analyzed. With

the help of reconstructed human model from the motion tracking system, absolute

angles of all involved joints are simultaneously estimated. Three angle related features

which can appropriately describe pathologic characters of these two symptoms are

extracted. Features of different severities and correlated clinical ratings are used to

train a discrete HMM classifier. Cross-validation of test data validates the accuracy

in quantifying symptoms with various severities.

Chapter 5 introduces the development of a inertial-based human positioning

system can be applied to locate and track human position for indoor environment

and as a complementarity of human body motion tracking to provide global

positioning. Developed human positioning system obtains the function by detecting

step occurrence, estimating step length and heading azimuth. Currently available

ZUPT algorithm is implemented and combines with a HMM to estimate step length,

step occurrence and meanwhile classifies the walking patterns of the subject. An

optimized PDR technique is developed to complement gyro rate with acceleration to

improve the heading azimuth estimation, and to avoid electromagnetic perturbance

that magnetometer suffers in conventional PDR system. A series of short term walking

and long term walking tests are conducted. The performance of developed human

positioning is validated by calculating position errors in both 2D and 3D itinerary

reconstruction.

Finally, Chapter 6 concludes the dissertation and gives description of future works.
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Chapter 2

Inertial-Based Human Body

Motion Tracking System
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Abstract

Wearable inertial tracking is well accepted due to its convenience for free-style motion

tracking with high accuracy. Traditional tracking methods rely on complicated

high-order calculations for human kinematic modeling. Besides, sensor placement

issue is addressed by integrating multiple sensor measurements to estimate, in which

researchers always ignore the importance of estimating a more accurate placement.

In order to tackle the challenges of complexity in modeling and IMU placement

estimation, a wearable human motion tracking system is developed by applying twist

representation and exponential maps techniques. Joint positions are continuously

updated based on these techniques and the rotational angles of each joint can

be represented individually within the global frame, when the body segments are

articulated by product of exponential maps. It is unnecessary to build a human

kinematic model with high-order calculations, which brings more convenience and

rapidness for real-time motion tracking. An IMU’s position and orientation are

optimally estimated in a well-designed calibration procedure regardless of knowing

its placement. This chapter presents our approach and exemplifies the assessment

of proposed motion tracking system. The comparisons with V icon and OptiTrack

motion capture systems verify the accuracy of several tests of limb motion tracking

and full body motion tracking, which achieve satisfactorily high accuracy.
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2.1 Introduction

Real-time human motion tracking has been applied to many applications in biomed-

ical areas: clinical gait analysis, exercise rehabilitation, fall detection, biomechanical

analysis of joints and etc. Several tracking technologies, such as mechanical tracking,

magnetic tracking and visual tracking have been available for years. However, these

tracking technologies lack the capability of tracking in free-living environments.

Inertial tracking can track human motions in daily life with less intrusion.

Inertial tracking crosses over various areas that need tracking solutions and it

provides more concrete information of subject’s living status. As the progress of

Micro-electromechanical Systems (MEMS) technology nowadays, inertial sensors are

becoming smaller and can obtain accurate inertial measurements. The wireless sensor

is less cumbersome to the subject, which makes human motion tracking available at

anytime and anywhere. With its character of low power consumption, wearable sensor

consequently provides long-term and accurate monitoring of daily activities in free

living environment.

Wearable inertial tracking allows for unlimited estimation of limb orientations

under fast motions, which could improve the performance of motion capture evidently.

Its convenience for free-style movement tracking in daily life is well accepted. This

research aims to develop a human body motion tracking system, which is capable of

tracking arbitrary 3D motions, measuring joint angles and reconstructing a human

model, by taking advantages of wireless sensors.

Current research has been focusing on achieving rapid and accurate tracking

results. No matter how accurate and flexible the inertial tracking can achieve, a

common procedure is building a human kinematic model to simulate the functionality

of human links and coupling measured inertial data with the model to reconstruct

a human model with 3D motions. Traditional inertial tracking algorithm mostly

applies rotation matrix for representing rotations along each axis of joints. The

inverse kinematics technique is a major way to address body link connections, which
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uses product of rotation matrix to demonstrate the rotations of a joint with multiple

DoFs or link connections with several joints. As an obvious drawback, the number

of parameters needed in rotation matrixes will be raised linearly when connecting

more links. The high-order calculations apparently increase the computational time

for kinematic modeling and impact the feasibility of tracking in real time.

An approach to solving the challenge by adopting twist representation and

exponential maps techniques is introduced in this chapter. A small amount of

parameters (low-order) enables rapid calculations of joint angles, so that kinematic

modeling can satisfy the needs for real-time model reconstruction. Besides, using

forward kinematics to connect more human links together with mentioned techniques,

much less parameters than rotation matrix would be added to the system, which

almost does not affect real-time motion tracking. Without large amount of

calculations, wearable body motion tracking system can estimate joint position

rapidly and suffice real-time tracking.

Human soft tissue artifact is a main source of errors, no matter the wearable

sensors are mounted on a garment or directly attached to skin. Besides, the spatial

relationship of segment axes in a joint is actually much more complicated than it

appears according to human anatomical structure. Both issues bring challenges to

choose IMU placement on human body in typical tracking methods. Kalman filter and

some extended methods discussed in the work of Lin and Kulic (2012) are generally

utilized to integrate multiple sensor measurements to increase the reliability of sensor

placement. The challenging task would still be, basically, to accurately estimate the

sensor placement. In our developed system, a well-designed calibration procedure

is developed to minimize the interference from IMU placement. Regardless of an

arbitrary IMU placement, the procedure can estimate its position and orientation and

couple its placement with corresponding joint, so that following tracking can base on

the inertial data of corresponding joint but with less concern to the placement issue.

It will be practical to develop a wearable human body motion tracking system,

which is convenient to be applied to free-style activities as well. The challenges of
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sensor placement and modeling rapidness, as a matter of fact, conceal the advantages

of wearable tracking for use throughout our life. Even though traditional tracking

technique achieves fairly high accuracy, the relatively complex initial configuration

would confuse subjects and sway them to attempt a long term testing. Developing a

“mount-n-use” system, which is non-intrusive to our daily life, becomes the purpose

of this research.

Thus, a wearable body motion tracking system is introduced, which can estimate

joint angles and demonstrate arbitrary 3D motions in real time simply from the

inertial output of IMUs. A quaternion-based orientation filter is employed to pre-

process inertial measurements and eliminate noises. A well designed calibration

procedure optimally estimates the position and orientation of IMUs, regardless of

arbitrary placement. Compared with traditional approach that constructs a human

kinematic model with high-order calculations based on rotation matrix, proposed

low-order calculations technique reflects more convenience to reconstruct 3D motions

in real time. The twist representation and exponential maps techniques explicitly

describe rigid body motions and articulate kinematic chains to achieve human

modeling, which demonstrate aforementioned advantages. A series of movements

of upper limb and full body are measured. The assessment of developed system

is exemplified by the comparisons with commercialized motion capture systems on

estimated joint angles between adjacent human links.

2.2 Problem Formulation

2.2.1 Kinematics of Human Body

A human body is modeled as an articulated model, which consists of 15 rigid body

segments, 14 joints and 38 DoFs. It includes torso (waist-neck part and waist-hip

part), head, upper limbs and lower limbs, as are shown in Figure 2.1a.
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(a) Human full body model with joint
coordinates

(b) Kinematic modeling of right arm with
IMUs

Figure 2.1: Human body modeling

Human upper limb includes upper arm, forearm and hand, which has 10 DoFs in

total. Taking the right arm as an example (Figure 2.1b). Shoulder is described as a

ball and socket joint with 6 DoFs: 3-DoF rotations and 3-DoF translations. Rotation

angles are assigned to flexion-extension α1, internal-external α2 and abduction-

adduction α3 rotations. Elbow is modeled as 2 hinge joints with non-intersecting

axes (Cutti et al. (2008)). Therefore, it is described by 2 DoFs: flexion-extension α4

and pronation-supination α5 rotations. Wrist is modeled as an ellipsoid joint with 2

DoFs: flexion-extension α6 and radial/ulnar deviation α7 rotations. For the left arm,

similarly, rotation angles α8 ∼ α14 are assigned to axes of shoulder, elbow and wrist

joints.

Torso provides the orientation of body and it includes 2 joints: neck has 3 DoFs

and waist is also considered to have 3 DoFs, so that the spinal movements can be

simplified as the rotations around waist joint. Because developed system does not
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consider the movements of head, there is no IMU corresponding to the neck. Rotation

angles α15 ∼ α17 are assigned to waist joint.

Lower limbs have similar structure as upper limbs but relatively distinct function-

alities; in fact, lower limbs perform less complicated motions than upper limbs. Here

takes the right leg as an example, hip joint has similar structure as shoulder with 3-

DoF rotations: flexion-extension α18, internal-external α19 and abduction-adduction

α20. Knee joint has only 1 DoF, flexion-extension α21. Ankle joint has a complicated

anatomy as introduced in the work of Lundberg et al. (1989), thus without impact

tracking accuracy, it is simplified as 1 DoF flexion-extension α22 rotation. For the

left leg, the assignment of rotation angles are from α23 to α27.

In order to reduce the complexity when modeling, the body parts are simplified

as rigid bodies. When analyzing each joint, different axes along adjacent segments

are regarded as intersect at the joint center. To be more specific, for example,

the forearm pronation-supination movements are considered around the same center

of elbow flexion-extension movements, ignoring the physiological fact that these

two axes have no intersection and are not orthogonal (Perez et al. (2010); Cutti

et al. (2008)). This simplification inevitably brings some errors to IMU placement

estimation. Fortunately in our well designed calibration procedure, random IMU

placement would not affect tracking results so that the accuracy can be guaranteed.

2.2.2 Body Motion Reconstruction

The proposed body motion tracking system mounts wireless IMUs on the main body

segments to capture their movements. The coordinates of IMUs on the human arm

and leg (feet are excluded) are defined as shown in Figure 2.2. In the left figure, four

IMUs are mounted on the arm to capture arm movements: one is attached to upper

arm near the elbow, over the distal humerus to measure shoulder rotations; one is

attached to scapular to measure position change of shoulder joint; one is positioned

over the distal flat surface of radius and ulna, corresponding to elbow joint movements;
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one is mounted on the dorsal hand surface to captured hand movements. In the

right figure, two IMUs are attached on the leg to capture leg movements: one IMU

is attached to lower front part of thigh, close to knee joint, to measure hip joint

movements; the other IMU is placed on the outside of lower shank, above the ankle,

corresponding to knee joint movements. For the torso, two IMUs are attached on the

torso: one is on the chest, which is used to measure the lumbar rotation and torso

orientation; the other is on the low back over the pelvis, which is used to estimate

the movement of pelvis.

Figure 2.2: IMU position on arm and leg

Before linking IMUs to build a human kinematic model, a global frame R (also

is called Root Frame in this dissertation) is defined. The Body Frame Σbody (at
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waist joint) shares the same coordinate with the global Root Frame, thus R does not

change with movements of human body. The end of four extremities (two shoulders

and two hips) are connected to the torso, as shown in Figure 2.1a. All these four

joints coordinates have direct relationship of translation and rotation to Σbody, which

means the 6-DoF transformation between their local coordinate and the Body Frame

Σbody is always considered as the transformation within R. If transforming any

extremity joint’s coordinate to the global Root Frame, the procedure is achieved

by first transforming joint frame to the local Body Frame Σbody, then transforming

from local Body Frame to the global Root Frame R.

Here we take a human arm as an example to illustrate extremities’ movements.

After linking to the torso, rotations and translations of shoulder coordinate Σshoulder

are able to be captured within the Root Frame by direct “Σshoulder 
 Σbody 


R” transformation. As the adjacent joint of shoulder, elbow coordinate Σelbow only

considers its rotation corresponding to Σshoulder but not necessarily to Σbody. With the

known relationship, the spatial position of Σelbow within R can be calculated. Wrist

joint, similarly, only considers its rotation corresponding to Σelbow. In summary,

except torso joint, all other joints consider their rotations with prior connected joint

frame rather than with the Root Frame R, so that each joint is correlated with

prior joint and the inertial data from the IMU on each body segment represents the

comprehensive movements from all previous joints.

Body parts are simplified as rigid bodies. IMUs cannot be placed at the joint center

but attached to the surface of rigid bodies. Each IMU is placed on the far-end of the

body segment, close to adjacent joint rather than its corresponding joint. Between the

IMU and its corresponding joint, there keeps a distance. This arrangement is based

on the consideration that keeping the measurement point away from the rotation

center could represent rotations more clearly. No matter how a IMU is attached

to the body, the rotations along each joint are reflected in the inertial input of the

IMU. Motions are captured and then translated into more intuitive IMU output for

our system: acceleration a, angular velocity ω and quaternion q. After applying
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proposed tracking technique, each joint is specified by its rotations and translations

relative to others, and can be decomposed to rotation angles around each DoF. Joint

movements are explained by combinations of quantified joint rotation angles, which

would be significant for analysis.

An embedded quaternion-based orientation filter is utilized to pre-process and

denoise raw IMU data and output filtered quaternion. In Figure 2.1b, the rotation

angles of shoulder joint α1, α2 and α3, elbow joint α4, α5 and wrist joint α6, α7 are

expressed by quaternion S q̂ for shoulder frame, E q̂ for elbow frame and W q̂ for

wrist frame, where “∧” denotes measurement value. Three quaternions integrate

the movements of three arm joints instead of seven rotational matrixes R(α1)...R(α7)

for simplifying traditional expression. During movements, these three measurement

values of quaternion compare with estimated quaternions S q̃, E q̃,W q̃ (for shoulder

frame, elbow frame and wrist frame), and approach them after each time span t to

minimize the difference δ = ‖(S q̂, E q̂,W q̂) − (S q̃, E q̃,W q̃)‖t. Same idea is applied to

other joints of the human body to update and keep joint motions being tracked.

After estimating rotation angles of each joint, we are aiming at estimating real-

time update of joints’ position. As a principal part of this system, real-time position

of IMUs within the Root Frame is calculated by proposed tracking technique first.

Since the relative position between individual IMU and its corresponding joint is

changeless with motions, then joints’ position in the Root Frame can be derived by

applying translations from IMUs’ position.

2.2.3 System Calibration

In fact, mounting an IMU on human body is arbitrary. It is difficult to follow any

strict regulations. Although IMUs can be preferred to place in certain position for

optimizing the measuring, above restrain brings additional difficulties and inevitable

errors to follow and for subjects it cannot be guaranteed to remember the same

position for IMUs. Therefore, a convenient and reliable calibration procedure to
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estimate the IMU placement is necessary, which includes the estimation of position

and orientation.

The first step to estimate the position of an IMU is calculating the radius of

rotation for each DoF. The gyroscope unit on the IMU is capable of capturing

segment’s circular motion around each axis, while other segments keep as still

as possible. Circular motions around a joint axis generate angular velocity, and

reminding the relationship between angular velocity and radius of rotation, a relative

position of the IMU according to its rotating joint can be estimated when all axes of

the joint are done. Besides the global position of IMU, the length of a human body

segment between two joints is also requisite. The length works as an important

parameter for configuring the human kinematic model and updating the joints

position. Therefore, a method for estimating the length is developed. The method

is to calculate a hypothenuse of one equilateral triangle based on two proportional

triangles. The distance traveled by IMU when swing a human segment, e.g. arm

or leg, acts as the base of a triangle and two neighboring IMUs give a proportional

relation. Once the length is calculated, global position of both joint and IMU are

estimated. In such ways, the initial position for each IMU and its corresponding joint

are updated sequentially.

The calibration procedure is capable of estimating the IMU orientation, no matter

how a subject mounts it to the body. IMU shares the same coordinate with R,

which is an essential prerequisite. Before mounting the IMU on the body, a human

initial posture is required for both mounting IMUs and coupling local joint frames

to the Root Frame. When an IMU is mounted, its orientation with respect to

(w.r.t.) R is calculated from its inertial output. Compared with corresponding

joint frame, a rotational transformation is generated and represented by Y
Xq, which

denotes the quaternion representation for rotational relationship from X frame to

Y frame. During tracking body motions, quaternion of each joint is updated by

the combination of corresponding IMU quaternion and their relationship quaternion.

Therefore, proposed calibration approach estimates the position and orientation of
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IMUs in a way that simple to be executed, before each time a subject uses the system,

so that subsequent tracking procedures could be processed based on an accurate

initialization prerequisite.

2.3 Motion Tracking with Twists and Exponential

Maps

In this section, body tracking system with twists and exponential maps techniques

is introduced. Due to the superiority of quaternion based rotation representation

over Euler angle and rotation matrix, filtered unit quaternions from embedded IMU

orientation filter are used as system input for calculating twist motions. Exponential

maps for twists simplify the representation of rotation by reducing the computing

complexity to one matrix per joint, compared with one rotation matrix per DoF in

the traditional method. In order to track motions of a body with multiple joints and

connected segments, a product of exponential maps, which borrows the idea from

the forward kinematics technique, is employed to express the kinematic chain. The

motion reconstruction will be accomplished based on human kinematic chains and

rotation angles of each joint. Finally, a human model is reconstructed by describing

the global position of each joint and articulating neighbor joints.

2.3.1 Quaternion-based Orientation Filter

In our previous work by Tian et al. (2012); Tian and Tan (2012), an adaptive-gain

complementary filter was developed and combined with Gauss-Newton optimization

algorithm to determine the orientation of the gyroscope measurement error. The

framework of the filter is shown in Figure 2.3. A magnetic field selection scheme with

adaptive measurement vectors and reference vector, which could significantly lessen

the effect of severe magnetic distortion and highly dynamic movements, is applied to

improve the performance of the filter. An accurate estimation of gyroscope bias then
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compensates instantaneous gyroscope measurements, regardless of fast movement or

magnetic distortion. The filter consumes short computing time, which satisfies the

needs for real-time orientation measurement and filtered quaternion Rq denotes the

IMU output within R.

Figure 2.3: The design of quaternion-based orientation filter

Unit quaternion provides a convenient mathematical notation for representing

orientations and rotations of objects in three dimensions (3D). Quaternion based

rotation representation is adopted in view of its superiority: compared to Euler angle

it is simpler to compose and avoid the problem of singularities (gimbal lock); compared

to rotation matrix it is more numerically stable and more efficient. Any rotation in 3D

can be represented as a combination of an axis vector and a rotation angle, as Figure

2.4 shows. Quaternion gives a simple way to encode this axis-angle representation in

four numbers and apply the corresponding rotation to a position vector representing

a point relative to the origin in R3.
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Figure 2.4: Quaternion rotations representation

Quaternion Rq is a vector quantity of the form

Rq = q0 + q1i + q2j + q3k = (q0, ~q) (2.1)

where i,j and k are basis elements of a quaternion, q0 is the scalar component of Rq

and ~q = [q1, q2, q3]T is the vector component. Given ω = [ω1, ω2, ω3]T , unit quaternion

(‖ω‖ = 1) can be denoted by the form as

Rq = (cos(θ/2), ω sin(θ/2)) (2.2)
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and given Equation (2.1), the corresponding rotation is extracted by setting

θ = 2 cos−1 q0 , ω =


~q

sin(θ/2)
if θ 6= 0,

0 otherwise,

(2.3)

where, ω ∈ R3 represents the unit axis of a rotation and θ ∈ R is the angle of rotation

about ω. In the example of shoulder joint, quaternion measurement S q̂ is represented

by corresponding rotations of unit axes ωS and angles about it θS.

