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ABSTRACT OF THESIS 
 

 
BALANCING TRADE-OFFS IN ONE-STAGE PRODUCTION WITH PROCESSING 

TIME UNCERTAINTY 
 

Stochastic production scheduling faces three challenges, first the inconsistencies among 
key performance indicators (KPIs), second the trade-offs between the expected return and 
the risk for a portfolio of KPIs, and third the uncertainty in processing times. Based on two 
inconsistent KPIs of total completion time (TCT) and variance of completion times (VCT), 
we propose our trade-off balancing (ToB) heuristic for one-stage production scheduling. 
Through comprehensive case studies, we show that our ToB heuristic with preference 
𝛼𝛼=0.0:0.1:1.0 efficiently and effectively addresses the three challenges. Moreover, our 
trade-off balancing scheme can be generalized to balance a number of inconsistent KPIs 
more than two. Daniels and Kouvelis (DK) proposed a scheme to optimize the worst-case 
scenario for stochastic production scheduling and proposed the endpoint product (EP) and 
endpoint sum (ES) heuristics to hedge against processing time uncertainty. Using 5 levels 
of coefficients of variation (CVs) to represent processing time uncertainty, we show that 
our ToB heuristic is robust as well, and even outperforms the EP and ES heuristics on 
worst-case scenarios at high levels of processing time uncertainty. Moreover, our ToB 
heuristic generates undominated solution spaces of KPIs, which not only provides a solid 
base to set up specification limits for statistical process control (SPC) but also facilitates 
the application of modern portfolio theory and SPC techniques in the industry. 

 
KEYWORDS: Key performance indicators, Modern portfolio theory, Statistical process 
control, Trade-off Balancing, Heuristics. 
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CHAPTER 1.  INTRODUCTION 

1.1 Background 

Flow shop scheduling is critical in manufacturing because it affects the 

performance of the whole production process. A flow shop is defined as n jobs processed 

sequentially on m machines, in which each job has a specified processing time on each 

machine and each machine can process one job at a time. The basic characteristic of 

permutation flow shop scheduling is that the job order is the same on each machine, so 

determining a sequence achieving one or several objectives is the key point in flow shop 

scheduling. Flow shop scheduling can be regarded as a special case of job shop scheduling. 

In a job shop, machines are not ordered sequentially, and the job order can be different on 

each machine. In addition to manufacturing, flow shop scheduling can be widely applied 

to other fields, such as transportation, medical and health care, supply chain, etc., in which 

operations are sequentially carried out in achieving an objective. The 4th industrial 

revolution has higher requirements for scheduling because of the following two reasons. 

The first reason is based on the limitation of resources. Initially, in the first stage of the 

industrial revolution, the requirement on scheduling was not urgent, as resources were 

relatively sufficient for simple and standard tasks. In recent years, the emergence of mass 

production systems for highly customized products increases the production volume, 

requires more resources, and intensifies the need for scheduling. More researchers 

recognize that it is necessary to do an in-depth and extensive research on scheduling to 

achieve certain production objectives with limited production resources. Generally, the 

goal of production scheduling is to allocate competing tasks to scarce resources over time, 

in achieving some objectives (Pinedo, 2012). In flow shop scheduling, we have some 
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classic objectives to achieve, such as minimize maximum completion time, min(MCT), 

minimize total completion time, min(TCT), and minimize idle times or setup times, etc. 

The second is based on trade-offs in multi-objective optimization. Although Garey et al. 

(1976) proved that flow shop scheduling to min(MCT) is a nondeterministic polynomial 

complete (NP-complete) problem, a substantial volume of research papers were published 

in the literature about scheduling, and various heuristic algorithms and exact algorithms 

were proposed in dealing with different production issues. One of the objectives to develop 

scheduling methods is to reduce the computation time or the complexity, but few address 

the trade-offs as in this thesis for robust production scheduling. 

Scheduling for one-stage production is important from the following three 

perspectives. First, from the perspective of multi-objective optimization, we can draw tight 

and solid bounds for individual variables based on solutions to one-stage production 

problems. In analyzing individual objectives involved in multi-objective optimization, we 

need the solution space to individual objectives, which can be used to set up the solid upper 

and lower limits of individual objectives. These bounds make it more efficient or effective 

to solve multi-objective optimization problems. This is more pronounced when some 

optimization problems for multi-stage flow shop scheduling are NP-complete, that is, the 

optimal solution cannot be obtained. Second, from the perspective of interpretation, we 

can explain the solutions both quantitatively and qualitatively, making it easy to deal with 

multi-stage production problems. Quantitatively, a factory or an entire assembly line can 

be modeled as a one-stage production, for which the due date is set up for delivery and can 

be decomposed as completion times for substages. Qualitatively, we can define the 

stability of a stage as the variation range of total completion time in a certain stable range. 
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Third, from the perspective of computation speed, we can get good solutions in time, 

making it possible to control the whole process in real-time. One-stage production 

scheduling is meaningful, not only to address the production requirement for the whole 

manufacturing process but also to address the complexity in a bottleneck operation. 

Therefore, our research on one-stage production provides insights into both scale-up and 

scale-down production scheduling problems. 

1.2 Challenges and Motivations 

The following three challenges motivate us on one-stage production scheduling. 

The first challenge is trade-offs exist among inconsistent key performance indicators 

(KPIs) for production. For example, minimizing the total completion time (TCT) and 

minimizing the variance of completion times (VCT) are inconsistent with each other. The 

second one is trade-offs exist between minimizing the mean and minimizing the standard 

deviation for a quadratic optimization problem. In terms of modern portfolio theory 

(Markowitz, 1952), optimizing the expected return of a portfolio is inconsistent with 

minimizing the risk. The third one is uncertainties exist in the real production environment, 

such as stochastic processing times, that is being with variation in processing times. Given 

stochastic processing times, Daniels and Kouvelis (1995) proposed their heuristics to 

maximize the minimum deviation from the upper bound, that is, optimization for the worst-

case scenario. However, optimizing the worst-case scenario does not necessarily optimize 

the average performance. 
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1.3 Contribution 

We have made contributions in this thesis work from the following three aspects. 

