107 research outputs found

    A computational evaluation of constructive and improvement heuristics for the blocking flow shop to minimize total flowtime

    Get PDF
    This paper focuses on the blocking flow shop scheduling problem with the objective of total flowtime minimisation. This problem assumes that there are no buffers between machines and, due to its application to many manufacturing sectors, it is receiving a growing attention by researchers during the last years. Since the problem is NP-hard, a large number of heuristics have been proposed to provide good solutions with reasonable computational times. In this paper, we conduct a comprehensive evaluation of the available heuristics for the problem and for related problems, resulting in the implementation and testing of a total of 35 heuristics. Furthermore, we propose an efficient constructive heuristic which successfully combines a pool of partial sequences in parallel, using a beam-search-based approach. The computational experiments show the excellent performance of the proposed heuristic as compared to the best-so-far algorithms for the problem, both in terms of quality of the solutions and of computational requirements. In fact, despite being a relative fast constructive heuristic, new best upper bounds have been found for more than 27% of Taillard’s instances.Ministerio de Ciencia e Innovación DPI2013-44461-P/DP

    A beam-search-based constructive heuristic for the PFSP to minimise total flowtime

    Get PDF
    In this paper we present a beam-search-based constructive heuristic to solve the permutation flowshop scheduling problem with total flowtime minimisation as objective. This well-known problem is NP-hard, and several heuristics have been developed in the literature. The proposed algorithm is inspired in the logic of the beam search, although it remains a fast constructive heuristic. The results obtained by the proposed algorithm outperform those obtained by other constructive heuristics in the literature for the problem, thus modifying substantially the state-of-the-art of efficient approximate procedures for the problem. In addition, the proposed algorithm even outperforms two of the best metaheuristics for many instances of the problem, using much lesser computation effort. The excellent performance of the proposal is also proved by the fact that the new heuristic found new best upper bounds for 35 of the 120 instances in Taillard’s benchmark.Ministerio de Ciencia e Innovación DPI2013-44461-PMinisterio de Ciencia e Innovación DPI2016-80750-

    Iterated-greedy-based algorithms with beam search initialization for the permutation flowshop to minimize total tardiness

    Get PDF
    The permutation flow shop scheduling problem is one of the most studied operations research related problems. Literally, hundreds of exact and approximate algorithms have been proposed to optimise several objective functions. In this paper we address the total tardiness criterion, which is aimed towards the satisfaction of customers in a make-to-order scenario. Although several approximate algorithms have been proposed for this problem in the literature, recent contributions for related problems suggest that there is room for improving the current available algorithms. Thus, our contribution is twofold: First, we propose a fast beam-search-based constructive heuristic that estimates the quality of partial sequences without a complete evaluation of their objective function. Second, using this constructive heuristic as initial solution, eight variations of an iterated-greedy-based algorithm are proposed. A comprehensive computational evaluation is performed to establish the efficiency of our proposals against the existing heuristics and metaheuristics for the problem.Ministerio de Ciencia e Innovación DPI2013-44461-PMinisterio de Ciencia e Innovación DPI2016-80750-

    New efficient constructive heuristics for the hybrid flowshop to minimise makespan: A computational evaluation of heuristics

    Get PDF
    This paper addresses the hybrid flow shop scheduling problem to minimise makespan, a well-known scheduling problem for which many constructive heuristics have been proposed in the literature. Nevertheless, the state of the art is not clear due to partial or non homogeneous comparisons. In this paper, we review these heuristics and perform a comprehensive computational evaluation to determine which are the most efficient ones. A total of 20 heuristics are implemented and compared in this study. In addition, we propose four new heuristics for the problem. Firstly, two memory-based constructive heuristics are proposed, where a sequence is constructed by inserting jobs one by one in a partial sequence. The most promising insertions tested are kept in a list. However, in contrast to the Tabu search, these insertions are repeated in future iterations instead of forbidding them. Secondly, we propose two constructive heuristics based on Johnson’s algorithm for the permutation flowshop scheduling problem. The computational results carried out on an extensive testbed show that the new proposals outperform the existing heuristics.Ministerio de Ciencia e Innovación DPI2016-80750-

    Iterative beam search algorithms for the permutation flowshop

    Full text link
    We study an iterative beam search algorithm for the permutation flowshop (makespan and flowtime minimization). This algorithm combines branching strategies inspired by recent branch-and-bounds and a guidance strategy inspired by the LR heuristic. It obtains competitive results, reports many new-best-so-far solutions on the VFR benchmark (makespan minimization) and the Taillard benchmark (flowtime minimization) without using any NEH-based branching or iterative-greedy strategy. The source code is available at: https://gitlab.com/librallu/cats-pfsp