2.3.2 Twists and Exponential Maps

The representation of general body motions includes both rotations and translations.

Here we describe the position and orientation of a coordinate frame B relative to a

coordinate frame A: let pAB ∈ R3 be the position vector from the origin of frame

A to the origin of frame B, and RAB ∈ SO(3) (special Orthogonal group) be the

orientation of frame B relative to frame A. A configuration of the system consists of

the pair (pAB, RAB), and the configuration space of the system is the product space

of R3 with SO(3), which is denoted as SE(3) (special Euclidean group)

SE(3) = {(pAB, RAB) : pAB ∈ R3, RAB ∈ SO(3)}

= R3 × SO(3)

SO(3) = {RAB ∈ R3×3 : RABR
T
AB = I, detRAB = +1}

More concretely, let qS, qE ∈ R3 be the coordinates of a point q relative to local

Shoulder Frame S and local Elbow Frame E respectively. Let RSE = f(α1, α2, α3)

indicates 3 DoF rotations of point q needed from S to E. Given qS, we can calculate

qE from the transformation of the coordinate

qE = pSE +RSE · qS (2.4)
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Let gSE = (pSE, RSE) ∈ SE(3) be the specification of the configuration of the

frame E relative to the frame S. Using homogeneous representation, the linear form

transformation is represented as

q̄E =

 qE

1

 =

RSE pSE

0 1

 qS

1

 = ḡSEq̄S (2.5)

Euler angles are commonly used to constrain a rotation matrix R to SO(3), but

they suffer from singularities and don’t lead to a simple formulation. In contrast,

the twist representation provides a more elegant solution and leads to a very simple

linear representation of the motion model. For each homogeneous matrix ḡ ∈ SE(3),

there is a corresponding twist in the tangent space se(3), we define

se(3) = {(v, ω̂) : v ∈ R3, ω̂ ∈ so(3)}

so(3) = {S ∈ Rn×n : ST = −S}

where the inverse operator ∧ (wedge) is applied to ω and ω̂ ∈ so(3) here is the

skew-symmetric matrix, defined as

ω̂ =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (2.6)

and v is the velocity of a point attached to the joint.

In homogeneous coordinates, we define ξ ∈ R6 to represent the twist coordinates

and a twist ξ̂ ∈ se(3) as

ξ̂ =

 v

ω

∧ =

 ω̂ v

0 0

 ∈ R4×4 (2.7)

where v = −ω × r and r denotes the origin of rotation axis in the twist ξ̂ ∈ se(3).
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The exponential of θω̂, eθω̂, is an element of SE(3) and it indicates rotations during

the movements and it can be calculated by the Rodrigues′ formula

eθω̂ = I + ω̂sinθ + ω̂2(1− cosθ) (2.8)

Elements from se(3) are mapped to SE(3) using a exponential map for twists as

shown in the following equation

eθξ̂ =

 eθω̂ (I − eθω̂)(ω̂v + ωωTvθ)

0 1

 ω 6= 0

eθξ̂ =

 I vθ

0 1

 ω = 0 (2.9)

The 3-DoF rotation of shoulder relative to the Elbow Frame can be represented by

(eθω̂)SE and the transformation from S to E, which includes rotations and translations,

is shown by a 4×4 matrix (eθξ̂)SE, instead of the multiplication of three 3×3 rotational

matrixesR(α1)·R(α2)·R(α3). One body link transformation relationship is introduced

above and the example of a connection of upper body links will be discussed next.

Firstly, IMUs are calibrated in R, and their initial orientation Rq0 can translate

to θ0 for later use. After attaching IMUs to the human body, their orientation

measurements on the body are rotated from initial Rq0 to IB q̂ for the IMU

corresponding to waist in Σbody, IS q̂ for the IMU corresponding to shoulder, IE q̂

for the IMU corresponding to elbow and IW q̂ for the IMU corresponding to wrist.

In this procedure, the subject is asked to stand in order to mount the IMUs. The

local coordinate of waist, shoulder, elbow and wrist refer to R are initially defined as

R
Bqinitial(= R), RS qinitial,

R
Eqinitial and R

W qinitial. The relationship between local joints’
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coordinates and their corresponding IMUs are shown as

R
Bqinitial = S

IBq ⊗ IB q̂

R
S qinitial = S

ISq ⊗ IS q̂

R
Eqinitial = E

IEq ⊗ IE q̂

R
W qinitial = W

IW q ⊗ IW q̂ (2.10)

where the relationship quaternion S
IBq,

S
ISq,

S
IEq and S

IW q will be used for updating

real-time rotation measurements of joint quaternions. The conjugate of quaternion

can be used to represent an orientation by swapping the relative frame and the sign

∗ denotes the conjugate. For example, baq
∗ = a

bq is the conjugate of baq and it denotes

the orientation of the frame a w.r.t. the frame b, which can be denoted as

b
aq
∗ = a

bq = [q0,−q1,−q2,−q3] (2.11)

The quaternion product ⊗ can be used to describe compounded orientations and

the definition is based on the Hamilton rule (Horn et al. (1988)). For example, the

compounded orientation c
aq can be defined by

c
aq = c

bq ⊗ b
aq (2.12)

and a quaternion product of two quaternion q and p is defined as

q ⊗ p = [q0, q1, q2, q3]⊗ [p0, p1, p2, p3]

=


q0 − q1 − q2 − q3

q0q1q2 − q3

q0 − q1q2q3

q0q1 − q2q3




p0

p1

p2

p3

 (2.13)

32



Thus, the relationship quaternion S
IBq,

S
ISq,

S
IEq and S

IW q can be calculated from the

transformation of Equation (2.10) as

S
IBq = R

Bqinitial ⊗ IB q̂
∗

S
ISq = R

S qinitial ⊗ IS q̂
∗

E
IEq = R

Eqinitial ⊗ IE q̂
∗

W
IW q = R

W qinitial ⊗ IW q̂
∗ (2.14)

The Body Frame Σbody shares the same coordinate with R. We assume the

starting position of its initial configuration is known as RPB. An IMU mounted

on the chest (upper body and denoted by b-IMU) is used to estimate the orientation

of upper trunk and two IMUs mounted on each scapula (sc-IMU) are measuring

the linear acceleration of shoulder movements. The translational calculation from

body to shoulder pBS in the homogeneous matrix gBS(0) includes RPB, initial spacial

relationship of shoulder relative to waist 0pBS and the real-time update of the shoulder

position from sc-IMU inertial measurements p̂sc−IMU within Σbody

pBS = RPB + 0pBS + p̂sc−IMU (2.15)

Following the forward kinematics idea, the aim here is to estimate updated

shoulder position within R. As the subject moves, the quaternion of b-IMU

continuously updates waist joint quaternion measurement RB q̂ by

R
B q̂ = S

IBq ⊗ IB q̂ (2.16)
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With the waist quaternion measurements are calculated, the position of shoulder joint

can be updated by

R
B q̂ → θB, ωB

{θB, ωB, pBS}
exp map
=⇒ RP̂S (2.17)

where RP̂S denotes updated shoulder position within R.

Updated position of shoulder joint is RP̂S and the translational calculation from

shoulder to elbow pSE is achieved by combining RP̂S and initial spacial relationship

of elbow relative to shoulder 0pSE within Σshoulder

pSE = RP̂S + 0pSE (2.18)

As the subject moves, the quaternion of s-IMU (short for the IMU attached to

the upper arm, corresponding to shoulder) continuously updates shoulder joint’s

quaternion measurement RS q̂ as

R
S q̂ = S

ISq ⊗ IS q̂ (2.19)

With shoulder measurements are calculated, the elbow joint position can be

updated by

R
S q̂ → θS, ωS

{θS, ωS, pSE}
exp map
=⇒ RP̂E (2.20)

where RP̂E denotes updated elbow position within R.

For adjacent lower arm link, updated position of elbow joint is RP̂E and the

translational calculation from elbow to wrist pEW is achieved by combining RP̂E and
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initial spacial relationship of wrist relative to elbow 0pEW within Σelbow

pEW = RP̂E + 0pEW (2.21)

Then, the elbow quaternion measurement by e-IMU (short for the IMU corresponding

to elbow) is similarly updated as

R
E q̂ = E

IEq ⊗ IE q̂ (2.22)

The wrist joint position can be updated by

R
E q̂ → θE, ωE

{θE, ωE, pEW}
exp map
=⇒ RP̂W (2.23)

Therefore, the procedure of updating wrist quaternion R
W q̂ and estimating hand

position RP̂hand in R are easy to get by first calculating the translation from wrist to

hand pWh within Σwrist

pWh = RP̂W + 0pWh (2.24)

then updating the hand position by

R
W q̂ = W

IW q ⊗ IW q̂

R
W q̂ → θW , ωW

{θW , ωW , pWh}
exp map
=⇒ RP̂hand (2.25)

The rotations of each joint in above example are represented by {θB, θS, θE, θW}.

Their corresponding twists are shown as {ξ̂B, ξ̂S, ξ̂E, ξ̂W}. The exponential map for

twists of each joint is in the form of eθξ̂, as Equation (2.9) shows.
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If the initial configuration of an IMU corresponding to R is g(0), the final

configuration of the IMU corresponding to R with rotation angle θ is given by

g(θ) = eθξ̂g(0) (2.26)

For the right arm discussed above, the connection is demonstrated by the product of

all joints’ exponential maps

W∏
i=B

eθiξ̂i = eθB ξ̂B · eθS ξ̂S · eθE ξ̂E · eθW ξ̂W (2.27)

If we let gwrist,hand(0) represent the initial configuration of hand w.r.t. wrist, then

the final configuration of hand w.r.t. the Body Frame gbody,hand, which are connected

by rotation angles Θ = (θB, θS, θE, θW ), is given by

gbody,hand(Θ) =
W∏
i=B

eθiξ̂i · gwrist,hand(0)

= exp(
W∑
i=B

θiξ̂i) · gwrist,hand(0) (2.28)

This final configuration contains the position of hand within R, which achieves

our aforementioned aim. Meanwhile, the advantage of twists and exponential

maps techniques are revealed by transforming the multiplication of exponentials

to summations, which substantially reduces the complexity of motion estimation of

multiple body links, compared with rotation matrix representations.

2.3.3 Kinematic Chains and Full Body Motion

A human body model consists of a set of body segments connected by joints. For

upper limbs and lower limbs, four kinematic chains are modeled and they branch

out around the torso. The kinematic chain describes the relationship between rigid

body movements and motions of joints. A forward kinematics technique, which is
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introduced in robotic control, is utilized to determine the configurations of each pair

of adjacent segments. The product of exponential maps gives an expression of the

kinematics of each joint, which is generated by twists associated with the joint axis.

Figure 2.5: Kinematic chains of upper and lower extremities

In this system, the goal of building a human kinematic chain is to find the

independent configuration for each joint and the relationship with the Root Frame,

such as shown in Figure 2.5. Four kinematic chains of upper and lower limbs are

built, which describe 10-DoF arm movement and 5-DoF leg movement. Each joint is

able to transform from local coordinate to R by twist representation.

For the upper limb, a kinematic chain that representing the wrist frame relative

to the body frame is modeled as

gbody,hand(Θ) = exp(θbody ξ̂body + θshoulderξ̂shoulder + θelbowξ̂elbow

+ θwristξ̂wrist) · gwrist,hand(0) (2.29)
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and for the lower limb, the ankle frame relative to the body frame is modeled as

gbody,foot(Θ) = exp(θbody ξ̂body + θhipξ̂hip + θkneeξ̂knee

+ θankleξ̂ankle) · gankle,foot(0) (2.30)

where Θ represents the set of rotation angles of joints involved in the final

configuration.

A full body model is reconstructed by linking all the limb kinematic chains to

the torso and mapping individual sensor frames into unified R. Figure 2.6 shows a

example of human forearm movements, from t = t′ to t = t′ + ∆t, with only elbow

rotation occurs. Here we use ξm to represent the mth joint among total n joints with

the rotation angle θm,∆t.

Full body motion estimation considers twists of all body segments within the Root

Frame, so that motions of segments can be displayed as a coherent reconstruction.

The Body Frame of a human model is defined as the root that connecting all four limb

chains, so that it can better demonstrate the human motions. The IMU on the chest

is used to capture the motion of waist joint and represent torso direction. Based on

the fact that all the limb chains are connected to torso, R is placed at human waist.

By linking all the limb kinematic chains to torso, full body pose can be estimated.

For example, the motion of a lower arm (corresponding to the elbow joint) relative

to human foot (corresponding to the ankle joint) is shown by

gankle,elbow(Θ) = exp(

hip∑
ankle

θiξ̂i +

body∑
hip

θiξ̂i +
shoulder∑
body

θiξ̂i+

elbow∑
shoulder

θiξ̂i) · gshoulder,elbow(0) (2.31)

As an extension, some kinematic characteristics of human skeleton can be referred

as parameters to optimize tracking results, such as elbow has no abduction/adduction

movement, elbow carrying angle is 5 to 15 degrees for healthy people and etc. Those
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Figure 2.6: A kinematic chain of human model with forearm motion relative to the
global frame at t = t′ + ∆t

limitations can be assigned as a threshold to the updated value of joint angles

and to reduce errors when tracking human motions in specific circumstance. For

the requirements of different applications, the tracking system sometimes will not

set those boundaries when reconstructing human motions. Optimized joint angles

quantify motion tracking, so that the joint angle based information could greatly

help researchers analyze and diagnose the status of subjects.

39



2.4 Estimation of Parameters

In order to cooperate inertial measurements from IMU with a human kinematic model,

some parameters are estimated, which include the IMU orientation, IMU position

relative to corresponding joint and human limb length.

2.4.1 Estimation of Arbitrary IMU Placement

Mounting an IMU on the human body is recurrent and an accurate position of IMU

is highly demanded to be guaranteed. Since it is not expected that the subjects could

place the IMU on the same position every time, a calibration procedure for estimating

the position when it is randomly positioned can be considerable helpful for tracking.

A more reasonable way to estimate the position of IMU is introduced in this section,

compared with measuring the distance by measuring instruments. According to the

fact that the rotation of human limb is a synthetic action of more than one bone,

therefore, human limb movement is considered as a cylinder rotating around various

axes. Although the simplification would not remove the errors caused by human

muscle sliding and soft tissue artifact, the accuracy is acceptable for tracking human

body motion. By repeating human limb rotations around each axis, stable sampling

from inertial measurements averages the distance between joint center and IMU,

and further, estimates spatial position of the IMU. The random position estimation

is designed for initializing the motion tracking, thus, the tradeoff between adding

complexities to calibration procedure and improving the accuracy of body tracking

system is worthwhile.

When an IMU is mounted on the body and ready to initialize the system,

adjacent limbs are required to hold still and the target limb rotates repeatedly

around corresponding joint solely. For example as Figure 2.7 shows, we want to

estimate the position of the IMU mounted on the lower arm. The upper arm is

held still while rotating the lower arm around X axis (flexion/extension) and Y axis

(pronation/supination). In order to obtain better estimation results, it is highly

40



Figure 2.7: Demonstration of IMU position estimation

suggested that the IMU is mounted on the far end of lower arm, which is close to

the wrist joint. When rotating the lower arm, a longer distance between elbow joint

center and IMU provides a larger swing range and as a result, achieves clearer inertial

measurements for position estimation.

Inertial measurements from an IMU include angular velocity ω and acceleration

a, which are applied for estimating the IMU position relative to the joint center. The

calculation of the distance inbetween is given by

rDoF =
acentripetal
ωDOF 2

(2.32)
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where DoF indicates the rotation axis. acentripetal is the acceleration pointing to

the joint center and ω is the angular velocity generated by rotations. Each rotation

around certain axis is repeated for several times, in case that averaged rotation radius

rDoF is more convincing and accurate.

Figure 2.8: Cylinder look of human limb

For the upper arm example in Figure 2.8, an IMU is mounted close to elbow

joint to measure the shoulder movement. For all three rotation axes, DoF1, DoF2

and DoF3, the calculation of the radiuses about each axis are r1, r2 and r3 in the

figure. These distances compose the position vector introduced in Section 2.3.2. In

this example, assuming the altitude angle is α, the origin of the shoulder joint is

[XS, YS, ZS] and the axes corresponding to DoF1,DoF2 and DoF3 are X, Y and Z.

From the origin of the Shoulder Frame S to the IMU Frame I, the position of IMU
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is estimated by position vector pSI, as

pSI =


XS + r2 cos(α)

YS + r1

ZS +
√
r2

3 − r2
1

 (2.33)

For the joint with two DoFs, e.g. elbow joint, the length of r in the “missing”

axis is still able to be calculated by using r1, r2 and the altitude angle α; for the joint

with only one DoF, e.g. knee joint and ankle joint, the distance parameters in the two

“missing” axes are need to be estimated manually. Besides the IMU position relative

to its corresponding joint, the position of adjacent joint is also important. In the

above example, if the distance between the shoulder and elbow (length of upper arm)

is dSE, the position vector from S to E within S will be pSE = [XS, YS + dSE, ZS]. So,

in the following part, the estimation of the length of human segment is introduced.

2.4.2 Estimation of Body Limb Length

Another critical part of the calibration procedure is to estimate the length of human

limbs. Since the twists and exponential maps presented above need the position

of adjacent joint to maintain the integrity of human limb and connectivity of

limbs, an accurate estimation of human limb length will guarantee excellent results

of human motion tracking. Although human body limbs are simplified as rigid

bodies, measuring the length manually causes more errors than applying inertial

estimations which achieve high precision from IMU measurements. Therefore, an

IMU based method for estimating the body limb length is developed by employing

the twist representation. Inertial measurements provide changes in spatial position

and attitude, and with estimated IMU position, body limb length is calculated by

solving the spatial relation of two connected body limbs.

In order to assure the stability of estimation results, subjects are required to

extend their limbs and swing gently around certain joint. For the example in Figure

43



Figure 2.9: Limb length estimation by swinging around shoulder joint

2.9, the process is estimating the length of upper arm. A subject is required to extend

the arm and swing gently around shoulder joint. Assuming during δt, the arm rotates

from position E to F with the angular velocity of ω. The spatial changes of the IMU

on the upper arm (PE→F )upperIMU and lower arm (PE→F )lowerIMU (denoted by Pupper

and Plower in Figure 2.9) can be derived from the twist representation ξ

(PE→F )upperIMU : ξupper(E, t)→ ξupper(F, t+ ∆t) (2.34)

(PE→F )lowerIMU : ξlower(E, t)→ ξlower(F, t+ ∆t) (2.35)

Positions of IMUs relative to corresponding joints can be estimated from previous

Section 2.4.1. As is shown in Figure 2.9, here uses (r1)upperIMU and (r1)lowerIMU to
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represent the distance of r1 in Figure 2.8 for upper arm and lower arm respectively.