First, we develop a trade-off balancing (ToB) heuristic for one-stage production 

scheduling. Although the current version of our ToB heuristic balances trade-offs between 

min (TCT) and min (VCT), the sequencing scheme of our ToB heuristic can be extended to 

balance trade-offs among multiple KPIs. Second, for robust scheduling with stochastic 

processing times, we show that balancing the trade-offs between the mean and the variance 

of an objective function is more appropriate than optimizing the worst-case scenario. Third, 

integrating our ToB heuristic with statistical process control (SPC) techniques, our 

approach of trade-off balancing can provide solid specification limits of individual KPIs 

for production control. Through case studies, we verify that our ToB heuristic generates 

stable production performance for robust production control against stochastic processing 

times. 

The rest of this thesis is organized as follows. In Chapter Two, we provide a 

thorough literature review on flow shop scheduling for single- and multi-objective 

optimization, and the necessary information on modern portfolio theory, stochastic control 

theory, and statistical process control. In Chapter Three, we introduce our methodology for 

developing our ToB heuristic. In Chapter Four, we provide and analyze the results of 

empirical case studies.  In Chapter Five, we draw conclusions and future work. 
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CHAPTER 2.  LITERATURE REVIEW 

To better understand the three challenges described in Chapter One, we provide a 

literature review in Chapter Two, organized as follows. In Section 2.1, we introduce the 

definition of production scheduling and discuss the differences between flow shops and 

job shops, including one-stage and multi-stage production, based on which readers can not 

only distinguish different types of production lines, but also apply our methodology to 

suitable process settings. In Section 2.2, we discuss heuristics for multi- and one-stage flow 

shop scheduling, where the one-stage flow shop scheduling will affect the solution space 

of the multi-stage flow shop scheduling problems. In Section 2.3, we introduce multi-

objective optimization and relative advantages and disadvantages. In Section 2.4, we 

introduce the modern portfolio theory (MPT) and its application to our research. In Section 

2.5, we introduce the basic concept of stochastic control, based on which we further discuss 

the advantage and the disadvantage in Daniels and Kouvelis (1995)’s scheme for robust 

scheduling. Finally, in Section 2.6, we provide mathematical definitions of the statistical 

process control (SPC) and discuss how some process capability indices can be applied to 

trade-off balancing. 

2.1 Scheduling 

Scheduling is to allocate the competing jobs to limited resources in achieving some 

objectives (Pinedo, 2016). The objectives related to manufacturing can be minimizing 

makespan, minimizing production cost, maximizing equipment utilization, minimizing idle 

times, and those related to customers’ satisfaction can be minimizing the delivery tardiness 

and minimizing transportation cost. Scheduling has a wide range of applications in many 
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fields, such as enterprise management, transportation, aerospace, medical and health care, 

modern flexible manufacturing systems, and so on. As processes differ on process settings, 

job characteristics, and evaluation criteria, R.L. Graham et al. (1979) classified scheduling 

problems by using a triplet scheme of 𝛼𝛼|𝛽𝛽|𝛾𝛾 , where 𝛼𝛼  denotes the process settings, 𝛽𝛽 

denotes the job characteristics, and 𝛾𝛾 specifies the evaluation criterion. Suppose that n jobs 

𝐽𝐽𝑗𝑗(j=1, …, n) need to be processed on m machines 𝑀𝑀𝑖𝑖(i=1, …, m), and 𝑝𝑝𝑖𝑖𝑖𝑖 denotes the 

processing time of job j on machine i. 

For process settings or the machining environment, there are three categories: 

i. single machine or multi-machine (𝛼𝛼 = 1 or 𝑚𝑚). 

ii. parallel machines: identical (𝛼𝛼 = P), uniform (𝛼𝛼 = Q), unrelated (𝛼𝛼 = R). 

iii. multi-operation models: Flow Shop (𝛼𝛼 = F), Open Shop (𝛼𝛼 = O), Job Shop (𝛼𝛼 =

J), Mixed (or Grouped) Shop (𝛼𝛼 = X). 

For job characteristics, there are six categories: 

i. Whether the preemption is allowed (𝛽𝛽1 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝presence of preemption). 

ii. The presence of resource constraints (s limited resources: 𝛽𝛽2 = 𝑠𝑠, only a single 

resource: 𝛽𝛽2 =1, no limited resources: 𝛽𝛽2 = 0). 

iii. The precedence relation (arbitrary: 𝛽𝛽3 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, rooted tree: 𝛽𝛽3 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, no 

precedence relation: 𝛽𝛽3 = 0). 

iv. 𝛽𝛽4 = 𝑟𝑟𝑗𝑗, 𝑟𝑟𝑗𝑗 presence of release dates. 𝛽𝛽4 = 0: we assume that 𝑟𝑟𝑗𝑗 = 0. 

v. 𝛽𝛽5 = 𝑚𝑚𝑗𝑗 ≤ 𝑚𝑚� : A constant upper bound on 𝑚𝑚𝑗𝑗 is specified. 𝛽𝛽5 = 0: No such 

bound is specified. 

vi.  𝛽𝛽6 = 𝑝𝑝𝑖𝑖𝑖𝑖 = 1: The processing times are unit. 𝛽𝛽6 = 𝑝𝑝 ≤ 𝑝𝑝𝑖𝑖𝑖𝑖 ≤ 𝑝𝑝: Constant lower 

and upper bounds on 𝑝𝑝𝑖𝑖𝑖𝑖 are specified. 𝛽𝛽6 = 0: No such bounds are specified. 
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These categories of job characteristics help us classify the problem by showing 

specific job characteristics and the relationships between the job. 

For evaluation criteria, Brucker (2006) proposed a method that is useful for 

presenting cost function. The author denoted 𝛾𝛾 as a cost function and the completion time 

of job 𝐽𝐽𝑗𝑗 by 𝐶𝐶𝑗𝑗. Then Brucker (2006) associated the cost with 𝑓𝑓𝑗𝑗(𝐶𝐶𝑗𝑗). The total cost function 

was expressed by the following function: 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝐶𝐶) ≔ max {𝑓𝑓𝑗𝑗(𝐶𝐶𝑗𝑗)|𝑗𝑗 = 1, … ,𝑛𝑛}  or 

∑𝑓𝑓𝑗𝑗(𝐶𝐶) ≔∑ 𝑓𝑓𝑗𝑗(𝐶𝐶𝑗𝑗)𝑛𝑛
𝑗𝑗=1  is called bottleneck objectives and sum objectives, respectively. 

Thus, we can model any scheduling problem as a cost function that aims to find a feasible 

sequence that minimizes the total cost function. The Gantt chart can show the operation 

process intuitively. We can present production scheduling in two ways as shown in Figure 

1. Figure 1(a) is mainly for the machine-oriented perspective, where shows the operation 

on each machine. Figure 1(b) is mainly for the job-oriented perspective, where shows that 

all machines on which each job is operated. 
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(a) Machine-oriented Gantt chart. 