    Exploring the benefits of scheduling with advanced and real-time information integration in Industry 4.0: A computational study

    Get PDF
    The technological advances recently brought to the manufacturing arena (collectively known as Industry 4.0) offer huge possibilities to improve decision-making processes in the shop floor by enabling the integration of information in real-time. Among these processes, scheduling is often cited as one of the main beneficiaries, given its data-intensive and dynamic nature. However, in view of the extremely high implementation costs of Industry 4.0, these potential benefits should be properly assessed, also taking into account that there are different approaches and solution procedures that can be employed in the scheduling decision-making process, as well as several information sources (i.e. not only shop floor status data, but also data from upstream/downstream processes). In this paper, we model various decision-making scenarios in a shop floor with different degrees of uncertainty and diverse efficiency measures, and carry out a computational experience to assess how real-time and advance information can be advantageously integrated in the Industry 4.0 context. The extensive computational experiments (equivalent to 6.3 years of CPU time) show that the benefits of using real-time, integrated shop floor data and advance information heavily depend on the proper choice of both the scheduling approach and the solution procedures, and that there are scenarios where this usage is even counterproductive. The results of the paper provide some starting points for future research regarding the design of approaches and solution procedures that allow fully exploiting the technological advances of Industry 4.0 for decision-making in scheduling.Ministerio de Ciencia e Innovación PID2019-108756RB-I0Junta de Andalucía P18-FR-1149, 5835 and US-12645

    Linking Scheduling Criteria to Shop Floor Performance in Permutation Flowshops

    Get PDF
    The goal of manufacturing scheduling is to allocate a set of jobs to the machines in the shop so these jobs are processed according to a given criterion (or set of criteria). Such criteria are based on properties of the jobs to be scheduled (e.g., their completion times, due dates); so it is not clear how these (short-term) criteria impact on (long-term) shop floor performance measures. In this paper, we analyse the connection between the usual scheduling criteria employed as objectives in flowshop scheduling (e.g., makespan or idle time), and customary shop floor performance measures (e.g., work-in-process and throughput). Two of these linkages can be theoretically predicted (i.e., makespan and throughput as well as completion time and average cycle time), and the other such relationships should be discovered on a numerical/empirical basis. In order to do so, we set up an experimental analysis consisting in finding optimal (or good) schedules under several scheduling criteria, and then computing how these schedules perform in terms of the different shop floor performance measures for several instance sizes and for different structures of processing times. Results indicate that makespan only performs well with respect to throughput, and that one formulation of idle times obtains nearly as good results as makespan, while outperforming it in terms of average cycle time and work in process. Similarly, minimisation of completion time seems to be quite balanced in terms of shop floor performance, although it does not aim exactly at work-in-process minimisation, as some literature suggests. Finally, the experiments show that some of the existing scheduling criteria are poorly related to the shop floor performance measures under consideration. These results may help to better understand the impact of scheduling on flowshop performance, so scheduling research may be more geared towards shop floor performance, which is sometimes suggested as a cause for the lack of applicability of some scheduling models in manufacturing

    Deterministic Assembly Scheduling Problems: A Review and Classification of Concurrent-Type Scheduling Models and Solution Procedures

    Get PDF
    Many activities in industry and services require the scheduling of tasks that can be concurrently executed, the most clear example being perhaps the assembly of products carried out in manufacturing. Although numerous scientific contributions have been produced on this area over the last decades, the wide extension of the problems covered and the lack of a unified approach have lead to a situation where the state of the art in the field is unclear, which in turn hinders new research and makes translating the scientific knowledge into practice difficult. In this paper we propose a unified notation for assembly scheduling models that encompass all concurrent-type scheduling problems. Using this notation, the existing contributions are reviewed and classified into a single framework, so a comprehensive, unified picture of the field is obtained. In addition, a number of conclusions regarding the state of the art in the topic are presented, as well as some opportunities for future research.Ministerio de Ciencia e Innovación español DPI2016-80750-

    Diseño de una metaheurística GRASP hibridizada con la metodología PAES y la simulación de Monte Carlo en un ambiente Flexible Flow Shop estocástico multi-objetivo