The length of upper arm dSE is calculated from the proportional relationship

Pupper
Plower

=
(r1)upperIMU

dSE + (r1)lowerIMU

(2.36)

Similarly, the length of lower arm can be calculated when extend lower arm and

hand, swinging around elbow joint. For any human body limb, it is able to be

estimated by extending and swinging around its joint. When the length of body

limbs and position of IMUs are estimated, following motion tracking technique will

apply those estimates to reconstruct.

2.5 Experiments

2.5.1 Experimental Setup

The IMU was developed in our lab and the detail was introduced in the work of Chen

et al. (2011). The commercialized V icon and OptiTrack motion capture systems

are separately utilized as the benchmark. Six cameras are set up at the frequency

of 100Hz, while IMUs are working at 40Hz. A series of upper limb and full body

motions are designed to validate our tracking system. For the upper limb tracking,

three ranges of movements are executed, including arm lifting up-down, arm swinging

left-right and lower arm flexion-extension. A commercialized product V icon is used

as the benchmark. For the full body tracking, three ranges of movements commonly

performed in medical rehabilitation process are tested and OptiTrack is used as the

benchmark. Each range is repeated twice to clearly demonstrate the motion and

apart from other ranges. Two participants are asked to test developed system by

using these motions. Before the tests, the participants are required to stand upright

in T-pose to attach IMUs on the body. During the tests, motion capture system and

our tracking system are manually started to capture the motions simultaneously. The
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inertial measurements from IMUs are analyzed and joint positions captured by V icon

and OptiTrack are recorded for later calculations and comparisons.

2.5.2 Upper Limb Motion Tracking

To ensure the accuracy of proposed tracking system, two sets of parameters are

estimated: the placement of IMUs and the length body limbs, from the calibration

procedure. These parameters are also validated by V icon system so that to make

sure those estimated parameters for proposed algorithm are satisfactory as expected.

A reliable and convenient method for estimating these parameters avoids the reliance

on V icon when calibrating proposed system.

Figure 2.10 shows a screenshot of the motion tracking test. The participant

with reflective markers affixed on the arm is asked to move gently as designed

motions and V icon system captured his motion simultaneously and animated. Inertial

measurements are transmitted wirelessly to the computer via Bluetooth and tracked

motions are reconstructed by deploying twists and exponential maps techniques, as

shown in the bottom right of Figure 2.10. V icon system instantly captures arm

movements as shown in the top right of the figure.

Each test is analyzed graphically as curves of angle against frame. After the

motion data are transmitted to the computer, two different kinds of angles are

calculated: rotational angles of a joint center and angles between two adjacent body

segments. By comparing calculated angles with the benchmark results calculated by

V icon system, the accuracy of developed motion tracking system can be evaluated.

In the tests, shoulder angles (between trunk and upper arm) and elbow angles

(between upper and lower arm) are calculated from IMU data and compared with

V icon truth. In the comparison figures, the red curve represents angles calculated

based on captured markers’ position from V icon system and the blue curve shows

the angles estimated by proposed tracking system based on IMU measurements.
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Figure 2.10: A screenshot of the motion tracking procedure. Left figure shows
the placement of markers and IMUs; Up-right figure shows real-time optical motion
tracking result; Bottom-right figure shows real-time reconstructed arm motion in
MATLAB

Test 1

Figure 2.11a shows the angle between body trunk and upper arm. The 1st range

movement, arm lifting up-falling back, is shown by the first two wave peaks and

troughs. The 2nd range movement, arm swinging to left-right, is represented by

the following flat curve. For these two ranges, the IMU tracking performs well in

matching the V icon truth. However for the 3rd range, lower arm flexion-extension,

IMU tracking does not match V icon data very well. The reason of this unmatch

is from additional vibration of the soft tissue artifact, due to contractions of biceps
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(a)

(b)

Figure 2.11: Upper limb motion tracking test 1: (a) angles between upper arm and
trunk; (b) angles between upper and lower arm
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brachii. Even though the IMU is placed on the flat sulcus bicipitalis lateralis, it can

hardly avoid vibrations but try to minimize it. This little but inevitable vibration

is magnified by sensitive IMU sensors and then lost precise capture. The average

difference for these two angle curve is 6.3◦, and the similarity (correlation) of two

curves is 0.8354.

Figure 2.11b shows the angle between lower arm and upper arm. During the 1st

and 2nd range movements, this angle should not vary too much because of fixed angle

of elbow joint. It can be observed from the curves, IMU tracking in the 1st and 2nd

range fluctuates. The fluctuation at first is from gyroscope errors, since the gyroscope

encountered a sudden start of movement. Although embedded orientation filter (in

Section 2.3.1) in the IMU is capable of calibrating and recovering the impact from

errors, a short time is needed. Whereafter, proposed filter takes effect gradually on

the 2nd range movement and corrects the orientation of IMU tracking, which causes

the curve remaining flat. The 3rd range performs elbow flexion-extension and the IMU

tracking matches the V icon truth mostly and is not affected by previous fluctuation

clearly. The average difference for these two angle curve is 3.5◦ and the similarity

(correlation) of two curves is 0.9824.

Test 2

We removed IMUs from the first subject and reboot the system and then all the IMUs

are mounted on another subject’s arm again to execute a second test. Test 2 repeated

the activities in test 1, so that calculated results can have an intuitive comparison

with test 1. The placement of each IMU is slightly different from test 1, because the

exactly same IMU placement is not guaranteed but a closer position is acceptable for

contrast.

Figure 2.12a shows the angle between body trunk and upper arm. During the 1st

range and 2nd range movement, the IMU tracking performs better than in matching

the V icon truth in Figure 2.11a. For the 3rd range, there still remains the unmatch

between IMU tracking and V icon capture, but the performance is better than in test
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(a)

(b)

Figure 2.12: Upper limb motion tracking test 2: (a) angles between upper arm and
trunk; (b) angles between upper and lower arm
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1, since this time a new IMU placement for upper arm is applied. The vibrations still

comes from the soft tissue artifact caused by biceps brachii. However, the placement of

upper arm IMU is adjusted, and obviously, the new position tolerated some vibrations

and reduced errors. Overall, test 2 achieves better performance in capturing arm

motions and the average difference and similarity (correlation) of two curves is 2.6◦

and 0.9643 for test 2.

Figure 2.12b shows the angles between lower arm and upper arm for test 2. All the

movements are captured precisely and the two curves in the figure mostly matches.

A jump occurred after 1st range movement, but two curves approximates afterward

due to the help of orientation filter. The 3rd range performs elbow flexion-extension

and the IMU tracking matches the V icon truth but these is an difference in angles

calculated from IMU data. The estimated angles are from the integral of angular

velocity, differences are generated from very slow motions in test 2. In the contrast,

the faster motions in test 1 achieve less angle difference. The average difference of

two curves is 4.1◦ and the similarity (correlation) is 0.9651 for test 2.

For clinical analysis of human motions, the angles around three axes for each

joint are concernful. These angles can be reflected by IMU rotations within its local

coordinate and then translates to the rotations of each joint coordinate. Figure 2.13

shows a example of all the angles of six axes from shoulder IMU and elbow IMU,

and their changes according to subject’s pose during the test 1. Six red lines indicate

three ranges of movement and represent motions which are shown by A to F. From

the curve, it is clearly legible to discriminate all the joints orientation during each

movement and diagnose the body posture.

2.5.3 Full Body Motion Tracking

A 3-range movement is performed in the full body tracking procedure. The participant

with markers and IMUs is started with “T-pose” and is requested to accomplish arm

abduction, arm forward flexion, standing leg lifts and keeping balance, as are shown in
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Figure 2.13: Angle changes of IMUs along 3 axes during upper limb motion tracking
test 1
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Figure 2.14b. Figure 2.14a describes the placement of IMUs and markers on the body.

For full body tracking, OptiTrack motion capture system is used as the benchmark.

Similar as the upper limb tracking test, full body tracking is analyzed as curves of

angle against frame. Four angles are our concern and calculated for comparison: elbow

angles (between upper arm and lower arm) for each arm and knee angles (between

thigh and shank) for each leg. Compared with the angles calculated from OptiTrack

truth, the accuracy for developed system is further evaluated.

In the following comparisons, the red curve represents angles calculated from the

camera system and the blue one shows angels estimated by our developed system.

Figure 2.15 shows the angle between upper arm and lower arm for left arm (Figure

2.15a) and right arm (Figure 2.15b), which also can be called elbow flexion-extension

angle. Three ranges of movements are performed during the test. First two ranges of

movements are basically arm motions. Because the elbow is not fixed when rotating

shoulder joint, the figure clearly shows angle changes of elbow joint by four wave

troughs and fluctuations. The 3rd range of movements is lifting legs while keeping

body balance. During these movements, arms shake a bit for keeping the balance,

which is reflected as the fluctuations of the IMU curve in the 3rd range. The overall

results show that angles from IMU and from camera system match very well. The

fluctuations of the IMU curve are basically caused by sensitive sensing, while the

camera software processes the marker position to make it smoother. The sample

rate for the camera system is 100Hz and for IMU is 40Hz, thus the interpolation

procedure is applied to inertial data for comparison.

Figure 2.16 shows the angle between thigh and shank for left leg (Figure 2.16a)

and right leg (Figure 2.16b), which also can be called knee flexion-extension angle.

The 3rd range of movement is lifting thigh and bending knee, so the two wave troughs

denote these movements. From the figure, it is clear that IMU curves match the

camera truth better for right leg than left leg. This result can be explained that

while lifting right leg, left leg is able to better keep body balance than the other side,

since our subject is right-handed. Because of the same reason, the right arm has less
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(a)

(b)

Figure 2.14: (a) The placement of IMUs and reflective markers on human body and
(b) planned motions for experiment
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(a)

(b)

Figure 2.15: Angle changes during elbow flexion-extension movements for (a) left
arm and (b) right arm
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(a)

(b)

Figure 2.16: Angle changes during knee flexion-extension movements for (a) left leg
and (b) right leg
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fluctuations during the 3rd range of movements. Although at the end of the test, the

angle difference increases, the orientation filter in the IMU will be able to calibrate

and recover the inertial data quickly when subject’s motion turns into gentle and

slow. For overall results, our inertial tracking technique is capable of capturing and

calculating the body motions accurately. The average difference of angle comparisons

for these four figures and their similarity (correlation) are summarized in Table 2.1.

Table 2.1: Comparison of IMU angle and camera angle for each figure

Left Right Average difference Correlation

Elbow
× 2.6◦ 0.9349

× 1.5◦ 0.9625

Knee
× 4.2◦ 0.9052

× 3.1◦ 0.9447

Four angles of elbow and knee flexion-extension are merged and shown in Figure

2.17, thus the motions of body are clearly indicated. The angle changes are

corresponding to different ranges of movements as the small figure shows. For a

right-handed subject as is discussed before, a preliminary find is that for keeping the

body balance, the right arm and left leg are more capable than the other side with

less shakes and fluctuations. More angles of human joints also can be calculated by

using developed tracking system. By analyzing joints rotations and monitoring the

reconstructed human motions, the status of a subject is achievable remotely and in

either virtual display or quantitative summary in real-time process.
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Figure 2.17: Angle changes of elbow joints and knee joints during full body test
and corresponding movements

2.6 Related Work

Considering the tracking accuracy of a capturing system, most current research

of human motion tracking is concentrated on visual tracking. The most popular

approach is marker-based visual tracking, which is capable of fast response to motions

accurately. Due to this advantage, it is widely adopted for entertainment, medical care

and supporting as the ground truth for non-vision based motion tracking. Some visual

tracking systems such as Vicon and Qualisys are widely utilized and proved to be with

high resolution and accuracy. Notwithstanding marker-based visual tracking system

is well accepted, the costly camera infrastructures, numbers of reflective markers and
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massive computing for data analysis limit its operations better in controlled volumes

(labs or studios) and not suitable for portable usage in daily life.

Markerless tracking approaches reduce those limits that marker-based method has

and give more flexibility to subjects. Since at least one calibrated camera view would

reconstruct a 3D rigid body model by applying markerless visual tracking, motions of

a subject can be captured consecutively within a larger space. To better represent the

motion of rigid body parts, a twists and product of exponential maps for kinematic

chains techniques from the robotic manipulation was introduced to complement visual

capture for robust estimation (Rosenhahn and Brox (2007); Bregler and Malik (1998);

Liu and Chellappa (2007)). This technique could simplify the estimation procedure

without losing tracking accuracy, and provide a convenient way to describe motions

of body segments attached by joints. Unfortunately, markerless visual tracking is

still interfered by intensity of lights. Furthermore, the motion of body segments is

ambiguous in certain degree of freedom (DoF) and fast motions cause noises to the

images. Thus, Pons-Moll et al. (2010) developed a hybrid human motion tracker

that combines video with inertial sensors to improve the performance of motion

capture. Inertial sensors allowed for drift-free estimation of limb orientations under

fast motions, compensated accurate position information obtained from video data.

In the research by Zhou et al. (2006), the authors placed an inertial sensor on

the wrist and obtained its position by double integrating the measured accelerations.

Elbow position was then computed from wrist position by the Euler relationship

between them. Although an optimization technique was adopted to minimize the

estimate errors, the wrist position was easily suffering from the drift problem by

integration. In order to track the upper limb and body motion, a kinematic chain

was modeled by linking the rotations of each joint with inverse kinematics (Perez et al.

(2010); Jung et al. (2010); Zhu and Zhou (2004)). The calculations of associate joints

were based on the inertial data from multiple inertial sensors mounting on the body

model. However, no matter the sensors were mounted on a garment or directly on the

skin, the noises were generated anyway by following reasons: the soft tissue artifact
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over the bony structure does not keep sensor locations constant, and the orientation

of each joint axis is actually much more complicated than it appears according to

anatomical analysis.

For minimizing the drift problems and optimizing tracking performance, some

authors utilized Kalman filter to integrate accelerometers with gyroscopes and

magnetometers (Lin and Kulic (2012); Zhu and Zhou (2004)). In the research by Lee

and Park (2009), the authors developed a situational measurement vector selection

procedure to avoid effects from sudden dynamics and ferromagnetic disturbances.

Combined with Gauss-Newton method, a quaternion-based orientation optimizer was

presented for finding the best-fit quaternion, whose idea was adopted in our previous

work for orientation filtering. Arm physical geometry constraints introduced in the

work of Lin and Kulic (2012) are particular ways to further improve the tracking

accuracy, such as elbow adduction angle and carrying angle (Zhang et al. (2009);

Luinge et al. (2007); Cutti et al. (2008)): the elbow of a healthy subject cannot

permit abduction/adduction movement, thus whose adduction angle is restricted to a

very small angle. With the arms extended at the sides and the palms facing forward,

the forearm and hands are normally slightly away from the body. This is elbow

carrying angle, which is 5 to 15 degrees for healthy people.

In the work of Dejnabadi et al. (2006), lower limbs orientation was estimated

by placing virtual sensors at the centers of rotational joints. The virtual sensors

could yield estimates of segment orientation with minimized drift and noise problems.

Although in this paper the method was operated within sagittal plan, the technique

could extend to 3D orientation estimation and reduce the restriction of placing sensors

over bony structure. Besides, it initiates the mechanism of applying non-model based

motion tracking. Also in the work of Cutti et al. (2008), a protocol was developed to

measure the scapulothoracic, humerothoracic and elbow 3D kinematics. The upper-

limb kinematic model was anatomically defined so that the placement of sensor units

could optimally describe the movement of joints with less impact from soft tissue

artifact. The idea of choosing optimal IMU placement was helpful to by our proposed
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method. However, the protocol was validated based on single-joint-angle movement,

which lacked a cross-talk test with other joints for practical activities.

2.7 Summary

In this chapter, a wearable motion tracking system is developed, which is portable and

accurate for daily usage. IMUs are mounted on body segments and regardless of their

placement, our well-designed calibration procedure can estimate their position and

orientation accurately. IMU inertial measurements are pre-processed by developed

quaternion-based orientation filter for eliminating noises. With the superiority over

rotational matrix, the twist representation and exponential maps techniques describe

body movements accurately and articulate body segments conveniently to build a

human model. Our low-order computational system enables the needs for real-time

reconstruction of body motion and model. Besides, quantitative status of tracked

subject can be analyzed and diagnosed rapidly. The comparisons with commercialized

V icon and OptiTrack motion capture systems assess the accuracy of proposed body

motion tracking system. Analysis of joint angle provides quantified tracking results

and accurate illumination for motion status.
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Chapter 3

Model-Based Quantification of

Resting Tremor
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Abstract

Parkinson’s Disease (PD) gradually impacts the daily living quality of patients to

a variable degree. As the second most apparent symptom, resting tremor mainly

affects patients’ motor function by impairing their upper extremities. Using inertial

sensors to measure and quantify this symptom has been explored in recent years.

However, applying single inertial sensors is not able to provide complete analysis

on tremor and it affects the accuracy of quantification. In this chapter, a model-

based quantification approach is proposed to improve current quantification. A

human body motion tracking system is employed to estimate joint angles from the

reconstructed human model. By using a model-based approach, the estimation of

joint angle is robust to the contamination from human intentional movements and

ambient noise from the gravity component. Since resting tremor is always appeared as

recurrent movements of upper extremities, upper extremity joint angles are estimated

for quantification. Features that best describe the data characteristics are specially

selected for each joint and extracted. A discrete Hidden Markov Model (HMM)

classifier is trained by features and their corresponding clinical ratings. The accuracy

of classification is cross-validated by the leave-one-out mechanism. In the future

work, Electromyogram (EMG) sensors also can be applied to corresponding muscles

to measure their fluctuations. The tests are isolated from inertial sensor based tests

and are prone to validate the potential help in detecting and quantifying early-stage

resting tremor. Experiments achieve high classification accuracy and preliminary

results prove the practicability of proposed approach and its feasibility in improving

current clinical methods.
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3.1 Introduction

Parkinson’s disease is a degenerative disorder of the central nervous system, charac-

terized by a large number of motor and non-motor features which impact on function

to a variable degree. It is more common in the elderly, with most cases occurring after

the age of 50. As PD progresses, it results in more severe difficulties in activities of

daily life and becomes more challenging in clinical management in advanced PD. PD

shows four major motor features including bradykinesia, resting tremor, rigidity and

postural instability (Jankovic (2008)). Resting tremor is the second most apparent

symptom of PD (after bradykinesia) and it occurs maximally when the limb is at

rest and supported against gravity. The frequency of resting tremor typically ranges

from 3 to 6 Hz and may increase with mental stress or contralateral voluntary

motion (Grimaldi and Manto (2010)). Most resting tremor is prominent in upper

extremity unilaterally (e.g. hand tremors) in early-stage PD and spread to bilateral

later. Therefore, an assessment of how the resting tremor affects patients’ daily life

would be necessary.