 

(b) Job-oriented Gantt chart. 
Figure 1: Machine-oriented and Job-oriented Gantt charts. 

Job shop scheduling is one type of scheduling and flow shop scheduling can be 

regarded as a special case of job shop scheduling. As the most common and complex 

scheduling problem in the real production environment, job shop scheduling can be 

described as n jobs with different processing times to be scheduled on m machines with 

different process routings. The character of a job shop is jobs need to be processed in a 

specific order aiming to achieve a single objective or multiple objectives and each job 

needs to separately occupy one machine for processing. Once the process begins, it cannot 

be interrupted before the last job being finished on the last machine and each machine can 

only process one job at any time. In a job shop, the job order can be the same or different 
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on each machine. The advantages of a job shop are as follows. Setting up with one or two 

machines initially is not difficult, and not difficult to add, change or remove machines as 

necessary. However, because of this flexibility, it is difficult to automate and schedule due 

to the lack of consistency and standardization. The difference between a job shop and a 

flow shop is that in a flow shop, the job order is the same on each machine. If some jobs 

are not processed on some machines, the corresponding processing time should be zero. 

The advantages of a flow shop are it is easy to automate, measure and optimize since the 

job order is the same on each machine. Compared with job shops, the disadvantage of flow 

shops is that they have less flexibility. Moreover, they need more initial work to set up a 

flow shop because determining a sequence achieving one or several objectives is the key 

point of the flow shop scheduling problem. Therefore, mathematical algorithms are 

applied to generate schedules and improve the effectiveness and efficiency of flow shop 

scheduling problems. Depending on the advantage and the disadvantage of job shops and 

flow shops, the designer can use either one type or combination of both types to design the 

layout of the operating environment. 

2.2 Heuristics for multi-and one-stage flow shop scheduling 

It has been almost 70 years since the pioneer paper published by Johnson in 1954 

on flow shop scheduling, whose algorithm is for 2-machine production with an objective 

to minimize makespan. In the beginning of flow shop production scheduling, researchers 

mainly used branch & bound techniques (Gupta and Stafford, 2006). However, for a 

production line with m ≥ 3 machines, the flow shop scheduling problem is NP-complete 

(Garey et al., 1976). Although it is difficult to find an optimal solution for NP-hard 

problems, many researchers put time and effort into developing scheduling theory and 
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heuristics. Most of the literature initially focused on minimizing the maximum completion 

time (MCT). NEH heuristic (Nawaz et al., 1983) is the best constructive heuristic to achieve 

the optimal solution for MCT minimization. Many researchers generated heuristics and 

algorithms to achieve other objectives depending on the scheme of the NEH heuristic. 

Gradually, with the complexity of actual production, algorithms for optimizing other 

objectives were generated. For example, the heuristic algorithm to minimize total flowtime 

(Rajendran, 1993, and Liu and Reeves, 2001) and the heuristic algorithm to minimize 

completion time variance (Kubiak, 1993). In this section, we provide literature reviews on 

multi- and one-stage flow shop scheduling. 

2.2.1 Heuristics for multi-stage flow shop scheduling 

A flow shop is a workshop that n jobs are processed in the same order on m 

machines (Pinedo, 2016). It is generally required that the flow direction of the job is 

consistent rather than that each job must be processed on each machine. If some jobs are 

not processed by some machines, the corresponding processing time should be set to zero. 

The most common performance measurement is makespan (maximum completion time) 

minimization and total completion time (TCT) minimization. Given the processing time of 

job j on machine i, i.e., 𝑝𝑝𝑖𝑖𝑖𝑖, we denote 𝐶𝐶𝑗𝑗 as the completion time of job j on the last machine 

m. Therefore, the maximum completion time (𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚) is the completion time of the last job 

n on the last machine m, and the total completion time (∑𝐶𝐶𝑗𝑗 = ∑ 𝐶𝐶𝑗𝑗,𝑚𝑚
𝑁𝑁
𝑗𝑗=1 ) is the sum of 

completion times of all jobs on the last machine. Except for the above two basic 

performance measurements, there are several other classical performance metrics. For 
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example, the measurement based on the due date will be the lateness (𝐿𝐿𝑗𝑗), the tardiness 

(𝑇𝑇𝑗𝑗), and the unit penalty (𝑈𝑈𝑗𝑗) (Pinedo, 2016). They are defined as 

𝐿𝐿𝑗𝑗 = 𝐶𝐶𝑗𝑗 − 𝑑𝑑𝑗𝑗, (1) 

𝑇𝑇𝑗𝑗 = max (𝐿𝐿𝑗𝑗 , 0), and (2) 

𝑈𝑈𝑗𝑗 = �
1, 𝑖𝑖𝑖𝑖 𝐶𝐶𝑗𝑗 > 𝑑𝑑𝑗𝑗
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (3) 

Garey et al. (1976) and Hoogenveen and Kawaguchi (1999) proved that MCT 

minimization and TCT minimization are NP-complete for a production problem with m>2 

machines. However, the effort on seeking near-optimal solutions never stops. NEH 

heuristic, LR heuristic, and FF heuristic are three classic heuristics for multi-stage flow 

shop scheduling problem optimization. NEH heuristic (Nawaz et al., 1983) is the best 

constructive heuristic to achieve the optimal solution for MCT minimization. LR heuristic 

(Liu and Reeves, 2001)) and FF heuristic (Fernandez-Viagas and Framinan, 2015) are 

considered as two of the best constructive heuristic to achieve the optimal solution for TCT 

minimization (Li et al., 2019). We will review some other heuristic algorithms for multi-

stage flow shop scheduling with different problem sets or perspectives. 

Campbell et al. (1970) developed the CDS heuristic based on Johnson’s rule. First, 

the CDS algorithm separated m machines into two groups, that is one group had (m-1) 

machines and the other had one machine, and then applied Johnson’s rule to the group with 

(m-1) machines to find the target sequence with minimum makespan. 

Woo and Yim (1998) proposed a heuristic based on the job insertion strategy of the 

NEH heuristic (Nawaz et al., 1983) to solve the problem with 5, 10, 15, 20 machines. 

Although it showed that the heuristic needed more computation time than other heuristics, 
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it outperformed CDS (Campbell et al., 1970), NEH (Nawaz et al., 1983), and Rajendran’s 

algorithm (Rajendran, 1993). 