    Get PDF
    El propósito de este proyecto es estudiar un problema de programación de la producción multiobjetivo en un ambiente Flexible Flow Shop (FFS) estocástico. Los objetivos a minimizar son el valor esperado de la tardanza, la desviación estándar de la tardanza, el valor esperado del tiempo total de terminación y la desviación estándar del tiempo total de terminación. Los parámetros estocásticos son los tiempos entre fallas de las máquinas y los tiempos de reparación de las máquinas. Como método de solución, se propone una simheurística, la cual hibridiza la metaheurística GRASP con la simulación de Monte Carlo y el algoritmo PAES para obtener la frontera de Pareto. Inicialmente, se realiza un diseño experimental de la versión determinística del problema para evaluar el desempeño de la simheurística, comparando los resultados de la simheurística con el tiempo total de terminación obtenido en la programación de los trabajos con la regla de despacho FL, y la tardanza con la regla de despacho ENS2. Un segundo diseño de experimentos es diseñado para evaluar los efectos de los diferentes coeficientes de variación y la distribución de probabilidad para ambos parámetros estocásticos en las cuatro funciones objetivo del caso estocástico. Para el caso estocástico, los resultados arrojaron que ambas distribuciones de probabilidad y coeficientes de variación tienen un efecto significativo en las variables, lo que demuestra la importancia de un ajuste preciso de las distribuciones de probabilidad para obtener soluciones adecuadas.To achieve a higher level of efficiency within a manufacturing industry, the production scheduling is essential, because this process is crucial for the maximization of the business value. Currently, a big part of literature in scheduling is focused on solving a deterministic problem to minimize the makespan. Given that, realistically, the industry is exposed to random events that can affect its performance, the aim of this project is to study a multi-objective stochastic Flexible Flow Shop (FFS) environment. The objectives to minimize are expected value of tardiness, standard deviation of tardiness, expected value of total completion time (equal to flowtime due to release times are zero) and standard deviation of total completion time. The stochastics parameters are the times between failures and times to repair the machines (duration of machine breakdowns). As solution method, a simheuristic is proposed, which hybridizes the metaheuristic Greedy Randomized Adaptive Search Procedures (GRASP) with the Monte Carlo simulation and Pareto Archived Evolution Strategy (PAES) algorithm to obtain the Pareto frontier (see illustration 2). A first experimental design is done to test the simheuristic performance for the deterministic version (see illustration 1) of the problem by comparing the results of the simheuristic with the flowtime obtained by scheduling the jobs with FL dispatching rule, and the tardiness with the ENS2 dispatching rule. A second design of experiments is designed to evaluate the effects of different coefficients of variation and probability distribution of both stochastic parameters in the four objective functions of the stochastic case. To do both experimental designs 324 benchmark instances were evaluated in both cases. Results show, that for the deterministic case, the metaheuristic presents an average improvement of 3% in flowtime against FL rule, 2% in tardiness against ENS2 rule. For the stochastic case, results show that both probability distributions and coefficient of variation have a significant effect in the four response variables, which shows the importance of an accurate fitting of probability distributions to obtain adequate solutions.Ingeniero (a) IndustrialPregrad

    BALANCING TRADE-OFFS IN ONE-STAGE PRODUCTION WITH PROCESSING TIME UNCERTAINTY

    Get PDF
    Stochastic production scheduling faces three challenges, first the inconsistencies among key performance indicators (KPIs), second the trade-offs between the expected return and the risk for a portfolio of KPIs, and third the uncertainty in processing times. Based on two inconsistent KPIs of total completion time (TCT) and variance of completion times (VCT), we propose our trade-off balancing (ToB) heuristic for one-stage production scheduling. Through comprehensive case studies, we show that our ToB heuristic with preference =0.0:0.1:1.0 efficiently and effectively addresses the three challenges. Moreover, our trade-off balancing scheme can be generalized to balance a number of inconsistent KPIs more than two. Daniels and Kouvelis (DK) proposed a scheme to optimize the worst-case scenario for stochastic production scheduling and proposed the endpoint product (EP) and endpoint sum (ES) heuristics to hedge against processing time uncertainty. Using 5 levels of coefficients of variation (CVs) to represent processing time uncertainty, we show that our ToB heuristic is robust as well, and even outperforms the EP and ES heuristics on worst-case scenarios at high levels of processing time uncertainty. Moreover, our ToB heuristic generates undominated solution spaces of KPIs, which not only provides a solid base to set up specification limits for statistical process control (SPC) but also facilitates the application of modern portfolio theory and SPC techniques in the industry
    corecore