Currently, a number of rating scales are applied to assess clinical tremor, such

as UPDRS, Schwab and England Activities of Daily Living Scale, Hoehn and Yahr

Scale, and Webster Scale. Although most of these scales have not been evaluated for

reliability, as the most well established one, UPDRS are commonly used. However,

these scales rely on a clinician’s subjective observations and lack of comparisons with

objective standard. Moreover, the severity of resting tremor varies during daily living

activities, which induces insufficiency for assessing the tremor severity by minutes’

observations in lab or clinic. Thus, an objective quantification method for detecting

and quantifying resting tremor can greatly assist the clinical diagnosis of PD.

Several researchers have proposed their works to detect and quantify tremor. The

research included the detection and assessment of resting tremor by Rissanen et al.

(2008); Askari et al. (2010), discrimination and quantification of resting/action tremor

by Rigas et al. (2012); Salarian et al. (2007); Rissanen et al. (2010, 2011); Heldman
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et al. (2011); Powell et al. (2009) and estimation of tremor severity by Rigas et al.

(2012); Heldman et al. (2011); Patel et al. (2009). Based on the fact that tremor rating

is typically obtained in a clinic with the presence of a clinician, it is unpractical to

capture a patient’s tremor fluctuations throughout the day. In order to study and

evaluate the methods during activities of daily living, Heldman et al. (2011) quantified

the tremor of PD patients during non-standardized activities of daily living tasks in

lab environment. Salarian et al. (2007) took a 4 hours long monitoring to record and

analyze free moving of PD patients, focusing on tremor and bradykinesia. Although

long term monitoring, such as days or weeks long, will definitely valuable for analyzing

how the tremor impact patients’ daily life, no such research had been done because

of the limitations on applying body sensors.

The advantages of using body sensors, such as high accuracy tracking, long-

term monitoring, non-intrusiveness and easy setup have been brought to clinical

assessments for motor abnormalities of PD patients. Accelerometers and gyroscopes

have been used to measure the movement of body segments (Rigas et al. (2012);

Mellone et al. (2011); Palmerini et al. (2011); Salarian et al. (2007); Heldman et al.

(2011); Powell et al. (2009); Patel et al. (2009)). Although the use of accelerometers

can distinctly reflect motion trend, whose drawback is often ignored by current

research. The acceleration of body segments are prone to be contaminated by

intentional motions of the subject him/herself. Accumulated errors and ambient

noises also make the measured acceleration unreliable.

Tremor is mostly appeared as recurrent movements around certain body axis

or the combination of axes. Gyroscopes, as its fundamental function is measuring

angular velocity, perform better than accelerometers and represent legible readings to

tremor. However, current usage of gyroscopes was less taken into consideration than

accelerometers. Although the advantages of BSN for tremor quantification has been

recognized that the correlation of multi-sensor data could generate more meaningful

kinematic information, the practical use of BSN still mostly relies on individual

function of each sensor rather than multi-sensor correlations in real network. Rigas
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et al. (2012) measured the angles between different axes of accelerometers, whereas

additional acceleration generated by intentional movements would still bring errors

to measured results.

Using electromyography (EMG) can be potentially helpful for current researches.

Applying EMG and its combination with inertial sensors for PD diagnosis provided an

objective assessment of tremor through muscular fluctuations, which directly studied

the source of tremor (Askari et al. (2010); Rissanen et al. (2008, 2010, 2011)). At

early-stage of PD tremor, the fluctuation of body segments is mild, which is hardly

noticed visually from acceleration/angular velocity data, whereas EMG can detect

such mild fluctuations from the muscular signal. Consequently, the use of EMG would

help the detection of early-stage PD tremor and improve the assessment of severity.

Furthermore, for the current research that employed sensors to measure kinematic

data, the variation in sensor placement each time could affect the selected features

for the quantification approaches, which could result in errors in tremor estimations.

As a rapid developing research area, wireless BSN based motion tracking system

utilizes multiple wireless sensors mounted on the human body to capture human

motions and build a body network. It isolates traditional visual tracking system

and provides more flexible and convenient motion tracking mechanism without losing

accuracy. Building a body model possesses an irreplaceable advantage, which allows

inertial sensors to be randomly placed on human segments and unnecessarily knowing

their position. By applying the motion tracking technique, a novel model-based

approach for quantifying resting tremor is proposed in this chapter.

The frequent fluctuations of elbow/wrist joint angles of PD patents during resting

are selected as major features for detection and later quantification of resting tremor in

the inertial-based study (first study). Joint angles calculated from our developed IMU

are chosen and angle related features are extracted to achieve appropriate illustrations

for assessment. Unlike most researches using accelerometers to measure tremor

movements, proposed angle related technique can ignore the impact from different

posture of the subject. Because calculated angles have no relationship with the gravity
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component and only absolute angles are employed, the advantage of robustness for

measuring subject’s tremor with more flexibility appears clearly. A discrete HMM is

trained by using selected features which could best describe resting tremors. Both

the start/end and the severity of resting tremor of PD patients are classified and

quantified by trained HMM classifier. The assessment of our model-based tremor

quantification approach is verified by correlations with UPDRS, which was rated by

professional PD clinicians while the patients are holding defined postures.

In the future IMU+EMG study (second study), EMG of patient’s upper arm will

be measured and certain features will be extracted, accompanying those features from

IMU, to potentially enhance the accuracy of both detection and quantification of PD

tremors. After correlated with UPDRS, the correlations for both studies are going to

be compared and examined, to discover the necessity of using both EMG and IMU

in improving IMU-only mechanism.

Compared with current researches, proposed model-based approach not only

provides an alternative and more robust tremor assessment, but patients’ real-time

motion can be monitored through reconstructed human model, which simplifies the

clinician-patient interaction at anytime and anywhere. This advantage of model-based

approach makes it unique among current researches.

3.2 Human Arm Modeling and Joint Angle Esti-

mation

3.2.1 Human Arm Modeling

Most resting tremor is prominent in upper extremity, therefore, arm segments are

primarily chosen for analysis. A human arm can be modeled as a kinematic chain

comprises three arm segments (upper arm, lower arm and hand) and three joints

(shoulder, elbow and wrist). Correspondingly, three IMUs are respectively mounted

on the upper arm near elbow (over the distal humerus), on the lower arm near wrist
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(over the distal flat surface of radius and ulna) and on the dorsal hand surface.

According to the experiences, those positions are considered to have less effects from

soft tissue artifact. An arm has seven rotational DoFs, as are shown in Figure

3.1: shoulder has three (flexion-extension α1, internal-external α2 and abduction-

adduction α3), elbow has two (flexion-extension α4 and pronation-supination α5) and

wrist has two (flexion-extension α6 and radial/ulnar deviation α7).

Figure 3.1: Kinematic modeling of a human arm

A Root Frame R is defined as the global reference and the rotations of shoulder

coordinate Σshoulder are captured within the Root Frame. As the adjacent joint

of shoulder, elbow coordinate Σelbow only considers its rotation corresponding to

Σshoulder, and the wrist joint, similarly, only considers its rotation corresponding to

Σelbow. Each joint considers rotations within prior connected joint frame, so that
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rotations of each joint are closely related to the prior joint’s position and the inertial

data from IMU of each local frame are closely correlated with previous IMU output.

It is clear that the joint motions are caused by the combination of rotations along

different axes, e.g. in Figure 3.1, elbow rotation angle combines α4 and α5 and wrist

rotation angle combines α6 and α7. When joint motion occurs, IMU directly measures

combined effects of involved angles. Meanwhile, the rotation angles along each axis

are simple to be transformed from joint quaternion output of IMU.

Once joint motions are captured, joint quaternion q is computed for representing

3D rotations. Quaternion provides a convenient mathematical notation for repre-

senting orientations and rotations of objects in three dimensions. Quaternion-based

rotation representation is adopted because of its superiority: compared to Euler angles

they are simpler to compose and avoid the problem of singularities (gimbal lock);

compared to rotation matrices they are more numerically stable and more efficient.

Any rotation in three dimensions can be represented as a combination of an axis vector

and an angle of rotation. Quaternion gives a simple way to encode this axis-angle

representation in four numbers and apply the corresponding rotation to a position

vector representing a point relative to the origin in R3. It is a vector quantity of the

form

q = q0 + q1i + q2j + q3k = (q0, ~q) (3.1)

where i,j and k are basis elements of a quaternion, q0 is the scalar component of q and

~q = (q1, q2, q3)T is the vector component. Given that ω = [ω1, ω2, ω3]T represents the

unit axis of rotation and θ ∈ R represents the angle of rotation about ω, another form

for quaternion is as Rq = (cos(θ/2), ω sin(θ/2)). Thus, the corresponding rotation is

extracted by setting

θ = 2 cos−1 q0 , ω =


~q

sin(θ/2)
if θ 6= 0,

0 otherwise,

(3.2)
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The rotation angles of shoulder joint α1, α2 and α3, elbow joint α4, α5 and wrist

joint α6, α7 are expressed by measured quaternion S q̂ for shoulder frame, E q̂ for

elbow frame and W q̂ for wrist frame. Three quaternions integrate the movements of

three arm joints, which achieves high computational efficiency, instead of traditionally

applying the product of seven rotational matrixes from R(α1) to R(α7) for expressing

rotations.

3.2.2 Arm Joint Angle Estimation

By updating quaternions of each joint during the movements, their rotation angles

around each DoF can be decomposed from updated quaternions. However, mounting

an IMU on human body acts more random than to follow any strict regulations and

the orientation of mounted IMU could be in any direction. Thus in order to reliably

measure the rotations of joint, IMU orientation is estimated before arm motions and

the mapping relationship between IMU coordinate and joint coordinate is calculated

for later transformation. A calibration procedure is designed to estimate the IMU

orientation, no matter how a subject mounts it to the body.

IMU shares the same coordinate with the global Frame R, which is an essential

prerequisite. Before mounting the IMU on the body, a human initial posture is

required for both mounting the IMU and coupling local joint frames to the Root

Frame. When an IMU is mounted, its orientation w.r.t. R is calculated from inertial

output. Compared with corresponding joint frame, a rotational transformation is

generated and represented by Y
Xq, which denotes the quaternion representation of

rotational relationship from X frame to Y frame. Thus, during tracking the arm

motions, quaternion of each joint is updated by combination of corresponding IMU

quaternion and their relationship quaternion.

Initially, IMUs are calibrated within R. After being attached to the human arm,

their orientation measurements on the arm are rotated from initial orientation Rq0

to IS q̂ for the IMU corresponding to the shoulder, IE q̂ for the IMU corresponding
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to the elbow and IW q̂ for the IMU corresponding to the wrist. During this process,

the subject is asked to hold their arm still as pre-defined posture in order to mount

the IMUs and calibration. The local coordinate of the shoulder, elbow and wrist

refer to R are initially defined as RS qinitial,
R
Eqinitial and R

W qinitial for the initial posture.

The rotational relationship quaternion Y
Xq between local joint coordinates and their

corresponding IMU orientations are shown as

S
ISq = R

S qinitial ⊗ IS q̂
∗

E
IEq = R

Eqinitial ⊗ IE q̂
∗

W
IW q = R

W qinitial ⊗ IW q̂
∗ (3.3)

where IS, IE and IW denote corresponding IMUs for shoulder, elbow and wrist.

The quaternion product ⊗ is used to describe compounded orientations, which is

based on the Hamilton rule (Horn et al. (1988)). b
aq
∗ = a

bq denotes the conjugate of a

quaternion b
aq. The relationship quaternion S

ISq,
E
IEq and W

IW q will be used for updating

real-time rotation measurements of shoulder RS q̂, elbow R
E q̂ and wrist RW q̂ joint

R
S q̂ = S

ISq ⊗ IS q̂

R
E q̂ = E

IEq ⊗ IE q̂

R
W q̂ = W

IW q ⊗ IW q̂ (3.4)

The resting tremor is generally displayed as the rotations on elbow and wrist

joint, therefore three rotations around these joints are measured for later feature

extraction, which are elbow flexion-extension, elbow pronation-supination and wrist

flexion-extension rotations. In order to avoid the impact of rotation superposition

on transforming Euler angle directly from quaternion, elbow angle is calculated from

intersection angle between upper arm and lower arm and wrist angle is between lower

arm and hand. The joint position calculation is described below.
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Let pAB ∈ R3 be the position vector from the origin of frame A to the origin

of frame B, and RAB ∈ SO(3) (special Orthogonal group) be the orientation of B,

relative to A. A configuration of the system is defined as a pair gAB = (pAB, RAB) ∈

SE(3). The linear form transformation from a given point qA in A to its coordinate

in B is represented as

q̄B =

 qB

1

 =

RAB pAB

0 1

 qA

1

 = ḡABq̄A (3.5)

For each homogeneous matrix ḡ ∈ SE(3), there is a corresponding twist ξ̂ in the

tangent space se(3), defined as

ξ̂ =

 v

ω

∧ =

 ω̂ v

0 0

 ∈ R4×4 (3.6)

where v = −ω × r and r denotes the origin of rotation axis in the twist ξ̂ ∈ se(3).

The exponential of θω̂, eθω̂ = I + ω̂sinθ + ω̂2(1 − cosθ), is an element of SE(3)

and it indicates the rotations. Elements from se(3) are mapped to SE(3) using the

exponential map for twists as shown in following equation

eθξ̂ =

 eθω̂ (I − eθω̂)(ω̂v + ωωTvθ)

0 1

 ω 6= 0

eθξ̂ =

 I vθ

0 1

 ω = 0 (3.7)

If the initial configuration of one IMU corresponding to R is g(0), the final

configuration of the IMU, which contains the final position, corresponding to R with

rotation angle θ is given by

g(θ) = eθξ̂g(0) (3.8)
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Take arm model as an example. The assumed position of shoulder joint is RP̂S

and the translational calculation from shoulder to elbow pSE is achieved by combining

RP̂S and initial spacial relationship of elbow relative to shoulder 0pSE within Σshoulder

pSE = RP̂S + 0pSE (3.9)

As the subject moves, the quaternion of s-IMU (short for the IMU corresponding to

shoulder) R
S q̂ is continuously updated. With shoulder measurements are calculated,

the elbow joint position can be updated by

θS, ωS ← R
S q̂

{θS, ωS, pSE}
exp map
=⇒ RP̂E (3.10)

where RP̂E denotes updated elbow position within R.

For adjacent lower arm, the updated elbow position is RP̂E and the translational

calculation from elbow to wrist pEW is achieved by

pEW = RP̂E + 0pEW (3.11)

Then, the wrist joint position can be updated by

θE, ωE ← R
E q̂

{θE, ωE, pEW}
exp map
=⇒ RP̂W (3.12)

The procedure of updating wrist quaternion R
W q̂ and estimating hand position

RP̂hand in R are similar to get by first calculating the translation from wrist to hand

pWh within Σwrist

pWh = RP̂W + 0pWh (3.13)
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then updating the hand position

θW , ωW ← R
W q̂

{θW , ωW , pWh}
exp map
=⇒ RP̂hand (3.14)

The rotation of each joint of above example are represented by {θS, θE, θW} and

their corresponding twists are {ξ̂S, ξ̂E, ξ̂W}. The exponential map for twists of each

joint is in the form of eθξ̂ and the connection of joints is demonstrated by product of

all joints’ exponential maps

W∏
i=S

eθiξ̂i = eθS ξ̂S · eθE ξ̂E · eθW ξ̂W (3.15)

If we let gwrist,hand(0) represent the initial configuration of hand w.r.t. wrist, then

the final configuration of hand w.r.t. shoulder gshoulder,hand, connected by rotation

angles Θ = (θS, θE, θW ) is given by

gshoulder,hand(Θ) =
W∏
i=S

eθiξ̂i · gwrist,hand(0)

= exp(
W∑
i=S

θiξ̂i) · gwrist,hand(0) (3.16)

The final configuration contains the position of the target joint. Thus, once the

elbow, wrist and hand position are achieved, our interested elbow flexion-extension

and wrist flexion-extension angles can be easily calculated. And based on the

character of elbow pronation-supination rotation, its angle α5 is directly transformed

from e-IMU quaternion R
E q̂.
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3.3 Model-based Tremor Quantification

3.3.1 Tremor Feature Selection

Model-based tremor quantification approach is a practical application of developed

human body motion tracking system in Chapter 2. A human model is reconstructed

from the exponential maps of connected body segments, whose twist movements

are captured and measured by IMUs mounted on the segments. An advanced

characteristic of this tracking technique is its robustness to the IMU placement, which

means the reconstruction of human model can be achieved regardless of the placement

and orientation of corresponding IMU (to the joint).

Figure 3.2: Three major rotations of forearm used for extracting resting tremor
features

The IMUs mounted on arm provide acceleration a, angular velocity ω and

quaternion q of arm segments. The quaternion representation can properly represent

the twist motions of each joint. In this work, the quaternion of shoulder joint R
S q̂,

elbow joint R
E q̂ and wrist joint R

W q̂ are employed and to estimate the position of
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elbow, wrist and hand. As are shown in Figure 3.2, elbow flexion-extension θelbow−flex,

elbow pronation-supination θelbow−pron and wrist flexion-extension θwrist−flex are the

interested angles for monitoring and quantifying resting tremor. As is mentioned

before, the rotation of these angles are the combined effects from α4, α5, α6 and

α7. The quaternion representation is capable of estimating the 3D rotations of

corresponding joint, and if needed, each involved angles can be decomposed from

quaternion to analysis separately. Aiming at those three concerned angles, three

features for describing resting tremor are selected and extracted.

Angle Related Features

Resting tremor in PD is characterized by rhythmic movement induced by rotating

motion of certain joints. According to such character, rotation angles are calculated

and directly segmented for feature extraction. Since the tremor regularly lasts for

long duration of time once it starts, the signal is divided into a 3s duration window

and 75% overlapping. Using a 3s moving window technique considers the fact that a

shorter window would bring heavy computation and a longer window, in the opposite,

would reduce the resolution and accuracy of extraction.

Three angle related features are estimated from the signal, as listed below. Among

the features, 1 is angle based feature; 2 and 3 are frequency-spectrum based features,

which are extracted from the frequency-spectrum of the signal using a fast Fourier

transform.

1. Average angle change rate:

The average change rate of angle (unit: ◦/s) calculates the average changes

of relative joint angle between two connected body segments in a certain time

span. It is defined as

¯̇θ =
θ(i+ 1)− θ(i)

1/f
(3.17)

where f is the frequency of the signal.
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2. Angle energy:

Resting tremor in PD behaves as involuntary movement of body parts within

certain range of frequency, thus, the energy (unit: dB/s) of such harmonic

motion is considered as a feature. It gives a quantitative measure of the wobbling

in certain frequency range. From the frequency-spectrum of the signal, the

energy is given as

E =
1

2

∑
f∈[3−6Hz]

fP (f) (3.18)

where P (f) is signal spectrum.

3. Angle spectrum entropy:

The high energy concentration in specific frequency also reflects the character

of signal. Thus, the spectrum entropy H is calculated as follows

H = −
∑
f

p(f) log p(f) (3.19)

where p(f) = P (f)∑
f P (f)

.