Rajendran and Chaudhuri (1990) proposed two heuristic algorithms for the flow 

shop problem to minimize TCT. The experiment was designed with multi-stage varying 

from 3 to 25. The procedures of the first heuristic are shown as follows: 

Step.1: Let 𝜎𝜎 be the available partial schedule, 𝜋𝜋 be the set of unscheduled jobs, 

and 𝑛𝑛′ be the number of jobs in the set 𝜎𝜎. Arranging the job in ascending order of value 

𝑇𝑇𝑗𝑗 = ∑ (𝑚𝑚 − 𝑗𝑗 + 1)𝑝𝑝𝑖𝑖𝑖𝑖𝑚𝑚
𝑗𝑗=1 , where 𝑝𝑝𝑖𝑖𝑖𝑖 is the processing time of job j on machine i. If there 

exists a tie ranking, put the job with the least value of 𝑇𝑇𝑗𝑗′ = ∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑚𝑚
𝑗𝑗=1  first. 

Step.2: Select the first job in the array and put it into the 𝜎𝜎, thus 𝑛𝑛′=1, then update 

the array. Select the second job in the array and put it in the pth position of 𝜎𝜎 according to 

[𝑛𝑛′+1]/2≤p≤ [𝑛𝑛′+1]. Sequence the job in ascending order of value ∑ (𝑛𝑛′ + 2 −𝑛𝑛′+1
𝑗𝑗=2

𝑗𝑗)𝑑𝑑[𝑗𝑗−1],[𝑗𝑗] in the 𝜎𝜎, where 𝑑𝑑[𝑗𝑗−1],[𝑗𝑗] is the minimum delay on the first machine between the 

start of job [j-1] and job [j]. 

Step.3: Continue to step 2 and update array and 𝜎𝜎 until there is no job in 𝜋𝜋. 

Another heuristic is similar with the one mentioned above but ranks the sequence 

according to the value of 𝑇𝑇𝑗𝑗′. 

Compare to Bonney and Gundry (1976), King and Spachis (1980), and the 

RANDOM selection rule, these two heuristics gave optimal or near-optimal solutions. 

Followed Rajendran and Chaudhuri (1990), Rajendran and Chaudhuri (1992) 

proposed three heuristic algorithms that achieve the following three objectives, 

respectively. 

i. ∑ max[𝑞𝑞(𝜎𝜎𝜎𝜎, 𝑗𝑗 − 1) − 𝑞𝑞(𝜎𝜎, 𝑗𝑗), 0] ,𝑚𝑚
𝑗𝑗=2  



13 
 

ii. ∑ abs[𝑞𝑞(𝜎𝜎𝜎𝜎, 𝑗𝑗 − 1) − 𝑞𝑞(𝜎𝜎, 𝑗𝑗)] ,𝑚𝑚
𝑗𝑗=2  

iii. ∑ abs[𝑞𝑞(𝜎𝜎𝜎𝜎, 𝑗𝑗 − 1) − 𝑞𝑞(𝜎𝜎, 𝑗𝑗)] + ∑ 𝑞𝑞(𝜎𝜎𝜎𝜎, 𝑗𝑗)𝑚𝑚
𝑗𝑗=1 .𝑚𝑚

𝑗𝑗=2  

According to two phases of experimentation, the three heuristic algorithms proved 

better performance than Gupta's MINIT algorithm (Gupta, 1972), Miyazaki’s algorithm 

(Miyazaki, 1978), and Ho and Chang’s algorithm (Ho and Chang, 1991). 

Bertolissi (2000) Proposed a heuristic using a comparison algorithm and insertion 

algorithm for the flow time minimization objective. The comparison algorithm is as 

follows: The job sequence is generated by comparing each pair of temporary flow times. 

First, the initial pair of jobs is set as the pair that has the smallest flow times. Then, doing 

the same operation on the rest pairs of flow times. In the meantime, marking the starting 

job of the pair so that each job has its number of marks. Second, ranging all jobs in 

decreasing number of its marks. If there exists a tie ranking, sequencing the job in 

nonincreasing of total processing time. The insertion algorithm used to improve the 

performance of the initial sequence is the same as the insertion method of Rajendran and 

Chaudhuri’s heuristics (Rajendran and Chaudhuri, 1990). According to the results of 

experiments, this heuristic had an identical computational time as RC heuristic (Rajendran 

and Chaudhuri, 1990) and BG heuristic (Bonney and Gundry, 1976), but was better than 

RC heuristic (Rajendran and Chaudhuri, 1990) and BG heuristic (Bonney and Gundry, 

1976). Furthermore, the quality of the schedule was improved effectively. 

In analyzing the NEH heuristic, Framinan et al. (2003) proposed a heuristic aiming 

to minimize flowtime i.e., TCT, and showed that their special modifications of NEH 

heuristic could improve the performance of the sequence not only on the quality of the 
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approximation but also on the application range from small-scale to large-scale. The 

essence of the heuristic was the pairwise exchange scheme. 

Aldowaisan and Allahverdi (2004) generated six heuristics for the flow time 

minimization objective. The six heuristics (PH1, PH2, PH3, PH4, iPHi, PHi(p)) depended 

on three schedule criteria: 

i. on the criteria that choose between two stoppages. PH1 and PH2 terminate after 

10 replications while PH3 and PH4 terminate either after 10 replications or a 

worse solution appeared. 

ii. on the criteria that choose between two insertion approaches. PH1 and PH3 used 

Nawaz et al. (1983) insertion method while PH2 and PH4 used Rajendran and 

Ziegler’s insertion method (Rajendran and Ziegler, 1997). 

iii. on the criteria that exchange the adjacent pairwise procedure. iPHi and PHi(p) 

applied the criteria for further improvement. 

PH1(p) was recommended because it outperformed two heuristics proposed by 

Rajendran and Chaudhuri (1990) and the genetic algorithm generated by Chen et al. (1996). 

As discussed above, many heuristic algorithms were based on or modified some 

classical heuristics. For example, the CDS algorithm regrouped m machines into two 

subgroups. Such a strategy gives us a profound insight into the importance of returning the 

one-stage flow shop scheduling problem. Modeling a bottleneck as a one-stage or split 

multi-stage production line into several production lines helps us reduce the complexity of 

the problem. The solution precision of a one-stage problem will affect the solution space 

of a multi-stage problem. Therefore, it is important to improve the efficiency and 
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effectiveness of heuristics for one-stage production problems. In section 2.2.2, we review 

some literature on one-stage flow shop scheduling. 

