665 research outputs found

    Quantifying Potential Energy Efficiency Gain in Green Cellular Wireless Networks

    Full text link
    Conventional cellular wireless networks were designed with the purpose of providing high throughput for the user and high capacity for the service provider, without any provisions of energy efficiency. As a result, these networks have an enormous Carbon footprint. In this paper, we describe the sources of the inefficiencies in such networks. First we present results of the studies on how much Carbon footprint such networks generate. We also discuss how much more mobile traffic is expected to increase so that this Carbon footprint will even increase tremendously more. We then discuss specific sources of inefficiency and potential sources of improvement at the physical layer as well as at higher layers of the communication protocol hierarchy. In particular, considering that most of the energy inefficiency in cellular wireless networks is at the base stations, we discuss multi-tier networks and point to the potential of exploiting mobility patterns in order to use base station energy judiciously. We then investigate potential methods to reduce this inefficiency and quantify their individual contributions. By a consideration of the combination of all potential gains, we conclude that an improvement in energy consumption in cellular wireless networks by two orders of magnitude, or even more, is possible.Comment: arXiv admin note: text overlap with arXiv:1210.843

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Handover evaluation of UMTS-WiMAX networks

    Get PDF
    Recently, data traffic movement through a wireless channel is assisted by suggesting and implementing many mechanisms, to achieve the speedy increasing importunity and popularity of the wireless networks. Various wireless technologies can be copulated to develop a heterogeneous network, which is a candidate towards (4G) networks. OPNET modeler (14.5) is used to design simulation modules of the heterogeneous network. During device connection between the worldwide interoperability for microwave access (WiMAX) and universal mobile telecommunication system (UMTS) networks, Performance metrics such as; Jitter end-to-end delay (E-2-E) Throughput is used. The results of the simulation are measured to determine the efficiency of the transfer using WiMAX-UMTS according to the selected metrics. The WiMAX-UMTS has shown valuable improvement in Process Durability, reduction of E-2-E delay, and Jitter. The maximum amount of data transfer and the least amount of delay and Jitter is at 250 sec. Because of the handover operations and data transfer momentum, the worst-case passes in the network when 618 sec is the minimum amount. The efficiency of throughput for WiMAX equal to 0.092666% as for the efficiency of throughput for UMTS equal to 4.633333*10-6 % whereas the E-2-E efficiency a delay equal to 0.5466%

    Handover in Mobile WiMAX Networks: The State of Art and Research Issues

    Get PDF
    The next-generation Wireless Metropolitan Area Networks, using the Worldwide Interoperability for Microwave Access (WiMAX) as the core technology based on the IEEE 802.16 family of standards, is evolving as a Fourth-Generation (4G) technology. With the recent introduction of mobility management frameworks in the IEEE 802.16e standard, WiMAX is now placed in competition to the existing and forthcoming generations of wireless technologies for providing ubiquitous computing solutions. However, the success of a good mobility framework largely depends on the capability of performing fast and seamless handovers irrespective of the deployed architectural scenario. Now that the IEEE has defined the Mobile WiMAX (IEEE 802.16e) MAC-layer handover management framework, the Network Working Group (NWG) of the WiMAX Forum is working on the development of the upper layers. However, the path to commercialization of a full-fledged WiMAX mobility framework is full of research challenges. This article focuses on potential handover-related research issues in the existing and future WiMAX mobility framework. A survey of these issues in the MAC, Network and Cross-Layer scenarios is presented along with discussion of the different solutions to those challenges. A comparative study of the proposed solutions, coupled with some insights to the relevant issues, is also included

    A review of femtocell

    Get PDF
    The popularity of wireless networks has attracted the attention of researchers to improve the network system and this motivated the operators to find a new technology called femtocells with the aim of meeting the increased coverage and data demand in the indoor environment. The application of femtocells in both indoors and office environment has provided good quality service and high performance network gains. However, femtocells face challenges of interference management which deteriorate the capacity and quality of network. But to cope with these challenges, many researchers have come up with solutions to solve the problems, some of which include interference cancellation and interference avoidance

    Mobility management in 5G heterogeneous networks

    Get PDF
    In recent years, mobile data traffic has increased exponentially as a result of widespread popularity and uptake of portable devices, such as smartphones, tablets and laptops. This growth has placed enormous stress on network service providers who are committed to offering the best quality of service to consumer groups. Consequently, telecommunication engineers are investigating innovative solutions to accommodate the additional load offered by growing numbers of mobile users. The fifth generation (5G) of wireless communication standard is expected to provide numerous innovative solutions to meet the growing demand of consumer groups. Accordingly the ultimate goal is to achieve several key technological milestones including up to 1000 times higher wireless area capacity and a significant cut in power consumption. Massive deployment of small cells is likely to be a key innovation in 5G, which enables frequent frequency reuse and higher data rates. Small cells, however, present a major challenge for nodes moving at vehicular speeds. This is because the smaller coverage areas of small cells result in frequent handover, which leads to lower throughput and longer delay. In this thesis, a new mobility management technique is introduced that reduces the number of handovers in a 5G heterogeneous network. This research also investigates techniques to accommodate low latency applications in nodes moving at vehicular speeds

    Planning and dynamic spectrum management in heterogeneous mobile networks with QoE optimization

    Get PDF
    The radio and network planning and optimisation are continuous processes that do not end after the network has been launched. To achieve the best trade-offs, especially between quality and costs, operators make use of several coverage and capacity enhancement methods. The research from this thesis proposes methods such as the implementation of cell zooming and Relay Stations (RSs) with dynamic sleep modes and Carrier Aggregation (CA) for coverage and capacity enhancements. Initially, a survey is presented on ubiquitous mesh networks implementation scenarios and an updated characterization of requirements for services and applications is proposed. The performance targets for the key parameters, delay, delay variation, information loss and throughput have been addressed for all types of services. Furthermore, with the increased competition, mobile operator’s success does not only depend on how good the offered Quality of Service (QoS) is, but also if it meets the end user’s expectations, i.e., Quality of Experience (QoE). In this context, a model for the mapping between QoS parameters and QoE has been proposed for multimedia traffic. The planning and optimization of fixed Worldwide Interoperability for Microwave Access (WiMAX) networks with RSs in conjunction with cell zooming has been addressed. The challenging case of a propagation measurement-based scenario in the hilly region of CovilhĂŁ has been considered. A cost/revenue function has been developed by taking into account the cost of building and maintaining the infrastructure with the use of RSs. This part of the work also investigates the energy efficiency and economic implications of the use of power saving modes for RSs in conjunction with cell zooming. Assuming that the RSs can be switched-off or zoomed out to zero in periods when the trafïŹc exchange is low, such as nights and weekends, it has been shown that energy consumption may be reduced whereas cellular coverage and capacity, as well as economic performance may be improved. An integrated Common Radio Resource Management (iCRRM) entity is proposed that implements inter-band CA by performing scheduling between two Long Term Evolution – Advanced (LTE-A) Component Carriers (CCs). Considering the bandwidths available in Portugal, the 800 MHz and 2.6 GHz CCs have been considered whilst mobile video traffic is addressed. Through extensive simulations it has been found that the proposed multi-band schedulers overcome the capacity of LTE systems without CA. Result shown a clear improvement of the QoS, QoE and economic trade-off with CA
    • 

    corecore