The severity of PD resting tremor correlates with the amplitude and frequency of

the tremor. The three features can commendably describe the character of resting

tremor for each rotation, and the feature vector is defined as

F = [¯̇θ, E,H] (3.20)

For analyzing the arm resting tremor, as mentioned before, three rotation angles,

θelbow−flex, θelbow−pron and θwrist−flex, about elbow and wrist joints are utilized. Hence,

Felbow−flex, Felbow−pron and Fwrist−flex are calculated. Each angle extracts three angle

related features for each 3-second segment, and if monitored signal lasts for 20s, then

there are 23 segments and the total features are 3× 3× 23 = 207. For PD patients,
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extracted features can guarantee the needs for classifying their symptoms and keeping

low computational complexity for quantifying resting tremor.

EMG Features

Two features can be used for extracting EMG signal from the overlapping epochs. The

discrimination of EMG signal from PD patients and healthy control is clear by these

two features, which can greatly help identifying the invisible muscular movement of

PD patients from healthy control.

1. Kurtosis:

The kurtosis is defined as the fourth centered moment of a time series x

k =
E{(x− µ)4}

σ4
(3.21)

where µ is the mean of the sample values, E{∗} is the expectation and σ is

the standard deviation. It can assess the sharpness of the EMG distribution.

Because the PD-like EMG signals are regularly more spiky, the kurtosis is

expected to achieve higher value for PD-like EMG signals than from healthy

controls.

2. Crossing rate:

Crossing rate (CR) expansion is defined by calculating the number of crossing

at given threshold levels. A crossing is described as two neighboring value in a

time series are on opposite sides of the threshold. The width of the expansion is

made on the purpose of obtaining a good and clear representation as possible,

and the height is defined as the maximum value of crossing value at all threshold

level. The CR is calculated as the width/height of the expansion. Since PD-like

EMG signal has narrower CR expansions, the expected CR of PD patients is

lower than healthy controls.
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The severity of PD resting tremor is quantified by both EMG features and angle

related features. The feature vector is defined as

F = [¯̇θ, E,H, k, CR] (3.22)

The total features for the 20-second trial are 3× 5× 23 = 345. Although the number

is a little bigger, it will not bring any reductions in HMM training efficiency, and the

quantification with this feature vector is expected to achieve better results even for

very mild tremor. Besides, it is expected to discover whether there are correlations

between angle changes and EMG signals from the quantification procedure.

3.3.2 Resting Tremor Severity Classification

Classified features are correlated with UPDRS motor scores for quantification. The

feature vectors which contains the patients’ feature data of different severities and

healthy controls’ feature data are sent to a HMM for training. Their corresponding

UPDRS from 0 to 4 (as in Table 3.1) are sent to the HMM as observation states. After

training the HMM, dataset are randomly merged with leave-one-out mechanism to

validate the performance of HMM classification. By going through all the dataset

and leaving each subject outside the dataset once, total results are averaged.

Table 3.1: UPDRS of tremor

0 Absent
1 Slight and infrequently present
2 Moderate; bothersome to patient
3 Severe; interferes with many activities
4 Marked; interferes with most activities

79



Many research in this field apply heuristic rules to classify bio-signal, such

as decision tree and fuzzy logic, or apply statistical rules, such as discriminant

analysis, k-NN and HMM. HMM is a statistical model that can better describe the

characteristics of time dependent signal and can be well characterized as a parametric

random process. It preserves structural information of characteristic signal and no

thresholds used by the heuristic rules are needed in HMM. The supervised studying

mechanism enables HMM to learn new model and optimize current classification

strategy based on its intrinsic probability-based discrimination. Therefore in our

research where multiple features are requested for classification, HMM is chosen

because of its adaptation.

A HMM is defined by a brief triplet λ = (A,B, π), where A is the matrix of

state-transition probabilities, B is observation probabilities and π is the vector of

initial state probabilities. Classic Baum-Welch algorithm is adopted to estimate HMM

parameter by maximizing the likelihood P (O|λ) using an iterative procedure. Viterbi

method is chosen to find the most likely state sequence in the model that produces

the observations and optimize the model construction.

PD patients’ tremor has disparities of duration, amplitude and frequency more

or less. Single HMM model experiences deficiency for applying to different subjects

and multiple features. The retrain procedure for single HMM is time consuming and

short of universality. In order to simplify the HMM training and make general use for

different patients, a discrete, multiple feature HMM is proposed as Figure 3.3 shows.

The state space consists of 5 patterns: 0-4, which represents the tremor severity

from scale 0 to scale 4. The state transitions are equiprobable and the classification

result is mainly determined by the observation probability, which is obtained through

calculating the probability of particular output sequence. In the training process, we

consider possible state transitions, such as the direct transitions between scale 0 (no

visible tremor) and other scales (0-1, 0-2, 0-3, 0-4), the transitions between adjacent

scales (0-1, 1-2, 2-3, 3-4); some jumps between states, such as scale 1-3, 2-4, 1-4, were

ignored because of its impracticability.
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Figure 3.3: HMM for tremor severity classification

The severity classification can be considered as a decoding procedure. Each

moment a transition from scale 0 to other scale begins, it is noted as the start of

tremor; similarly, the end of tremor is defined as the moment that other scale turns

back to scale 0. Corresponding features from a patient’s measurements are selected as

the input of HMM and marked with the severity scale that estimated professionally

by a clinician. After fulfilling model training with dataset including various severity

scales, a leave-one-out mechanism is applied to verify the accuracy of classification

and value the availability of proposed model-based approach.
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3.3.3 Validation of EMG Assistance

The inertial sensors are sensitive to body movements, even mild tremors of PD

patients. However, for the potential elders at very early-stage of PD, tremors

sometimes are too weak to be noticed by both clinician and self-diagnosis, which also

causes difficulty in distinguishing tremor from measured inertial signal. Nevertheless,

the tremor does exist in the muscles for this situation and they can be clearly detected

by EMG signal. EMG measuring is an objective method to assess muscular function,

however it is not yet used for clinical PD diagnosis currently (Rissanen et al. (2008)).

In order to enhance potential PD diagnosis at early-stage and also verify whether

EMG signal could assist to enhance the severity quantification, both EMG and IMU

are employed in the second study.

The severity of UPDRS 0 is considered as no tremor in the first study. However,

the EMG signal could give another explanation to early-stage PD in the second study.

In the second study, severity 0 is divided into 0- and 0+ for more precise classification:

severity 0- represents the state of healthy control, and severity 0+ represents the state

for early-stage PD resting tremor which cannot be visually monitored. The start of

resting tremor is defined, consequently, as the classification from 0- to other state,

and the end of resting tremor is the state that goes back to 0- from other state.

Therefore, the quantification of resting tremor in the first study can achieve decent

PD description with higher HMM training efficiency; whereas in the second study, a

more detailed classification can be more persuasive, even though more sensors and

sample data are needed for HMM training.

The tremor is always weakened when the muscle gets loaded. Therefore, when

the surface EMG is measured, the patients are required to relax and lay the arm

over any object that can hold it stable. The reference electrodes are placed on the

surface of the Biceps Brachii (BB) muscles and surface EMG signal is measured since

both elbow flexion-extension and pronation-supination rotations have direct relation

with BB muscles. For measuring the EMG signal when rotating wrist angles, the
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electrodes are attached to the surface of extensor carpi ulnaris muscle. The EMG of

PD patients has discrepancies in the characteristics from those of healthy subjects,

such as magnitude and frequencies. Features of EMG signal are extracted from related

character and sent to HMM classifier for training as the procedure in the first study.

Besides those selected features, the coherence of EMG and angle changes are analyzed

to validate the correlation of muscular movements and tremor.

The application of EMG in PD resting tremor diagnosis is a validation of EMG

assistance for inertial technique. More accurate classification and severity estimation

are expected for the cooperation of EMG and IMU, whereas EMG electrodes are

required to affix to the surface of muscles, which would bring certain bothers

to subjects. Although the introducing of EMG could improve the accuracy, the

tradeoff between accuracy and convenience is identified. The choice depends on the

requirements under various situations. Again, both the first study and the second

study can verify the availability of proposed model-based approach in quantifying

the severity of PD resting tremor. The study possesses the novelty among current

research in this area, even though it is still at the beginning.

3.4 Experiments

In this section, the experimental procedure and results of proposed classification

method are presented. The tremor simulation is started by defining three different

severities of tremor. Calculated angles of three joints are extracted by applying three

aforementioned feature extraction methods. Selected features are used for HMM

classification and HMM are validated by leave-one-out technique to verify overall

tremor assessment.
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Table 3.2: Postures without subject movements

Tests without movement
T1 Lying on bed
T2 Sitting on chair
T3 Sitting on chair with arm held on table
T4 Standing with hands in rest

Table 3.3: Postures after subject movements

Tests after movement
T5 Repeat T1, after walk around for 10 seconds
T6 Repeat T2, after nose-touching for 5 times
T7 Repeat T3, after grab a cup and drink
T8 Repeat T4, after lift and extend arms for 5 times

3.4.1 Resting Postures

A sequence of eight tasks are performed by each subject, including four tests without

subject’s movements (Table 3.2) and four tests after subject’s movements (Table 3.3).

The postures in the tests are chosen based on routine activities in daily living and it is

convincible to estimate the resting tremor of PD patients under a circumstance that

similar to our daily life. Before the tests, each subject is asked to get familiar with

the tasks and the subject’s tremor is evaluated once using UPDRS. Then the subject

is asked to perform the four tests in the sequence from test 1 to test 4 and each test

holds for 30s. After a rest period of 3-5min, the subject is asked to perform the four

tests after doing some movements, such as described in the sequence from test 5 to

test 8, with a 30s rest period between each two tests. The later four tests are chosen

to evaluate the interference of daily activities to resting tremor. The kinematic data
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measured by IMU and the muscular signal measured by EMG are transmitted to

computer for processing and feature extraction.

3.4.2 Signal Pre-processing

IMU Measurements

Tremor has to be discriminated from patients’ voluntary movements before tremor

classification and severity quantification. In the PD patients’ movements, the low

frequency components (< 3Hz) are typically from patients’ intentional movements,

whereas the high frequency components could consists of different types of tremors

and noise. A 20-second long segments of inertial data are chosen from the middle of

the 30s test data, which is smoothly recurrent and don’t contain sudden changes.

Based on the rhythmic frequency range of resting tremor from 3Hz to 6Hz, a

band-pass finite-impulse-response (FIR) filter is employed to filter resting tremor

signal from kinematic data. This signal pre-processing procedure is applied to

calculated joint angles, based on our previous description, from the data measured by

accelerometers and gyroscopes on the IMU. Finally, the angle data are processed into

overlapping epochs of 3s length with 75% overlap. Subsequent extraction of angle

related features are executed in accordance to processed joint angles as data source.

EMG Measurements

The pre-processing procedure for EMG signal is similar to the pre-processing

procedure of IMU measurements. Firstly, corresponding 20s long segment of EMG

are chosen from the smooth trials during the 30s test data. In order to make typical

spikes and bursts for PD-like EMG signals clear to identify, a band-pass FIR filter

between 3Hz and 12Hz, is applied to the regular PD-like EMG frequency. The signal

segments are also divided into overlapping epochs as for angle signals.
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3.4.3 Resting Tremor Simulation

Feature Extraction

In the resting tremor simulation experiments, three different severities of tremor are

defined: severity 0, represents healthy control without tremor; severity 1, represents

mild tremor, with the frequency around 2Hz; severity 2, represents severe tremor,

with the frequency around 4Hz. A healthy control is asked to simulate these three

severities of tremor while the arm is held on a table. For each angle, the subject is

asked to sequentially perform the tremor in different severity and each severity lasts

for 30s. Finally, 22 segments are captured from elbow flexion-extension and elbow

pronation-supination rotations, 25 segments are captured from wrist flexion-extension

rotations.

For each angle, three features are extracted and denoted by feature A: angle

average change rate; feature B: energy; feature C: spectrum entropy. In Figure 3.4

shows the example of segments of captured elbow flexion-extension angle data and

extracted corresponding features A, B and C. On the bottom shows corresponding

severities.

Tremor Severity Classification

For tremor severity classification, the leave-one-out cross-validation technique is

employed to validate the HMM performance. The training process considers the

transition among state 0,1 and 2. The validation is also applied to single feature

training HMM, which only uses single feature to classify our data, so that to

clearly demonstrate the advantage of using multiple features for HMM training.

The performance of the validation is defined as the average accuracy of matching

classification states with predefined states of segments. Table 3.4-3.6 present the

results of the tremor severity classification of three features trained HMM, including

angle name, classification for each class and average classification accuracy. Table 3.7

presents the results of the tremor severity classification of single feature trained HMM,
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Figure 3.4: Segments of elbow flexion-extension angle data, corresponding features:
average angle change rate, energy and spectrum entropy and severities for HMM
training.
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Table 3.4: Classification results of three features HMM with leave-one-out technique
for elbow flexion-extension angle

Elbow-flex Classified as Leave-one-out Validation
Class 0 1 2 Accuracy per Class

0 6993 0 0 100%
1 0 4662 0 100%
2 0 2 4993 99.96%

Overall Accuracy 99.99%

Table 3.5: Classification results of three Features HMM with leave-one-out technique
for elbow pronation-supination angle

Elbow-pron Classified as Leave-one-out Validation
Class 0 1 2 Accuracy per Class

0 6993 0 0 100%
1 0 4914 0 100%
2 0 0 4662 100%

Overall Accuracy 100%

including angle name, applying feature and validation average accuracy. Besides,

three sets of tremor simulation for each angle are randomly captured without assigned

postures for the subject. The angle related features are extracted and classified by

trained HMM parameters in previous training. The validation accuracy for all the

three angles are 100%.

3.5 Discussion and Summary

A model-based quantification method for assessing the resting tremor in PD is

proposed. IMUs are not limited to be attached to certain positions. Elbow and wrist

joint angles are calculated based on estimated joint positions in space, which provides
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Table 3.6: Classification results of three features HMM with leave-one-out technique
for wrist flexion-extension angle

Wrist-flex Classified as Leave-one-out Validation
Class 0 1 2 Accuracy per Class

0 6576 0 0 100%
1 0 4632 0 100%
2 0 3 4557 99.93%

Overall Accuracy 99.98%

Table 3.7: Classification results of single features HMM with leave-one-out technique

Leave-one-out Validation
Angle Applying Features Average Accuracy

Feature A 93.50%
Elbow-flex Feature B 77.92%

Feature C 97.60%
Feature A 96.45%

Elbow-pron Feature B 96.44%
Feature C 95.05%
Feature A 91.78%

Wrist-flex Feature B 89.66%
Feature C 88.60%
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a solution with more robustness and flexibility, compared with current research which

uses acceleration and/or angular velocity as raw data. Achieved angles are analyzed

and three features are extracted and sent to a HMM for classification. The HMM relies

on time-dependent features and forward-backward probabilities of multiple tremor

symptoms. Thus, the classification accuracy is high.

More dataset is used for training the HMM, more accurate the new data can

be classified. The HMM employed in proposed classifier is discrete, which means

that continuous data are divided and sorted into different bins in HMM model. The

bin to bin transition probabilities are trained previously. If new input are sorted

into the bin that does not have probability to other bins, the classification will

have errors. That is why more training data can definitely increase the accuracy

of HMM classification. Although in our simulation experiments, each segment has 33

continuous data and totally less than 30 segments are collected for HMM training, the

average accuracy is still very high. Therefore, more angle data from different severity

and subjects, trained HMM would at least maintain such high classification accuracy.

Current misclassifications when validating the HMM occurs only to neighbored classes

region, which is difficult even for experienced clinician to discriminate adjacent tremor

severities. These misclassifications in our tests, however, are very few, which proves

the HMM classifier to be high accuracy for classification.

There are no direct comparisons with the results of current research, due to the

differences in choosing dataset materials (subject numbers), classification methods

and validation metrics. However, a rough comparison can be obtained. The accuracy

of tremor recognition in the work of Salarian et al. (2007) is summarized by sensitivity

and specificity, which are 99.5% and 94.2% in comparison to a video reference; the

tremor correlation to the UPDRS is r=0.87 and bradykinesia correlation is r=-0.83

by Pearson correlation. Patel et al. (2009) implement a support vector machine for

classification and use estimation error to define the performance, which is 2.5%. In

the work of Rigas et al. (2012), a HMM is also implemented to classify both resting

and action tremor, and the overall accuracy is 87% in correlation with UPDRS.
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Developing a reliable and convenient quantification approach for PD symptom

is considerably important from the clinical point of view. It can be used for in-lab

evaluation, off-line follow-up and remotely monitoring the progression of PD after

therapy. Proposed new approach may change the clinician’s concentration from short

term in-lab observation to long term assessment during our daily life, since the fact

that PD symptoms vary throughout the day. In addition, developed IMU is small, low

energy consumption and accessible for capturing daily motions. Thus, it is potentially

useful for home, outdoor and clinical environments to evaluate the progression of

PD. Proposed model-based quantification approach can make the diagnosis of resting

tremor more flexible.

In the future work, both inertial information and EMG of PD patient are going to

be measured for the quantification of resting tremor. For early stage PD or potential

PD monitoring, the timely diagnosis would be helpful for clinician to assess the

evolutive disease and make early decision for treatment.
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Chapter 4

Model-Based Quantification of

Lower Extremity Bradykinesia
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Abstract

This chapter presents a model-based quantification approach for bradykinesia by

assessing the motor functions of lower extremity. Bradykinesia is one of the most

apparent symptoms of Parkinson’s disease. It mainly affects patients’ motor function

by impairing limb motor functions, which also could cause many related problems.

Currently, a lot of research is focusing on the quantification of upper limb bradykinesia

by using inertial sensors to analyze certain motions and also focusing on patients’ gait

using specialized tools. However, very little research is working on lower extremity

bradykinesia, which affects human motor ability the most. Therefore in this chapter,

we focus on the quantification of lower extremity bradykinesia. A human body

motion tracking system is utilized to build a human body model. The joint rotations

around different axis are closely correlated with others within the network, so that

the estimation of joint angles is robust to the contamination from human intentional

movements and gravity component. Patients with different symptom severities suffer

from variable degrees of leg joint bending. Therefore, the rotation angles of hip and

knee joints are estimated for quantification. Features that best describe the angle

character are selected and extracted. A discrete HMM classifier is trained by features

and corresponding clinical ratings. The accuracy of classification is cross-validated by

leave-one-out mechanism. Since the feature discrepancy of bradykinesia and healthy

subjects in walking is distinct, high classification accuracy of preliminary results

proves that proposed objective approach is feasible in quantifying lower extremity

bradykinesia.
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4.1 INTRODUCTION

Bradykinesia is usually regarded as the most apparent symptom of PD. It is defined

as the abnormal slowness of movement and it not only affects the upper and lower

limb motor functions (Kim et al. (2011); Jun et al. (2011); Salarian et al. (2007)), but

also patients’ gait and body posture during walking through the whole stage of PD

(Heldman et al. (2012); Koop et al. (2008); Louie et al. (2009)). The traditional way

to assess how bradykinesia impacts on the daily life of PD patient is performing a

quantification of bradykinesia. Based on the dominant appearance, the quantification

of bradykinesia can be focusing on the motor functions of impaired limb and/or gait

with various observations and measurement tools.