2.2.2 Heuristics for one-stage flow shop scheduling 

In a one-stage production environment, given N jobs for processing, we omit the 

machine index, the processing time of job j on the single machine will be 𝑝𝑝𝑗𝑗 (Gupta and 

Kyparisis, 1987). We can generate N factorial (N!) possible sequences for one-stage 

production scheduling. For deterministic N-job 1-stage production problems, 

𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐶𝐶𝑁𝑁 = ∑ 𝑝𝑝𝑗𝑗𝑁𝑁
𝑗𝑗=1  (4) 

is a constant, and there is no difference in N! possible sequences. But the total completion 

time, 

𝑇𝑇𝑇𝑇𝑇𝑇 = ∑𝐶𝐶𝑗𝑗=∑ 𝐶𝐶𝑗𝑗𝑁𝑁
𝑗𝑗=1 = ∑ (𝑁𝑁 − 𝑗𝑗 + 1) ∙ 𝑝𝑝𝑗𝑗𝑁𝑁

𝑗𝑗=1  (5) 

is a weighted sum of processing times and different weights will present different 

performances. Li et al. (2014) proved that the shortest processing time (SPT) rule, 

arranging 𝑝𝑝𝑗𝑗  in nondecreasing order, generates an optimal solution to min (TCT) for 

deterministic problems. The mean flow time equals 𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁⁄  which drives other KPIs in 

scheduling, such as work-in-process inventories and the mean waiting time in the process, 

etc. Because the job sequence is independent on processing times for some one-stage 

scheduling problems, such as maximum lateness minimization and maximum tardiness 

minimization, the optimal solution to min (𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚) and min (𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) is to order the jobs in a 

nondecreasing of due dates (Shabtay and Steiner, 2007). 

Customer satisfaction is directly affected by the quality of service received, so 

minimizing the variance of performance and giving a uniform response to customer’s 



16 
 

requests are usually desirable. Such measurements have a strong correlation with customer 

satisfaction (Merten and Muller, 1972). To improve the quality of products and services, 

the company is also pursuing to provide the same service for customers. Minimizing the 

variance of completion times (VCT) is one type of minimizing the variance of performance, 

defined as the variance among completion times of N jobs. Generally, min (VCT) is NP-

hard. The following research findings are useful on min (VCT). 

Merten and Muller (1972) analyzed the variance of flow time and variance of 

waiting time on a single machine production problem. Firstly, they analyzed the 

minimization of mean flow time and the mean waiting time in the single machine 

production environment. The analysis process is as follows: 

Given n independent jobs are to be processed one at a time in sequence on a single 

machine. The number of possible permutations for sequencing the jobs is n!. Let R = (𝑖𝑖1, 

𝑖𝑖2, …, 𝑖𝑖𝑛𝑛) be that element of Π which is the set of all permutations of the first n integers 

where integer i is in the jth position for j = 1, 2, …, n and 𝑅𝑅′ = (𝑖𝑖𝑛𝑛, 𝑖𝑖𝑛𝑛−1,…, 𝑖𝑖2, 𝑖𝑖1). And 

let 𝑝𝑝𝑖𝑖 be the processing time for each job i and u(i) be the weight for describing the relative 

importance of job i. The reason why they reverse R to get the antithetical schedule, i.e., 𝑅𝑅′ 

is to check whether these two schedules result in a minimum mean flow time (FM) and 

mean waiting time (WM) and maximum FM and WM, respectively. The FM and the WM 

are expressed in the formulas, 𝐹𝐹𝐹𝐹(𝑅𝑅) = ∑ 𝑢𝑢(𝑖𝑖j)𝐹𝐹(𝑅𝑅, 𝑖𝑖j)𝑛𝑛
𝑗𝑗=1  and 𝑊𝑊𝑊𝑊(𝑅𝑅) =

∑ 𝑢𝑢(𝑖𝑖𝑗𝑗)𝑊𝑊(𝑅𝑅, 𝑖𝑖𝑗𝑗)𝑛𝑛
𝑗𝑗=1 . Given the properties of the sequence that minimizing FM and the 

sequence that minimizing WM, Merten and Muller (1972) found that the optimal solution 

to the FM and the WM can be achieved by the same job schedule, that is the schedule 

𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 gave minimums of FM and WM while 𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠′  gave maximums of FM and WM. 
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The introduction of performance measures of FM and WM was aiming to contrast to the 

performance measures of the variance of flow time (FV) and the variance of waiting time 

(WV) expressed as follows, 𝐹𝐹𝐹𝐹(𝑅𝑅) = ∑ 𝑢𝑢(𝑖𝑖j)(𝐹𝐹�𝑅𝑅, 𝑖𝑖j� − 𝐹𝐹𝐹𝐹(𝑅𝑅))2𝑛𝑛
𝑗𝑗=1  and 𝑊𝑊𝑊𝑊(𝑅𝑅) =

∑ 𝑢𝑢(𝑖𝑖j)(𝑊𝑊�𝑅𝑅, 𝑖𝑖j� −𝑊𝑊𝑊𝑊(𝑅𝑅))2𝑛𝑛
𝑗𝑗=1 . Merten and Muller (1972) proved that the sequence that 

minimizes the FV is antithetical to the sequence that minimizes the WV, although the 

minimum values of the two variance measures are equal. 

Eilon and Chowdhury (1977) focused on the waiting time variance minimization 

problem in the single machine. They proved that the optimal sequence should be V-shaped 

and an algorithm was given accordingly. To improve the performance of the algorithm, a 

heuristic method was developed especially for the scenario with several jobs. Their work 

has inspired many researchers to study the variance of completion times or related fields. 

Kanet (1981) also modeled this type of problem as minimizing the variation in flow 

time, i.e., min (VCT), aiming to reduce the fluctuation of the treatment of jobs (customers) 

such as the variation of service time (time in the system) and the variation of waiting time 

for service (time before operation) of each job. The author found an alternative way to min 

(VCT), which is equivalent to measure the total absolute differences in completion times 

(TADC): 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = ∑  ∑ | 𝐶𝐶𝑗𝑗𝑛𝑛
𝑗𝑗=𝑖𝑖 − 𝑛𝑛

𝑖𝑖=1 𝐶𝐶𝑖𝑖 | = ∑ (𝑗𝑗 − 1)(𝑛𝑛 − 𝑗𝑗 + 1) ∙ 𝑝𝑝𝑗𝑗𝑛𝑛
𝑗𝑗=1 , where the weight 

is −𝑗𝑗2 + 𝑛𝑛𝑛𝑛 + 2𝑗𝑗 − 𝑛𝑛 − 1, which independent on processing times. Clearly, the weight is 

a quadratic function with a maximum value at 𝑗𝑗 = (𝑛𝑛+2)
2

. Assume that a single stage with n 

jobs available at time zero for production, obviously, given the characteristic above, the 

optimal sequence has three properties: 

i. the job with the maximum value of processing time should be scheduled first. 

ii. the sequence is V-shaped regarding processing times. 
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iii. Let k is the position in the schedule of the job with the smallest processing time, if 

n is even, k=(n+2)/2, if n is odd, k=(n+1)/2. 