It is necessary to accurately assess the motor symptoms for diagnosis, treatment

and continuous monitoring of pathologic development. Currently, the most widely

used clinical rating scale for evaluating PD motor disability, is part III (motor

disability score) of the Unified Parkinson’s Disease Rating Scale (UPDRS-III), which

rates a range on 0-none, 1-minimal, 2-mild, 3-moderate, and 4-marked scale. However,

it relies on subjective experiences of a clinician and the patients’ physical conditions

during the time visiting a clinic. An objective quantification method for persistent

monitoring and quantifying bradykinesia can be of great help in the diagnosis of PD.

Current studies have been focusing on using gyroscope sensor to measure the

rotation of human limb for bradykinesia quantification because it tolerates the

effects of gravity. The assessment of upper limb bradykinesia during forearm (wrist)

pronation-supination rotation is well studied. The quantification applies root-mean-

squared angular velocity in the work of Jun et al. (2011); Salarian et al. (2007);

Koop et al. (2008); Louie et al. (2009), measured by a gyro sensor attached to the

dorsal part of the distal forearm. The authors instruct their subject to pronate and

supinate their hands repetitively as large amplitude and fast as possible for short

term tests (less than 30 s). Besides angular velocity, rotation angle integrated from

angular velocity is also estimated as a performance parameter for quantification (Jun
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et al. (2011); Salarian et al. (2007)). Such as in the work of Kim et al. (2011); Koop

et al. (2008); Louie et al. (2009), the quantification of bradykinesia is conducted

by assessing tapping velocity, angular velocity and integrated finger angle in finger

tapping task. These performance parameters are statistically analyzed and evaluated

by the correlation with bradykinesia score rated by clinicians.

Impaired gait is a typical manifestation of PD bradykinesia. Human motion

tracking systems are capable of quantifying impaired gait of PD patients, e.g.

mechanical tracking and optical tracking. However, these systems are not designed

for home use due to their system complexity and pricy cost. Applying sensors to

quantify gait is a more flexible and less cumbersome way to subjects. Actigraph

system, such as Nike+ in shoe sensor, is focusing on recording overall activities and

calculate user steps approximately. However, this sensor cannot analyze abnormal

gait. Other sensor, such as pressure sole, has been employed to quantify abnormal gait

by analyzing the change of center of gravity. However, quantifying PD bradykinesia

only from gait is indirect, because the gait of PD patients is closely correlated with

the motor function of lower extremity.

Presently, there is very little research on quantifying lower extremity bradykinesia

using body sensors. It provides a good opportunity to explore the availability of

using wearable sensors for the quantification of bradykinesia. Heldman et al. (2012)

place a motion sensor unit on the heel of subject and four motor assessment tests

(toe-tapping, leg agility, gait and freezing of gait) are executed. Angular velocity,

integrated angle, integrated linear velocity and corresponding task time are calculated

as quantitative features and used to develop multiple linear regression models for

predicting motor scores. The deficiency of this study is the lacking of quantified

analysis for leg joints when quantifying lower extremity bradykinesia. As a matter

of fact, bradykinesia impacts the motor function of PD patients on leg movement

gradually and further on patients’ gait. Thus, using body sensors to directly assess

leg movement performs better in quantifying lower extremity bradykinesia.
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Related research also includes the posture of trunk, which has close correlation

with different stages of PD and severities of bradykinesia. Several studies have

researched on the posture stability of PD patients with instrumented balance analysis

(e.g. force platform) or more advanced posture analysis with body sensors (Maetzler

et al. (2012); Palmerini et al. (2011); Blaszczyk and Orawiec (2011)). In those works,

the analysis of posture and stability needs subjects in quiet standing and to follow

some sway protocols. Sway related parameters are measured by an inertial sensor

attached to lower back. However, the posture of trunk can be considered from a

different point of view other than the standing stability analysis. In the early stage of

PD, the posture of bradykinesia patient appears very little differences from healthy

control, but the trunk leans forward as the symptom progresses during standing and

walking (Palmerini et al. (2011)). It proves that PD patients with higher severity

are highly risky to fall (Blaszczyk and Orawiec (2011)). The trunk posture could

help quantify bradykinesia and besides, the trunk leaning forward could happen to

healthy control with humpback. Thus, trunk posture can be a predictable way for

many situations, such as discriminate bradykinesia and detect falling.

None of existing approaches to bradykinesia quantification consider the concurrent

motions of adjacent body segments, because they merely analyze single joint/segment

by single inertial sensor. However, for human limb bradykinesia, a thorough

quantification of all adjacent joints will be more efficient. In Chapter 2, a body motion

tracking system is developed, which correlates multiple wireless IMUs mounted

on the body segments to build a body model for motion tracking. This model-

based technique allows IMUs to be arbitrarily placed on body segments and it is

unnecessary to know their position in advance. Besides tracking single body segment

and estimating its motor function, it also makes it feasible to analyze the relationship

between any segments of the model. The model parameters such as joint positions in

global frame and angle between body segments can be estimated easily. Therefore, a

model-based approach for quantifying bradykinesia from lower extremity is introduced

in this chapter.
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PD patients with lower extremity bradykinesia suffer from impaired leg motor

ability. The proposed model-based quantification approach is capable of estimating

the rotation angle of hip and knee joints according to updated position and orientation

of thigh and shank segments in the global frame. Since higher step frequency

and shorter step length are the representative behavior for discriminating lower

extremity bradykinesia from other PD symptoms, angle and frequency-spectrum

based features are consequently chosen for quantification: average angle change rate,

energy and entropy of both knee and hip joint angle. Selected features can best

describe low extremity bradykinesia characters. Extracted features are correlated

with UPDRS-III scores that rated by clinician and they are used for training classifier

for future classification of new data. Model-based approach provides an effective and

convenient quantification solution that overcomes the limitation of current subjective

observations in labs. Moreover, the wireless capability of applied tracking system

can upload monitored data to the database, which enables the remote diagnosis and

clinician-patient interactions.

4.2 Human Lower Extremity Modeling and Joint

Angle Estimation

4.2.1 Human Lower Extremity Modeling

For bradykinesia in PD, the impairment of motor function on lower extremities affects

the daily living of patients more than upper extremities. Therefore, lower extremities

are chosen for modeling and analysis. A human lower extremity (leg and foot) can be

modeled as a kinematic chain comprises three segments (thigh, shank and foot) and

three joints (hip, knee and ankle). It has five rotational Degrees of Freedom (DoFs),

as are shown in Figure 4.1: hip has three (flexion-extension α18, internal-external

α19 and abduction-adduction α20), knee has one (flexion-extension α21) and ankle is

considered as 1-DoF joint (flexion-extension α22). In this chapter, patients’ gait does
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not covered in the research and ankle rotation is excluded. Correspondingly, two

IMUs are mounted on the front thigh near knee and on the front lower shank near

ankle, for hip and knee joint. According to our previous research, those positions are

considered to have less effect from soft tissue artifact.

A global frame R is defined and the rotations of hip coordinate Σhip are captured

within R. As the adjacent joint of hip, knee coordinate Σknee only considers its

rotation corresponding to Σhip, so that rotations of knee joint are closely related to the

hip joint’s position and the inertial data from IMU of knee frame are closely correlated

with hip mounted IMU’s output. Ankle joint position is related to both knee joint

position and the posture of shank rotating around knee joint. The absolute angles

of hip and knee are estimated from the actual posture of connected body segments

within R. The absolute angle of hip is estimated by the spacial posture of lower

trunk and thigh and the angle of knee is estimated by the spacial posture of thigh

and shank. During walking, lower trunk is assumed to be vertical. IMUs are attached

to body segments and, therefore, directly measure segment orientation generated by

combined movements from all the prior joints.

Joint motions are captured by corresponding IMU and the joint quaternion q

computed inside the IMU is outputted for representing 3D rotations. Quaternion

provides a convenient mathematical notation for representing orientations and

rotations of objects in 3D. Quaternion-based rotation representation is adopted in

view of its superiority, compared to Euler angles they are simpler to compose and

avoid the problem of singularities (gimbal lock), and compared to rotation matrices

they are more numerically stable and more efficient. Any rotation in three dimensions

can be represented as a combination of an axis vector and an angle of rotation.

Quaternion gives a simple way to encode this axis-angle representation in four

numbers and apply the corresponding rotation to a position vector representing a

point relative to the origin in R3. It is a vector quantity of the form

q = q0 + q1i + q2j + q3k = (q0, ~q) (4.1)

98



Figure 4.1: Kinematic modeling of a human lower extremity
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where i,j and k are basis elements of a quaternion, q0 is the scalar component of q and

~q = (q1, q2, q3)T is the vector component. Given that ω = [ω1, ω2, ω3]T represents the

unit axis of rotation and θ ∈ R represents the angle of rotation about ω, another form

for quaternion is as Rq = (cos(θ/2), ω sin(θ/2)). Thus, the corresponding rotation is

extracted by setting

θ = 2 cos−1 q0 , ω =


~q

sin(θ/2)
if θ 6= 0,

0 otherwise,

(4.2)

The rotation angles of hip joint α18, α19 and α20 and knee joint α21 are expressed

by measured quaternion H q̂ for hip frame and K q̂ for knee frame. Two quaternions

interpret the movements of two lower extremity joints. Applying quaternion achieves

high computational efficiency, instead of traditionally applying the product of several

rotational matrixes, such as from R(α18) to R(α21) for expressing rotations of lower

extremity.

4.2.2 Angle Estimation of Leg Joints

By updating quaternions of each joint during the movements, their rotation angles

around each axis can be decomposed from updated quaternions. However, mounting

an IMU on human body acts more random than to follow any strict regulations

and the orientation of mounted IMU could be in any direction. Thus, in order to

reliably measure the rotations of joint, IMU orientation is calibrated, and the mapping

relationship between IMU and joint coordinate is calculated for later transformation.

A calibration procedure is designed in our previous research to estimate the IMU

orientation, no matter how a subject mounts it to the body.

IMU shares the same coordinate with R, which is an essential prerequisite. Before

mounting IMUs on the body, a human initial posture is required for both mounting

IMUs and coupling local joint frames to R. When an IMU is mounted, its orientation

with respect to (w.r.t.) R is calculated from inertial output. Compared with
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corresponding joint frame, a rotational transformation is generated and represented

by Y
Xq, which denotes the quaternion representation of rotational relationship from

X frame to Y frame. Thus, during tracking the leg motions, quaternion of each joint

is updated by a product of corresponding IMU quaternion and their relationship

quaternion.

Initially, IMUs are calibrated within R. After being attached to the leg, their

orientation measurements are rotated from initial orientation Rq0 to IH q̂ for the IMU

corresponding to the hip and IK q̂ for the IMU corresponding to the knee. During

this process, the subject is asked to standing still as pre-defined posture in order to

mount the IMUs and calibration. The local coordinate of the hip and knee refer to

R are initially defined as RHqinitial and R
Kqinitial for the initial posture. The rotational

relationship quaternion Y
Xq between local joint coordinates and their corresponding

IMU orientations are shown as

H
IHq = R

Hqinitial ⊗ IH q̂
∗

K
IKq = R

Kqinitial ⊗ IK q̂
∗ (4.3)

where IH and IK denote the corresponding IMUs for hip joint and knee joint. The

quaternion product ⊗ is used to describe compounded orientations, which is based

on the Hamilton rule Horn et al. (1988), and b
aq
∗ = a

bq denotes the conjugate of a

quaternion b
aq. The relationship quaternion H

IHq and K
IKq will be used for updating

real-time rotation measurements of thigh around hip R
H q̂ and shank around knee R

K q̂

joint:

R
H q̂ = H

IHq ⊗ IH q̂

R
K q̂ = K

IW q ⊗ IK q̂ (4.4)

Lower extremity bradykinesia gradually impacts motor function of lower extrem-

ity. When the symptom gets worse, the patient is suffering highly bended joint
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during walking and in difficulty to stand up caused by hip rotation. Based on this,

two rotation angles are measured for feature extraction and quantification, which

are hip flexion-extension and knee flexion-extension. In order to avoid the impact of

rotation superposition on estimating Euler angles directly from quaternion, hip angle

is calculated from intersection angle between lower trunk and thigh, knee angle is

between thigh and shank. The estimation of joint position and segment posture are

described below.

The assumed position of the hip (H) joint is RP̂H and the translational calculation

from hip to knee (K) pHK is achieved by combining RP̂H and initial spacial relationship

of knee relative to hip 0pHK within Σhip:

pHK = RP̂H + 0pHK (4.5)

As the subject moves, the quaternion of hip-IMU (short for the IMU corresponding

to hip) RH q̂ is continuously updated. With hip measurements are calculated, the knee

joint position can be updated by:

θH , ωH ← R
H q̂

{θH , ωH , pHK}
exp map
=⇒ RP̂K (4.6)

where RP̂K denotes updated knee position within R.

For adjacent shank segment, the updated knee position is RP̂K and the transla-

tional calculation from knee to ankle (A) pKA is achieved by:

pKA = RP̂EK + 0pKA (4.7)

Then, the position of ankle joint can be updated by:

θK , ωK ← R
K q̂

{θK , ωK , pKA}
exp map
=⇒ RP̂A (4.8)
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The rotations of two joints of leg are represented by {θH , θK} and their

corresponding twists are {ξ̂H , ξ̂K}. The exponential map for twists of each joint

is in the form of eθξ̂ and the connection of joints is demonstrated by product of all

joints’ exponential maps:
K∏
i=H

eθiξ̂i = eθH ξ̂H · eθK ξ̂K (4.9)

and if we let gknee,ankle(0) represent the initial configuration of ankle w.r.t. knee joint,

the final configuration of ankle w.r.t. hip ghip,ankle, connected by rotation angles Θ =

(θH , θK) is given by

ghip,ankle(Θ) =
K∏
i=H

eθiξ̂i · gknee,ankle(0)

= exp(
K∑
i=H

θiξ̂i) · gknee,ankle(0) (4.10)

The final configuration contains the position of the target joint. Thus, once the knee

and ankle joint position are achieved, our interested hip flexion-extension and knee

flexion-extension angles are easily estimated.

4.3 Model-based Bradykinesia Quantification

4.3.1 Bradykinesia Feature Selection

Model-based bradykinesia quantification approach is another practical application of

developed human body motion tracking system. A trunk and lower extremity model is

reconstructed from the exponential maps of connected body segments, as introduced

in Section 4.2, whose twist movements are captured and measured by IMUs mounted

on the segments. Developed motion tracking mechanism is advanced by its robustness

to IMU placement, which means the reconstruction of human model can be achieved

regardless of the placement and orientation of corresponding IMU (to the joint).
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Figure 4.2: Two rotations of lower extremity used for extracting bradykinesia
features
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An IMU provides acceleration a, angular velocity ω and quaternion q of leg

segments. The quaternion representation can properly represent the twist motion of

each joint, therefore, the quaternion of hip joint RH q̂ and knee joint RK q̂ are employed

and to estimate the position of knee and ankle joint. As are shown in Figure 4.2,

hip flexion-extension θhip−flex and knee flexion-extension θknee−flex are the interested

angles for monitoring and quantifying bradykinesia. The quaternion representation

is capable of estimating the 3D rotations of corresponding joint, and if needed, each

involved angles can be decomposed from quaternion to analyze separately. Aiming

at those two concerned angles, features for quantification are mainly selected and

extracted from angle related parameters.

Angle Related Features

Bradykinesia in PD is characterized by higher step frequency and shorter step length

than healthy control, induced by impaired motor function of lower extremity. Refer to

these characters, rotary angle of corresponding segments are calculated and directly

segmented for feature extraction. The angle data is divided into a 3s duration window

and 75% overlapping. Using moving window technique considers that a shorter

window would bring heavy computation and a longer window, in the opposite, would

reduce the resolution and accuracy of extraction.

Three angle related features are extracted from the angle data, as listed below.

Among the features, 1 is angle-based feature; 2 and 3 are frequency-spectrum based

features, which are extracted from the frequency-spectrum of the signal using the fast

Fourier transform. In order to remove the effects from tremor and high frequency

noise, the concentrated frequency for low extremity bradykinesia is 1-3Hz and for

healthy control is 0.3-1Hz for normal walking.

1. Average angle change rate:

The average change rate of angle (◦/s) calculates the average changes of relative

joint angle between two connected body segments in a certain time. It is defined
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as

¯̇θ =
θ(i+ 1)− θ(i)

1/f
(4.11)

where f is the frequency of the signal.

2. Angle change energy:

Bradykinesia behaves as higher frequency but lower amplitude than healthy

control when leg segments rotating around joints, thus, the energy (unit: dB/s)

is considered as a feature. From the frequency-spectrum of the signal, the energy

is given as

E =
1

2

∑
fP (f) (4.12)

where P (f) is signal spectrum. It is expected to be lower for patients with

bradykinesia than for healthy controls.

3. Spectrum entropy:

The high energy concentration in specific frequency also reflects the character

of signal. Thus, the spectrum entropy H is calculated as follows:

H = −
∑
f

p(f) log p(f) (4.13)

where p(f) = P (f)∑
f P (f)

. The entropy measures the negative natural logarithm of

the conditional probability that two sequences in a signal that are similar for m

points are similar for m+ 1 points. For the pure sine wave, it closes to 0. Thus,

it is expected to be lower and closer to 0 for healthy controls than patients with

bradykinesia.

The severity of PD bradykinesia correlates with the amplitude and frequency of

the joint rotation. The three features can commendably describe the character of

bradykinesia for lower extremity, and the feature vector is defined as:

F = [¯̇θ, E,H] (4.14)
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Two angles, θhip−flex and θknee−flex, which rotate about hip and knee joint are utilized.

Corresponding Fhip−flex and Fknee−flex are calculated. Lower extremity angle are

extracted three angle related features for each 3 seconds segment, and if monitored

signal lasts for 20 seconds, then there are 23 segments and the total features are 2×3×

23 = 138. For PD patients, extracted features clearly describe the symptom compared

with healthy control, and it guarantees the needs for classifying their bradykinesia

symptom and keeping low computational complexity for quantification.

4.3.2 Bradykinesia Severity Classification

Classified features are correlated with the comprehensive score of UPDRS III for

quantification. The feature vector which contains features of both healthy control and

subjects with different severities are sent to HMM for training. Their corresponding

UPDRS (as in Table 4.1) are sent to HMM as observation states. After training the

HMM, dataset are randomly merged with leave-one-out mechanism to validate the

performance of HMM classification. By going through all the dataset and leaving

each subject outside the dataset once, total results are averaged.

Table 4.1: UPDRS of bradykinesia

0 None
1 Minimal slowness
2 Mild degree of slowness
3 Moderate slowness
4 Marked slowness

Many research in this field apply heuristic rules to classify bio-signal, such

as decision tree and fuzzy logic, or apply statistical rules, such as discriminant

analysis, k-NN and HMM. HMM is a statistical model that can better describe the

characteristics of time dependent signal and can be well characterized as a parametric
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random process. It preserves structural information of characteristic signal and no

thresholds used by the heuristic rules are needed. The supervised studying mechanism

enables HMM to learn new model and optimize current classification strategy based

on its intrinsic probability-based discrimination. Therefore in our research where

multiple features are requested for classification, HMM is chosen because of its

adaptation.

A HMM is defined by a brief triplet λ = (A,B, π), where A is the matrix of

state-transition probabilities, B is observation probabilities and π is the vector of

initial state probabilities. Classic Baum-Welch algorithm is adopted to estimate HMM

parameter by maximizing the likelihood P (O|λ) using an iterative procedure. Viterbi

method is chosen to find the most likely state sequence in the model that produces

the observations and optimize the model construction.

In order to train the HMM to make general use for different patients, a discrete

HMM trained by multiple features is proposed as Figure 4.3 shows.

The state space consists of 5 patterns: 0-4, which represents the severity from

scale 0 to scale 4. The state transitions are equiprobable and the classification

result is mainly determined by the observation probability, which is obtained through

calculating the probability of particular output sequence. In the training process, we

only consider possible state transitions, such as the direct transitions between scale

0 (no visible tremor) and other scales (0-1, 0-2, 0-3, 0-4), the transitions between

neighbor scales (0-1, 1-2, 2-3, 3-4). Even though in practice, the data extracted from

a period of time mostly belong to one state, it is practical to take the transitions

between different scales into consideration, since the purpose of developed system is

for long term monitoring but short term in-lab observations.

The severity classification can be considered as a decoding procedure. Each

moment a transition from scale 0 to other scale begins, it is noted as the start of

the symptom; similarly, the end is defined as the moment that other scale returns to

scale 0. Corresponding features from a subject’s measurements are selected for the

HMM and marked with the severity scale that estimated professionally by a clinician.
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Figure 4.3: HMM for bradykinesia classification

After fulfilling the HMM training with dataset including various severity scales, a

leave-one-out mechanism is applied to validate the classification and evaluate the

availability of proposed model-based approach.

4.4 Experiments

In this section, the experimental procedure and results of proposed classification

method are presented. The simulation of lower extremity bradykinesia is started

by defining two different cases: none and moderate. Calculated angles of two joints

(hip and knee) are extracted by applying aforementioned feature extraction methods.
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Selected features are used for training HMM classifier, which is followed by leave-one-

out validation to assess the model-based quantification.

4.4.1 Experimental Design

The task performed for quantification of bradykinesia is walking. Before the test, each

subject is asked to get familiar with the task and his/her bradykinesia is evaluated

once using UPDRS III. After mounting the IMUs on the body and calibration process,

the subject is asked to stand and then walk four yards forward and stop. For each

subject, the walking data from the test are used to train the HMM for walking with

corresponding scale as the observation state. The subjects involved in the tests include

healthy subjects and bradykinesia subjects. The purpose of the task is using model-

based approach to discriminate PD patients with different severities of bradykinesia

from healthy control and to quantify bradykinesia from lower extremity.

4.4.2 Signal Pre-processing

Our model-based approach can estimate the angle of lower extremity joints during

walking. The frequency-spectrum signal for feature 2 and 3 is pre-processed

by a bandpass filter to eliminate high frequency noise and the frequency of

involuntary movement, such as tremor. The main frequency range for lower extremity

bradykinesia had not been reached a consensus, since very little research in this

field. Referred to the observation of patient’s walking from videos who is suffering

bradykinesia, the frequency is higher than healthy control (0.3-1Hz) and about in

the range of 1-3Hz, verified by simulated walking. A clear evaluation of bradykinesia

could be achieved if tremor signal (3-12Hz) can be removed from the signal.

Erroneously applying bandpass filter would remove valuable information, thus the

chosen of filter range for lower extremity bradykinesia is 1-3Hz. Once removed, the

tremor would not impact on our quantification results.
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4.4.3 Bradykinesia Simulation

Feature Extraction

The bradykinesia simulation tests the walking of healthy controls and moderate

bradykinesia patients. Two healthy controls are asked to simulate the walking of

a PD patient with moderate bradykinesia and also perform the walking of a healthy

control with normal speed. Subjects are asked to stand first and walk four yards

forward and stop. Each subject simulates bradykinesia walking twice and normal

walking once. For each joint, 29 segments are captured from two subjects’ simulation

data, which contains 1358 samples. In these segments, 19 segments are from simulated

bradykinesia and 10 segments are from normal walking. Since the angle data from

both hip and knee joint are sampled at the same time, the total of 58 segments

is processed. Figure 4.4 show a screenshot of the video taken during the test and

concurrently reconstructed human motion by developed motion tracking system.

For each angle, three features are extracted: angle average change rate, energy

and spectrum entropy. Figure 4.5 and Figure 4.6 show the segments of captured joint

angle data and extracted features. On the bottom are corresponding severities for

HMM training.

Bradykinesia Severity Classification

For bradykinesia severity classification, the leave-one-out cross-validation technique

is employed to validate the HMM performance. The training process considers the

transition among state 0 and 1. The validation is also applied to single feature training

HMM, which only uses single feature to classify our data, so that to compare with

training HMM using multiple features. The features we selected for extraction from

angle data can clearly describe the characteristics of healthy control walking and

bradykinesia walking, and discrepancies in angle-related features can be expected:

the symptoms of lower extremity bradykinesia during walking is higher frequency,

smaller joint angle and smaller step length, meanwhile, the features are based on
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Figure 4.4: A screen shot of the video during the test and concurrently
reconstructed body motions

frequency-spectrum and change rate of angle. The pertinent features guarantee the

efficiency of classification and its high accuracy.

The performance of validation is defined as the average accuracy of matching the

classification states with predefined states of segments. The results of the bradykinesia

severity classification, by validating simulated data from both hip joint and knee joint,

achieve 100% accuracy. Benefit from appropriate features, in our tests, the single

feature trained HMM also achieves 100% accuracy for classification, as in Table 4.2

presents.

4.5 Discussion and Summary

In this chapter, a model-based quantification approach for classifying and assessing

low extremity bradykinesia of PD patients is proposed. The model-based approach
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Figure 4.5: Segments of hip joint angle data, extracted three features and
corresponding severities for HMM training.
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Figure 4.6: Segments of knee joint angle data, extracted three features and
corresponding severities for HMM training.
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Table 4.2: Classification results of three features HMM with leave-one-out technique
for hip and knee joint angle

Hip Classified as Leave-one-out Validation
Class 0 1 Accuracy per Class

0 957 0 100%
1 0 401 100%

Overall Accuracy 100%

Knee Classified as Leave-one-out Validation
Class 0 1 Accuracy per Class

0 957 0 100%
1 0 401 100%

Overall Accuracy 100%

is advanced for its robustness to the arbitrary placement of IMUs, since a human

model can be reconstructed and it does not limit the attachment of IMUs to certain

positions. It simplifies the setup of the system without losing accuracy. Moreover, it

provides clear information about joint motions and spatial correlation between body

segments of a human model. Compared with current research which regularly uses

acceleration and/or angular velocity as raw data, model-based approach estimates

the joint angles based on updated neighbor joint position, which could neglect the

impact from ambient noises, such as gravitational component and other intentional

body movements. Estimated angles are analyzed by extracting three angle-related

features which best describe the signal characteristics and sent to a discrete HMM

for training and classification. HMM classification results correlate with clinical

UPDRS to evaluate and quantify the severity of bradykinesia. In our simulated tests,

appropriate features and HMM classifier conduce to high classification accuracy.

If the HMM is trained with a larger dataset, the new data can achieve more

accurate classification. The HMM employed in proposed classifier is discrete, which

means that continuous data are divided and sorted into different bins in HMM model.
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The bin to bin transition probabilities are trained previously. If new input are sorted

into the bin that does not have probability to other bins, the classification will have

errors. That is why more training data can definitely increase the accuracy of HMM

classification. Besides, it is apparent that choosing appropriate features can reduce

the bin numbers when training the HMM classifier, thereby increasing the efficiency

of classification.

Due to the matter of lacking real dataset, PD bradykinesia walking is simulated

by healthy controls. In order to make sure the comparability with real bradykinesia

walking, videos are used as references. Because of the apparent discrepancy between

the bradykinesia walking and healthy walking, the accuracy of HMM classification is

expected to be high. Even though different healthy subjects are requested to simulate

the pathological walking, to simulate diverse severities without references is a tough

problem. Besides, people have different gaits but more or less similar leg movements

during walking. That is the reason why the two subjects in the normal walking tests

have similar joint angles of lower extremity. If more angle data from different severities

and subjects are collected, the practicability of the system will be more persuasive,

nevertheless with more training data probability-based HMM classifier would still

maintain high classification accuracy. Currently, very little research are focusing on

the analysis of motor function of lower extremity and quantification of joint motions.

Thus, there is no direct comparison with others, which also illustrates the novelty of

proposed approach in the quantification of lower extremity bradykinesia.

Developing a reliable and convenient quantification approach for PD symptom

is considerable important from the clinical point of view. It can be used for in-lab

evaluation, off-line follow-up and remotely monitoring the progression of PD after

therapy. The new approach may change the clinician’s concentration from short term

in-lab observation to long term assessment during daily life, since the fact that PD

symptoms vary throughout the day. In addition, our system is small, low energy

consumption and accessible for capturing daily motions, thus, it is potentially usable

in home, outdoor and clinical environments to evaluate the progression of PD. The
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proposed model-based quantification approach can make the diagnosis of bradykinesia

more flexible. Especially for advanced stage patients who have difficulties in walking,

the remotely diagnosis would be helpful for clinician to assess the evolutive disease

and make decisions for the appropriate treatments. Proposed approach can be applied

to the monitoring of body status of the elderly, such as discriminating fall from lay

down, and it is capable of quantifying other symptoms of PD, such as the progression

of trunk stability of body bradykinesia and deterioration of rigidity.
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Chapter 5

Inertial-Based Pedestrian

Positioning for Indoors
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Abstract

This chapter presents a wearable IMU based pedestrian positioning system for

indoors. A HMM is introduced to pre-process the sensor data and classify walking

states. It also complements local minimum angular rate value for capturing the

occurrence of each step. ZUPT algorithm is implemented to correct the walking

velocity at step stance phase when errors existed. A novel acceleration-based approach

combined with gyroscope data is implemented to achieve a better heading estimation.

Proposed method is capable of reducing accumulated drift errors from gyroscopes and

avoiding electromagnetic perturbance to magnetometers compared with conventional

PDR system. Experimental results demonstrate the positioning system achieves

approximately 99% accuracy.

119



5.1 Introduction

Outdoor navigation and tracking systems have been developed and widely used for

decades. Some technologies, such as Global Positioning System (GPS) and cellular-

based approaches, are able to provide accurate geographical and absolute position

information. However, GPS is unreliable in dense “urban canyons” and not available

inside the buildings due to the signal blockage. A few hybrid systems improve the

performance. The integration of GPS and local beacon positioning systems achieve

better results in calculating one’s position. This technique could also be extended

to indoor environment, which is referred to as “network based positioning systems”

(Renaudin et al. (2007)). They use pre-installed beacons as infrastructure to locate

and track moving objectives, i.e. Bluetooth, Ultra Wide Band, WiFi and Radio-

Frequency Identification (RFID) (Renaudin et al. (2007); Gu et al. (2009)).

Local beacon positioning systems provide absolute position information with high

accuracy. However, their performance is still restricted by the basic elements of

the techniques. They requires pre-installed infrastructure, which is time consuming

and not practical in unknown environments. The communication between signal

transmitters and receivers is easily interrupted by contextual noises. Furthermore, it

is not economical to equip every point of the buildings with beacons. Consequently,

beacon-free methodologies for indoor navigation are becoming popular in recent years.

As a beacon-free method, IMU provides a more promising and self-contained

solution for position estimation. Sensor-based PDR system has been researched

for computing the absolute position and orientation of a pedestrian. Conventional

PDR system utilizes accelerometers to detect step occurrence and estimate stride

length indirectly. Gyroscopes and compasses are used to measure the orientation

changes. Due to the inaccuracy of vulnerable sensors, however, the accumulated

errors would affect the estimation results. Thus, PDR system was developed by

combining GPS for outdoors in the work of Sun et al. (2009); Chen et al. (2010);

Cho et al. (2010) and RFID for indoors in the work of Renaudin et al. (2007) to
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reduce drift errors. Compared with those approaches whose IMU was mounted on

the upper body, i.e. Kourogi et al. (2010); Shin et al. (2010) attached sensors on the

waist, many systems mounted IMU on pedestrian’s shoe (Beauregard (2007); Jimenez

et al. (2009)). Besides, ZUPT technique was applied to reduce the drift errors from

gyroscopes and limit the overall inaccuracy (Ojeda and Borenstein (2007)).

Figure 5.1: A pedestrian positioning system design

This chapter presents a wearable IMU pedestrian positioning system for indoor

environment (Figure 5.1). ZUPT algorithm is implemented to correct the walking

velocity at step stance phase. Based on human physiologic characters, the foot

mounted PDR system is more sensitive to the foot displacements and the data

collected is more reliable for measuring the acceleration and orientation information.

Three main elements are taken into account: step length estimation, step detection

and heading determination.

Step length has a close relationship with the step frequency and walking velocity.

Godha et al. (2006) adopted constant parameters as the step length, which is far

from realistic for pedestrians with different walking patterns. Linear model for the

relationship between step frequency and stride length was created in the work of Lee
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and Mase (2001); Sun et al. (2009); Jimenez et al. (2009). However, the parameters

should be uniquely adjusted for each individual but not for general use. Real-time

measuring of step length performs more efficient. Ultrasonic sensors attached to

one’s shoes, measure the displacement of each step (Yeh et al. (2007)). It requires a

line of sight between the shoes, which can work well in flat terrain but may not for

rough terrain. ZUPT algorithm is considered to be more reliable and available for

users with any walking patterns (Ojeda and Borenstein (2007); Beauregard (2007);

Jimenez et al. (2009)). According to the idea that resetting the walking velocity to

zero at step stance phase, ZUPT algorithm powerfully lowers the accumulated drift

in step length estimation. So we executed our step length measurement based on

ZUPT algorithm.

Many effective methods are developed for step detection, such as peak detection,

zero-crossing and pitch signals analysis (Ojeda and Borenstein (2007); Sun et al.

(2009); Chen et al. (2010, 2009); Jirawimut et al. (2003)). However, for irregular

motions, peak misdetection will occur because some peak in acceleration during

normal and irregular movement can be very similar. In order to improve the detection

accuracy, some pre-processing are utilized to identify the valid acceleration readings

from the whole walking movements, such as probabilistic neural network in the work

of Sun et al. (2009). Ojeda and Borenstein (2007) found that during each step stance,

angular velocity from pitch signal has a local minimum value which can be directly

measured as the onset and end of each step. In the developed positioning system

we implement this simple solution. In order to further reduce step misdetection, we

introduce a HMM to capture the onset/end of each step. Furthermore, HMM works

effectively as a classification mechanism during pre-processing.

Built-in Gyroscopes and Magnetic compass are able to determine a user’s heading

(Sun et al. (2009); Chen et al. (2009)). Gyroscope offers relatively accurate turn

rate and magnetic compass provides absolute heading respect to the magnetic north

when the environment has low magnetic distortion (Ojeda and Borenstein (2007)).

Although either of these two sensors is eligible for measuring the turning, the sensor
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drift of gyroscopes and unpredictable perturbance of magnetic field severely affect

their accuracy in application. We novelly combined lateral acceleration and angular

velocity from gyroscope for heading determination, which could avoid the perturbance

to magnetometer from local disordered magnetic field.

In this chapter, a HMM is introduced for classifying the activities and rectifying

the step misdetection when estimating positions. Local minimum value of angular

velocity performs well for helping HMM detect steps. A novel combination of

lateral acceleration and angular velocity are used for azimuth measurement and

experimentally shown to achieve high accuracy for short-term and long-term indoor

navigation.

5.2 System Overview

A wearable IMU pedestrian positioning system is developed and tested by a series

of experiments. The architecture of the system is shown in Figure 5.2. IMU

detects the movements and transmits the sensor data to positioning algorithm

after signal pre-processing. Acceleration and angular rate data are integrated for

step length calculation and orientation determination, which work as two inputs of

position estimation. The magnetometer has good performance when used for outdoor

orientation determination. Since we focus on the indoor application with random

interference, the proposed system is mainly based on accelerometer and gyroscope

information but leaves magnetometer for outdoor research.

The IMU pedestrian positioning system consists of two major parts: activity

classification module and pedestrian dead reckoning module. The activity classifica-

tion module pre-processes the sensor data and classifies different activities by HMM.

During one’s movement, different moving states exist in continuous sequence. Some

of them could be very similar to each other, which is difficult to be distinguished

apart only by sensor data. HMM is based on the relationship between current state’s

probability and last state’s. Even if some unexpected incidents happen, such as hit

123



Figure 5.2: The architecture of position estimation system

something or fall, the probability-based method would not be affected easily. New

data can be added to model without affecting learnt HMM and learn incrementally.

Besides, HMM is easier to be analyzed and developed for implementations.

Many PDR systems utilize the combination of gyroscope and digital compass

for the heading determination. However, this combination should work well in the

environments without electromagnetic interference, or with very low interference. Be-

cause in our experimental environment, digital compass is vulnerable to surrounding

interference, so we decided to use the accelerometer to substitute magnetometer.

The novel integration of accelerometer and gyroscope is shown to be an accurate

alternative for indoors, especially under interferential situations.

Lateral velocity is integrated from lateral acceleration, and combined with forward

velocity through trigonometric operations, an azimuth θacc is calculated. Although

the yaw angle mainly represents the heading orientation θgyro, its accuracy is not

satisfactory due to the sensor errors. However, the calculated azimuth derived from
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acceleration data can compensate the underestimation of gyro orientation very well,

as follows: θ = W1 · θacc + (1−W1) · θgyro. The parameters W1 is determined and pre-

set by experiments. Finally, this high accuracy orientation information guarantees a

decent position estimation result.

5.3 Activity Classification

As a stochastic machine, HMM is characterized by the triplet briefly λ = (A,B, π),

where A is the matrix of state-transition probabilities, B is the matrix of observation

probabilities. π is the vector of initial state probabilities. The observation symbols

can be continuous or discrete. In this chapter, a discrete HMM is employed to perform

the real-time activity classification.

The parameter estimation plays an important role in the model construction,

and is considered as an optimization problem. The classic Baum-Welch algorithm is

adopted to solve this problem, which is obtained by maximizing the likelihood P (O|λ)

using an iterative procedure. On the other hand, Viterbi method is chosen to find

the most likely state sequence in the model that produced the observations.

5.3.1 Model description

As is known, even two people are in the same walking or running pattern, the duration

and frequency are discrepant more or less. If the traditional single-HMM model is

used for different user, it has to be retrained to classify the activities, which would

be time-consuming. Besides, traditional HMM model cannot be applied to complex

activities for different people.