To achieve the optimal TADA schedule, Kanet (1981) generated two methods. The 

first one is the GEN method: Set S be the final sequence. Arrange all jobs in descending 

order of processing times. Consider the sequence as AS. Assign the first in AS to be last, 

the second in AS to be first, the third to be last but one, the fourth to be second, and so on, 

until assigning all jobs so that generate S. The second one is the SMV method: Set U be the 

set of unscheduled jobs. Regard the smallest job in S as k and the largest job in U as i. 

Compute the variance of completion times of temporary sequence 𝑺𝑺′ and 𝑺𝑺′′, where 𝑺𝑺′ is 

generated by inserting job i to the immediate left of k and  𝑺𝑺′′ is generated by inserting job 

i to the immediate right of k. If the variance of completion times of temporary sequence 𝑺𝑺′ 

is less than or equal to that of temporary sequence 𝑺𝑺′′ , set S = 𝑺𝑺′ . Otherwise, S =𝑺𝑺′′ . 

Continue the process until all jobs are scheduled. According to 7 cases study, it was showed 

that SMV was a simple method to find the optimal solution and when the job number is less 

than five and outperformed the heuristic given by Eilon and Chowdhury (1977). 

Schrage (1975) presented four theorems and three corollaries for the single machine 

environment with a finite number of jobs. However, they were not suitable for the weighted 

time calculation method just except for the first corollary (Merten and Muller, 1972). The 

followings are the summary. Let a(i) be the index for 𝑝𝑝𝑎𝑎(1)≥𝑝𝑝𝑎𝑎(2)≥𝑝𝑝𝑎𝑎(3)≥…. 

Theorem 1: the property of finite sequence that aims to achieve the optimal solution 

for minimizing the variation of completion times is scheduling the job with the largest 

processing time.  

Theorem 2: Reversing the last n-1 jobs will not change the variance of the schedule. 
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Theorem 3: When the job number is larger than 3, to generate a sequence that 

minimizes the variance of completion times should have the properties 𝑝𝑝2 ≥ 𝑝𝑝3 and 𝑝𝑝𝑛𝑛 ≥

𝑝𝑝𝑛𝑛−1. 

Theorem 4: When the job number is equal to 5, there are two solutions for 

minimizing the variance of completion times, i.e., a(1), a(2), a(5), a(4), a(3) and a(1), a(3), 

a(4), a(5), a(2). 

Correspondingly, three corollaries are as following, 

i. The optimal solution of minimizing the variance of completion times for two job 

problems is processing the longest job first. 

ii. As long as processing the longest job first, the schedule will achieve a minimum 

value of the variance of completion times in the three jobs system. 

iii. As long as processing the longest job first and the shortest job third, the schedule 

will achieve a minimum value of the variance of completion times in the four jobs 

system. 

Bagchi (1989) thought that no efficient algorithm exists now for an optimal solution 

both for minimizing the variation of completion times and for minimizing the variation of 

waiting times. But the properties for this type of problem were summarized (the properties 

were also held by TADC and TADW): 

i. The sequence that achieves an optimal solution for min (VCT) is antithetical to the 

sequence that achieves an optimal solution for the variance of waiting times (VWT) 

(Merten and Muller, 1972). 

ii. The value of VCT of any sequence is the same as the value of VWT of the antithetical 

sequence (Merten and Muller, 1972). 

javascript:;
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iii. The value of VWT of the dual part which is from the schedule that the SMV method 

generated is the same (Eilon and Chowdhury, 1977). 

iv. The sequence that achieves an optimal solution for min (VCT) has the property that 

the job with the largest processing time was ordered first. 

v. The sequence that achieves an optimal solution for min (VWT) is V-shaped. 

Using Kanet’s method (Kanet, 1981), Bagchi (1989) firstly proposed an alternative 

way to min (VWT), which is equivalent to measure the total absolute differences in waiting 

times (TADW): 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = ∑  ∑ | 𝑊𝑊𝑗𝑗
𝑛𝑛
𝑗𝑗=𝑖𝑖 − 𝑛𝑛

𝑖𝑖=1 𝑊𝑊𝑖𝑖 | = 𝑛𝑛2(𝑉𝑉𝑉𝑉𝑉𝑉) = ∑ 𝑗𝑗(𝑛𝑛 − 𝑗𝑗) ∙ 𝑝𝑝𝑗𝑗𝑛𝑛
𝑗𝑗=1 . 

Clearly, TADW is minimized by sorting weights 𝑗𝑗(𝑛𝑛 − 𝑗𝑗) in a non-ascending order and the 

processing times in a non-descending order. Secondly, the weighted method was giving to 

find the optimal solution for dual objectives. 

Overall, for a one-stage production problem, the SPT rule generates an optimal 

solution for min (TCT) (Li et al., 2014). The sequence that minimizes the variance of flow 

time is antithetical to the sequence that minimizes the variance of waiting time (Merten 

and Muller, 1972). The optimal sequence should be V-shaped for the waiting time variance 

minimization problem in the single machine (Eilon and Chowdhury, 1977). In conclusion, 

for inconsistent KPIs, we cannot find one sequence that simultaneously achieves optimal 

solution for each KPI optimization, which is one factor that triggers us to develop our ToB 

heuristic to balance the trade-offs between two inconsistent objectives. 

2.3 Heuristics for multi-objective optimization 

Although almost all multi-objective optimization problems are NP-hard and only a 

few can be solved by polynomial time (Pinedo, 2016), it is necessary to search for a near-

optimal solution for multi-objective optimization problem in the real complex production 
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environment. For example, achieving an optimum solution for patient flow time 

minimization leads to lower utilization of the periop process (Li et al., 2018). 