To address this problem, a novel activity model is proposed, which is shown in

Figure 5.3. The topology of left one is ergodic (full-connected). The state space

consists of 6 patterns: standing (S), walking (W), going upstairs (U)/downstairs

(D), jogging (J) and running (R). The state transitions are equiprobable and the
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Figure 5.3: HMM for activity classification

state space is extensible depending on specific activity demands. The classification

result is mainly determined by the observation probability, which is obtained through

calculating the probability of particular output sequence. Each elementary HMM

is considered as a left-right HMM, and associated to a state. As shown in the

right of Figure 5.3 is the HMM of walking activity with three states. This level of

HMM is built with different number of states according to the observation sequence.

Other elementary models are similar. Consequently, a generic model is proposed by

combining the elementary models.

5.3.2 HMM Training

In the training process, each elementary HMM is suitable for its respective patterns.

The number of states for every model is specified empirically. Considering the com-

plexity and performance, the parameters can be obtained through some experiments.

In this work, there are 6 states for activity R and J model, 3 states for activity W

model, 4 states for activity U and D model, and 2 states for activity model S. During
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the training, optimal parameters are obtained by maximizing the local likelihood

P (O|λ) iteratively using the Baum-Welch algorithm.

5.3.3 Automatic Activity Classification

The activity classification can be considered as the decoding procedure. Viterbi

algorithm is employed to find the most likely activity by given the observations using

different elementary HMM. Figure 5.9a shows a series of activity classification results.

The onsets and ends of all the activities are identified by the red line. The top letter

indicates the activity state. Also for each activity, every step is captured accurately

by HMM for further positioning. Figure 5.9b shows the zoom-in figure of the step

intervals during walking.

5.4 Pedestrian Dead Reckoning

Pedestrians’ walking is a cyclic pattern. Different placements of IMU mounted on the

body reflect various results. In order to directly measure the foot behavior when one

is walking, we mount our IMU on the upper surface of right foot (Figure 5.4a). Our

PDR-based positioning algorithm includes four key elements: step detection, drift

correction, heading determination and position estimation.

5.4.1 Step Detection

Ideally during normal walking, there exists a short portion of time ∆t that lasts from

the tiptoes touch the ground until they leave. Within ∆t, the velocity of feet is zero

relative to the ground. However due to some reasons, i.e. slipping ground, unsuitable

shoe size and different walking patterns, ideal walking pattern is not practical. In

order to properly calculate the step length of one’s walking, it is necessary to identify

this short portion of time. Encountering the above reasons, to find out the onset and
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(a) IMU is mounted on the right
foot

(b) IMU board

Figure 5.4: IMU board and its placement

end of ∆t based on velocity is not achievable. So we find local minimum angular rate

value of angular rate vector ω = (ωx, ωy, ωz) for our step detection.

The sampling frequency for utilized IMU is 50Hz, and for each time ti, we sample

the minimum absolute value as below:

ωi =
√
ω2
x,i + ω2

y,i + ω2
z,i (5.1)

where ωi is the minimum absolute value in time ti. In order to determine the

approximate onset and end of each step, a certain threshold K is chosen. If ωi ≤ K,

and it lasts at least for more than one sample, then we define this time i is the onset of

the step. Next time when ωi ≥ K, it represents the end of current step. As previously

introduced, HMM also provides complementary detection results when pre-processes

IMU data. In that case, the onset/end of steps could be correctly detected.
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5.4.2 Drift Correction

When walking without any slip, the front sole holds still relative to the ground during

∆t. So it is rational to extract the front sole as a point which has a zero velocity.

Since ∆t maintains for a period of time but not an instant, we consider that the

acceleration of three axes would at least be zero at some time during this period. So

step detection threshold K is employed for assuming where zero acceleration occurs.

If at the end point of each step, the acceleration of three axes is not zero, then the

bias is caused by drift. By resetting the acceleration to zero, the accelerometer drift

can be effectively eliminated for each step. This is the main idea of ZUPT. Obviously,

the drift occurs during the stride but not the stance phase. Each stride only lasts for

a very short time and as the drift correction acts step by step, at least we could limit

the accumulated error under a very small range.

v =

∫
v̇ dt =

∫
(a− gl) dt (5.2)

where v = (vx, vy, vz) is the velocity vector of three components and a = (ax, ay, az)

is the acceleration vector of three components. gl = (gx, gy, gz) represents the local

gravity component in three axes.

We execute the above description to ground velocity. Equation (5.2) shows

the computing of ground velocity by double-integrating the acceleration data and

eliminating the local gravity components. As assumed, the front sole point should

have both zero velocity and acceleration. If v is not zero, we reset it to zero. Then

the next step will have a zero starting, which means the drift errors generated by last

step will not affect next one. Similarly, if the foot slips during one step, the errors

will not be brought to next one.
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5.4.3 Heading Determination

In this system, the IMU is placed on the upper surface of right foot. Due to the

fact that people have diverse walking habit (toein, toeout) or different type of shoes

(boots, sporting shoes), the initial orientation of IMU could be various, which will

affect subsequent measurement of heading. Consequently, we initiate from computing

of the tilt angle δ and deviation angle β.

(a) Calculation of Aforward and
Avertical

(b) Azimuth calculation from ac-
celeration data

Figure 5.5: Some calculations for heading determination

The upper surface of a shoe may not be horizontal, and the initial state will

be repeated every time the foot touches ground. This feature directly impacts the

calculation of forward acceleration Aforward and vertical acceleration Avertical (Figure

5.5a).

Ay = Ayraw − (−1) sin δ Az = Azraw − (−1) cos δ (5.3)

Aforward = Ay cos δ − Az sin δ (5.4)

Avertical = Ay sin δ + Az cos δ (5.5)
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where Ay and Az are the acceleration data for Y -axis and Z-axis after removing the

gravity components from raw acceleration data Ayraw and Azraw in (5.3). Horizontal

tilt angle δ is updated and utilized for Aforward and Avertical by each sample. We also

measure δ by Quaternion representation qse, which is introduced in the work of Hu

et al. (2010).

Many references determine their heading orientation based on gyroscope reading

and magnetometer data. As we mentioned, however, the magnetic field is vulnerable

to be interfered. The gyroscope was also tested for finding the orientation, but it

turned out to be not accurate as we expected. Therefore we novelly fuse acceleration

data and gyroscope data in order to achieve better results.

As Figure 5.5b shows, deviation angle β represents the angle between user’s

walking direction and IMU’s heading direction. We develop an acceleration-based

orientation estimation approach. When people is making a turn, the lateral velocity

Vx and forward velocity Vforward bring a trend, which towards a direction that is away

from forward direction by angle α. Angle α is computed as:

φ = β + π/2 (5.6)

A2 = V 2
x + V 2

forward − 2Vx · Vforward cosφ (5.7)

V 2
x = A2 + V 2

forward − 2Vforward · A cosα (5.8)

Angle α represents the orientation θacc. From testing results, we find although

θacc could describe the orientation better than θgyro measured by gyroscope, it does

not accurately match the azimuth. Nevertheless, it works as an excellent complement

to θgyro. We define a probabilistic relationship between θacc and θgyro, which is θ =

W1 · θacc + (1 −W1) · θgyro, where θ is the final azimuth and W1 ∈ [0.3 − 0.4] is the

weight for θacc. The value of W1 is from the Gaussian distribution of experimental

measurements by testing the algorithm on each particular user. In our experiments,

W1 = 0.33 for indoor tests.

131



5.4.4 Position Estimation

Position estimation is a process of combining and coordinating the sensor data. After

drift correction and heading determination, the position of pedestrian is estimated.

Activity classification results are referred for the estimation. When successive sensor

data generated from distinct moving patterns, some similar data would be mixed up

and interfere the estimation results by false step. We classify some regular moving

patterns and handle the sensor data in allusion to their character, so that to avoid step

misdetection and reduce the along track error. Finally, the position can be estimated

by coupling the distance with azimuth:

d =

∫
Vforward dt h =

∫
Vvertical dt (5.9)

(Xi, Yi, Zi) = (Xi−1 + d cos θ, Yi−1 + d sin θ, Zi−1 + h) (5.10)

where (Xi, Yi, Zi) are the estimated coordinate of sample i. θ is the angle changes

from sample i− 1 to i in X − Y plane.

Figure 5.6: Position estimation with IMU

A block diagram for position estimation is shown in Figure 5.6. The position is

determined by the horizontal and vertical displacement, with complementary azimuth
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and classified state. The displacement is double integrated from accelerometer

readings with heading estimation as an input. Gyroscope readings serve both the

orientation compensation and classification model HMM. HMM which also includes

the input from accelerometer and last classification state provides correct state for

step detection.

5.5 Experiments

The hardware design of IMU is introduced in Section 1.5, as shown in Figure 5.4b. In

this section, several experiments are developed to verify proposed system, including

straight line walking, short term walking and long term walking.

5.5.1 Performance Evaluation

Some experiments are implemented in the X − Y plane. The absolute error ea for

single experiment is depicted as:

ea =
√
xe2 + ye2 (5.11)

where xe and ye are return position errors in X and Y directions, respectively. The

absolute average error Ea and the relative average error Er are defined to measure

the system performance, which are shown as:

Ea =
1

n

n∑
i=1

ea,i Er = 100
Ea
D

(5.12)

where n is the number of our experiments. Similarly for 3D experiments, the absolute

error and relative error in Z direction Za and Zr are also computed.
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5.5.2 Straight Line Walking

Before starting the experiment, a specific distance of 10m is measured and the starting

and ending point are marked precisely. Figure 5.7 shows the reconstruction result

of the straight line trajectory by using our algorithm. Two sets of experiments are

implemented with normal walking speed and faster speed, about 2.6mph and 3.3mph.

Figure 5.7: The reconstruction of straight line trajectory. Black point and red point
represent the starting and ending point.

Each set of experiments are performed 5 times, and the absolute and relative

average errors are calculated, while the ye equals to 0. As shown in Table 5.1, the

relative average errors are 0.55% and 0.31% respectively which are in high accuracy.

5.5.3 Short Term Walking

The proposed system also measures the instant position in real-time. The short term

experiments include rectangle-shaped walking and U -shaped walking.
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Table 5.1: Results of the straight line experiment

v = 2.6mph v = 3.3mph
Index ea(m) Ea(m) Er(%) ea(m) Ea(m) Er(%)

1 0.063

0.055 0.55

0.024

0.031 0.31
2 0.057 0.037
3 0.060 0.021
4 0.034 0.032
5 0.059 0.043

Rectangle-shaped Walking

One subject walks along a rectangle-shaped path, and goes back to the starting point

finally. The length and width of the rectangle are 32.8m and 16m at the normal

pace of 2.6mph. In Figure 5.8a (upper), the black dashed line represents designed

trajectory. Compared with the result which only uses the gyroscope data (green line),

the reconstruction result (blue line) based on our proposed system performs better.

Figure 5.8a (lower) shows the 3D view of our reconstruction result, which follows the

designed trajectory with high consistence. The difference between the starting and

ending point is only 0.087m, which is mainly caused by the heading error.

Similarly, this experiment is measured 5 times and calculates the absolute and

relative average error. As shown in Table 5.2, both errors are smaller than 0.5, and

can truly reach the actual requirement.

U-shaped Walking

U-shaped path is designed with the length is 226.5m in total. Actually it is similar

with the rectangle walking. The reconstruction result is shown in Figure 5.8b. It is

obvious that the reconstruction result using gyroscope is deviated from the designed
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(a) The reconstruction of the rectangle trajectory (b) The reconstruction of the U-shaped
trajectory

Figure 5.8: Two short term walking experiments
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trajectory further. Our system improves the performance greatly. The average errors

are close to 1.20m and 0.52%. The detailed result is shown in Table 5.2.

Table 5.2: Results of the rectangle-shaped and U-shaped experiment

Rectangle-shaped U-shaped
Index ea(m) Ea(m) Er(%) ea(m) Ea(m) Er(%)

1 0.087

0.39 0.43

1.45

1.19 0.52
2 0.079 1.11
3 0.083 1.20
4 0.047 1.01
5 0.081 1.15

5.5.4 Long Term Walking

In proposed system, all three components of the velocity vector are applied. The Z-

axis value is also calculated for vertical displacement. Figure 5.9c shows a complex 3D

experiment with many activities, including walking (W), going downstairs (D) and

upstairs (U) and standing (S). At first, the signal set is pre-processed using HMM

to extract the onsets and ends of the activities (Figure 5.9a and 5.9b). Then the

classification result is processed as the input of position estimation.

The approximated distance for the experiment is about 337m in total. It is

repeated three times and their performance are evaluated by calculating the absolute

and relative average error from X−Y plane and Z direction. The position errors are

summarized in Table 5.3. The error in X − Y plane is 0.42%, while the vertical error

is larger, averaging 1.52%.
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(a) Activity classification using HMM

(b) zoom-in figure of walking part (c) Walking trajectory reconstruction

Figure 5.9: Long term walking experiment
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Table 5.3: Absolute and relative average error of the long term experiment

Index Dist.(m)
Absolute(m) Relative(%)

X-Y plane Z axis X-Y plane Z axis
1 347

1.42 0.05 0.42 1.522 330
3 335

5.6 Summary

This chapter presents a wearable IMU pedestrian positioning system for indoors.

HMM performs as activity classification to pre-process the sensor data, capture the

steps and distinguish different moving patterns, such as walking, standing, jogging,

running and going upstairs/downstairs, which are used for avoiding misdetection in

position estimation. Local minimum absolute value of angular rate is utilized for

detecting the onset/end of steps from gyro level. ZUPT algorithm corrects the sensor

drift from acceleration data and resets the velocity to zero at each stance phase, which

stops accumulating existing errors to next step. A novel acceleration-based approach

for determining the heading orientation is developed, and combined with gyroscope

data to achieve better azimuth estimation. Experiments are conducted to evaluate

the accuracy of system. The overall errors are mostly under 1% except the vertical

errors are around 2%.
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Chapter 6

Conclusions and Future Work

In consideration of continuously tracking human motions, positioning human location

and monitoring human health status in free-living environment, a human motion

analysis system is developed to serve these purposes. It aims and achieves research

goals as stated in Section 1.3: A human motion tracking system with wearable inertial

sensors is developed for efficiently tracking free-living motions and reconstructing

the human model; by applying the reconstructed model, a model-based approach

is proposed for quantification of resting tremor and bradykinesia in PD, in order

to validate the practical application of developed system; A pedestrian positioning

system with wearable inertial sensors is developed for tracking position and recording

itinerary for indoors.

6.1 Conclusions

A human motion tracking system with our developed wearable IMUs is developed.

A well designed calibration procedure estimates the placement and orientation of

attached IMUs, so that no specific measurement is needed for locating IMUs, which

greatly reduces the complexity in configuring the system before use. The twists

and exponential maps techniques, which are inspired from robotic manipulation

and never used in human motion technique, are applied to describe body segment
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movements, articulate segments by joints and reconstruct a body model accurately

and conveniently. Compared with traditional high-order approach by multiplying

rotational matrixes, low-order calculations from the twists and exponential maps

techniques are more preferable in real-time tracking. The accuracy of developed

system is assessed by comparisons with two commercialized motion capture systems.

Accurately quantified analysis of joint angles based on built model provides the basis

for applications which analyze human motor functions.

In order to prove the practicability of developed wearable motion tracking system

in medical applications, resting tremor and bradykinesia in PD are quantified by

model-based approaches. Wearable motion tracking system tracks a patient’s body

segment movements and these movements can be represented on the reconstructed

human model. Based on the human model, rotational angles of involved upper

extremity joints (elbow and wrist) and lower extremity joints (hip and knee) correlated

with two symptoms (of resting tremor and bradykinesia) are estimated. Angle

related features which can best describe symptom characteristics are extracted

from estimated joint angles. Angle data with different severities rated by clinical

UPDRS, plus corresponding rating, are used to train the discrete HMM classifier and

trained HMM is capable of quantifying new angle data by determining the severity.

Due to the lack of PD patients, simulated data with various severities captured

from healthy subjects are employed to implement experiments. A leave-one-out

validation technique validates the HMM performance. High accuracy (average over

99%) of proposed quantification approach preliminarily demonstrates its feasibility in

improving present approaches in a more objective way.

Besides the tracking of human body motions, in order to complement the functions

of human motion analysis system, a pedestrian positioning system based on wearable

IMU is developed. A discrete HMM is introduced to detect step onset/end and classify

the walking states. During each step, ZUPT technique is implemented to reset walking

velocity drift at step stance phase, so that the drift generated when estimating step

length and step height can be limited within a low level. In addition to estimating step
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length and step occurrence, an accurate estimation of heading azimuth is essential.

Since the conventional PDR system suffers gyro drift and magnetic field perturbance,

a novel combination of lateral acceleration and angular velocity are used for the

estimation, meanwhile replacing the vulnerable magnetometer. With the accurate

heading, travelled itinerary of the subject in either 2D or 3D space can be tracked

and monitored. Several tests include short term walking and long term walking with

multiple walking states are conducted and the system performance is evaluated by

calculating the absolute position errors between starting points and end points. The

low overall error rate verifies the feasibility and usefulness of developed positioning

system for indoor environment.

6.2 Future Work

This dissertation presents a promising human motion analysis tool that can poten-

tially improve current medical approaches in continuous monitoring and tracking a

subject’s motions, health status and locomotion. This system has no limits to the

implement environment and to the subjects. Both patients and elder person whose

motor functions are needed to be concerned and investigated are available for wearing

the system. The preliminary experimental results of each system verification and

applications on PD quantification prove the practicability of proposed technique.

Despite of those, more work is needed for further validating the performance of

developed system. The future works are listed as follows:

1. Developed wearable body motion tracking system is advanced by its estimation

of IMU placement. Although the IMU position where would be affected by less

soft tissue artifact is suggested, the soft tissue artifact still exists. Therefore, one

of the future works for this particular system is focusing on filtering approaches

to further reduce the effects. Conducted experiments use steady and slow

motions to simulate the motions of elder people. The other future work is
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to exert rapid motions and more lifestyle movements to validate the stability of

developed system and its potentiality for wider range of applicable people.

2. In order to validate the performance of wearable body motion tracking system

in medical applications, a large number of dataset with various illness conditions

is highly recommended. For the model-based quantification approach to

symptoms in PD, limited simulations are employed, due to the lack of real data

from PD patients. For probability based HMM classifier, more training data will

definitely increase the accuracy of quantification. Therefore, one of future works

of the applications will be collecting motion data from PD patients with different

severities and further validating the quantification approach. Besides these two

symptoms of PD, developed system will be investigated for quantifying other

apparent symptoms of PD and illness, such as rigidity, body instability and fall.

Besides, EMG of PD patient is going to be measured for the quantification of

resting tremor to enhance potential PD diagnosis at early-stage and to discover

the necessity of using both EMG and IMU in improving the PD quantification.

3. The pedestrian positioning system has been validated by indoor tests with short

term and long term walking. More tests with longer distance and more complex

walking states are suggested. Besides indoor use, developed positioning system

can be combined with currently available positioning systems, such as GPS,

cellular-based approach and local beacon technique, to calibrate our system

when ambient calibration information can be received. So that the application

of developed indoor positioning can be extended to more complicated unknown

environment, meanwhile the system can self-calibrate to reduce the drift errors.
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