A multi-objective optimization problem (MOP) with several minimizing objectives 

can be defined as follows (Li and Ma, 2016), min 𝐹𝐹(𝑥𝑥) = (𝑓𝑓1(𝑥𝑥),𝑓𝑓2(𝑥𝑥), … ,𝑓𝑓𝑘𝑘(𝑥𝑥)), subject 

to 𝑥𝑥 ∈ Ω , where the solution 𝑥𝑥  is a vector of discrete decision variables and Ω  is the 

decision space. Two procedures to solve a multi-objective optimization problem (Ciavotta 

et al., 2013). One is “priori” approach, which is giving each objective a preference, i.e., a 

weight, to generate a single weighted linear function. The other is “posteriori” approach, 

aiming to find out a set of solutions (Pareto front). The decision-maker just picks one 

solution from the Pareto front. 

Followings are the literature reviews on the heuristics that using “priori” approach 

or “posteriori” approach. 

Dhingra and Chandna (2010) proposed HAS algorithms based on the NEH heuristic, 

to find an optimal sequence to minimize the weighted sum of total weighted tardiness, total 

weighted earliness, and makespan. NEH insertion technique and six generating rules were 

considered when proposing HAS algorithms. From the results of experiment which 

instances were derived by Taillard (1993), HAS algorithms were superior to others with 

weights were setting as (0.33, 0.33, 0.33), (0.25, 0.25, 0.5), (0.5, 0.25, 0.25) and (0.25, 0.5, 

0.25) for multi-objective function. 

Using the local search technique, Li and Ma (2016) also presented a novel multi-

objective memetic search algorithm (MMSA) to find an optimal schedule with makespan 

and total flowtime minimization objectives. First, the NEH heuristic-based method was 

applied for initializing the population, and individuals in the population were considered 
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as 𝑃𝑃𝐿𝐿. Then search for a non-dominated solution in 𝑃𝑃𝐿𝐿 and put them into 𝑃𝑃𝐸𝐸. Second, the 

global search method, the further local search method, and the update method were used 

to generate a set of 𝑃𝑃𝐿𝐿 and update 𝑃𝑃𝐿𝐿. Then continue to update A={𝑃𝑃𝐿𝐿 ∪ 𝑃𝑃𝐸𝐸}, 𝑃𝑃𝐸𝐸=A, until 

the Pareto optimal set was generated. The experimental results showed that MMSA was 

better than NNMA (Chiang et al., 2011), MOLSD (Li and Li, 2015), MOMAD (Ke et al., 

2014), and RIPG (Minella et al., 2011). 

Chandrasekaran et al. (2007) generated a particle swarm optimization (PSO) 

algorithm for solving the multi-objective flow shop scheduling problem, i.e., minimizing 

makespan, flow time, and completion time variance simultaneously. Generally, the PSO 

algorithm solves continuous non-linear optimization problems, mimicking the behavior of 

birds and their patterns of information exchange. The experiment was prepared to solve 

problems with jobs ranging from 20 to 500 and machines ranging from 5 to 20 and did not 

compare to other algorithms. The result was a Pareto solution set whose performance can 

be improved by increasing the number of iterations. 

Bagchi (1989) used the weighted method to simultaneously minimize the mean and 

the variation of flow time and waiting time in single-machine systems. Given 𝑝𝑝𝑗𝑗 with j = 

1, …, N for processing times of N jobs processing on the non-preemptive one-stage 

scenario, the author modeled the bicriterion scheduling problems as a cost function of the 

mean and variance of completion times, and considered total absolute differences in 

completion times (TADC) as a measure of the variation and total completion time (TCT) 

as a representative for mean completion time. The cost function with preference 𝛼𝛼 are as 

following, 

𝑍𝑍𝑐𝑐 = 𝛼𝛼(𝑇𝑇𝑇𝑇𝑇𝑇) + (1 − 𝛼𝛼)(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) = ∑ 𝑤𝑤𝑗𝑗,𝛼𝛼
𝑐𝑐𝑛𝑛

𝑗𝑗=1 𝑝𝑝[𝑗𝑗], 0≤  α ≤1 (6) 
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𝑍𝑍𝑊𝑊 = 𝛼𝛼(𝑇𝑇𝑇𝑇) + (1 − 𝛼𝛼)(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) = ∑ 𝑤𝑤𝑗𝑗,𝛼𝛼
𝑤𝑤𝑛𝑛

𝑗𝑗=1 𝑝𝑝[𝑗𝑗], 0≤  𝛼𝛼 ≤1 (7) 

where 𝑤𝑤𝑗𝑗,𝛼𝛼
𝑐𝑐 = (2𝛼𝛼 − 1)(𝑛𝑛 + 1) + 𝑗𝑗{2 − 3𝛼𝛼 + 𝑛𝑛(1 − 𝛼𝛼)} − 𝑗𝑗2(1 − 𝛼𝛼). 

where 𝑤𝑤𝑗𝑗,𝛼𝛼
𝑤𝑤 = 𝛼𝛼𝛼𝛼 + 𝑗𝑗{𝑛𝑛 − 𝛼𝛼(1 + 𝑛𝑛)} − 𝑗𝑗2(1 − 𝛼𝛼), TW is total waiting time. 

From the literature review above, we found that the articles with multi-objective 

optimization most focused on deterministic scheduling, that is there is no variation in 

processing times. However, uncertainty is everywhere in a real production scenario, which 

results in stochastic scheduling. Although Daniels and Kouvelis (1995) proposed EP and 

ES heuristics to hedge against processing time uncertainty by optimizing the worst-case 

scenarios, we raise a question that does optimize the worst-case scenarios also optimize the 

expected value of a KPI? We will answer the question in Chapter 4. 

2.4 Modern portfolio theory (MPT) 

Markowitz (1952) developed the modern portfolio theory for investment, the 

objective of which is to maximize the expected return for a given level of risk. Assuming 

a number of K assets are available in the market, each of which has a return of 𝑅𝑅𝑘𝑘 for k = 

1, …, K, we need to invest 100% capital onto K assets with two objectives, to maximize 

the expected return (E) and to minimize the variance of the portfolio return (𝜎𝜎2). The 

expected return is 

𝐸𝐸 =  ∑ 𝑤𝑤𝑘𝑘𝐾𝐾
𝑘𝑘=1 𝑅𝑅𝑘𝑘 = 𝑊𝑊𝑇𝑇𝑅𝑅  (8) 

where 𝑤𝑤𝑘𝑘 is the weight or the percentage of capital invested on an asset k, with ∑ 𝑤𝑤𝑘𝑘𝐾𝐾
𝑘𝑘=1 =

1 , W and 𝑅𝑅  are the vector of portfolio weights and the vector of expected returns 

respectively, and T stands for transpose. The variance of the portfolio return is 

𝜎𝜎2 = ∑ 𝑤𝑤𝑘𝑘2𝜎𝜎𝑘𝑘2𝐾𝐾
𝑘𝑘=1 + ∑ ∑ 𝑤𝑤𝑘𝑘𝑤𝑤𝑐𝑐𝜎𝜎𝑘𝑘𝜎𝜎𝑐𝑐𝜌𝜌𝑘𝑘𝑘𝑘𝐾𝐾

𝑐𝑐=1,𝑐𝑐≠𝑘𝑘
𝐾𝐾
𝑘𝑘=1 = 𝑊𝑊𝑇𝑇𝛴𝛴𝛴𝛴 (9) 
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where 𝜌𝜌𝑘𝑘𝑘𝑘 is the correlation coefficient between the returns on assets k and c, Σ is a K by 

K covariance matrix for the returns on the assets in the portfolio. If 𝜌𝜌𝑘𝑘𝑘𝑘=0, it means that all 

the asset pairs are uncorrelated. While if 𝜌𝜌𝑘𝑘𝑘𝑘=1, it means that all the asset pairs are 

positively correlated. 

Regarding KPIs as assets, the MPT model can be applied to balance trade-offs 

among KPIs in one-stage production. 

The efficient portfolio frontier offers analytical advice for risk-averse investors to 

make decisions that allocating capital to different assets. Any point on the efficient frontier 

means, for a given risk σ, the expected return cannot be further maximized, or for a given 

expected return E, the risk cannot be further minimized. However, when it comes to 

stochastic variables, the MPT model does not work unless the actual processing times are 

unknown in advance and we measure the performance in terms of the mean of processing 

time. 

2.5 Stochastic Control 

Generally, a stochastic process is a sequence of random variables that are related 

by time T. Both the sequence and each of the random variables can be continuous or 

discrete. The control theory is applied to a stochastic process, namely stochastic control. 

Stochastic control theory deals with the system that with uncertainty or disturbance 

and aims at answering the following questions (Astrom, 1970): 

i. What are the statistical properties of the system variables? 

ii. How to adjust the unknown parameters of the system to optimize the system 

under the given criteria? 

iii. How to find a control law aiming to minimize the criterion? 

https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
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The first question is the most basic question of stochastic control theory based on 

probability and statistics techniques. We can use some properties to describe the random 

variable, such as probability distribution for a discrete random variable and probability 

density function for the continuous random variable, or expected value, variance, 

covariance and correlation. Because of the statistical properties of the system variables, 

generally, researchers hope to evaluate the endpoint of the stochastic process and find an 

optimal method to maximize or minimize the expected value of the random variable. As 

for the second and third questions, the variation range and distribution of each known and 

unknown parameter are important. They will affect the solution space for cost function, 

such as equations (6) and (7), which means that it is necessary to address single objective 

(single parameter) production problems. With the variation in production, we can measure 

its mean and variance as our control objectives. 

In the real production scenario, randomness and uncertainty are everywhere, such 

as the skill levels of operators, the condition of stages, machine operating environment 

changes, or raw material quality parameters fluctuation which brings about the uncertain 

job processing times. Several methods have been used to describe the uncertainty in 

scheduling problem, such as Probability distribution function when the historical data is 

available, Fuzzy description, on the contrary, when probabilistic information is not ready, 

and the method that Daniels and Kouvelis (1995) (DK) used, which is bounded form, i.e., 

lower and upper limits [𝑝𝑝𝑗𝑗, 𝑝𝑝𝑗𝑗]. DK proposed a scheme for one-stage production robust 

scheduling against uncertainty in processing times, which to maximize the minimum 

deviation from the upper bound of total completion time. The scheme was presented in two 

heuristics, the endpoint production (EP) and the endpoint sum (ES), which schedule the 

javascript:;
javascript:;
javascript:;
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expected processing time due to the variation of actual processing times. They described 

the uncertainty in processing times by an interval 𝑝𝑝𝑗𝑗 ∈ [𝐿𝐿𝑗𝑗 ,𝑈𝑈𝑗𝑗], where 𝐿𝐿𝑗𝑗  and 𝑈𝑈𝑗𝑗  are the 

lower bound and the upper bound for the processing time of job j, respectively. Moreover, 

they use these two bounds to sequence the jobs in nondecreasing order. Since we are 

comparing our methods with DK’s, it is necessary to introduce and explain their heuristics 

in detail. The following are the detailed steps for EP and ES heuristics. 

Given 𝑝𝑝𝑗𝑗 with j = 1, …, N for processing times of N jobs producing on the one-

stage scenario: 

Step 1. Calculate the lower bound 𝐿𝐿𝑗𝑗, the average or expectation 𝐸𝐸𝑗𝑗, and the upper 

bound 𝑈𝑈𝑗𝑗 for stochastic processing times. 

Step 2. Sort 𝐿𝐿𝑗𝑗 according to the shortest processing time (SPT) rule, which is the 

lower bound of TCT, denote as LB(TCT). 

Step 3. Sort 𝑈𝑈𝑗𝑗 according to the longest processing time (LPT) rule, which is the 

upper bound of TCT, denote as UB(TCT). 

Step 4. Keep the rest N – 2 jobs in the same position and exchange the positions of 

two jobs, j and l in the sequence S1 = [1, 2, …, j, …, l, …, N], we get sequence S2 = [1, 

2, …, l, …, j, …, N]. 

According to equation (5), we get, 

 The worst-case (WC) of TCT occurs to S1 under the condition of 𝑈𝑈𝑗𝑗 and 𝐿𝐿𝑙𝑙, which 

has the effect of 

𝑊𝑊𝑊𝑊1 = (𝑁𝑁 − 𝑗𝑗 + 1) ∙ 𝑈𝑈𝑗𝑗 + (𝑁𝑁 − 𝑙𝑙 + 1) ∙ 𝐿𝐿𝑙𝑙, and (10) 

 The worst-case of TCT occurs to S2 under the condition of 𝑈𝑈𝑙𝑙 and 𝐿𝐿𝑗𝑗, which has 

the effect of 
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𝑊𝑊𝑊𝑊2 = (𝑁𝑁 − 𝑗𝑗 + 1) ∙ 𝑈𝑈𝑙𝑙 + (𝑁𝑁 − 𝑙𝑙 + 1) ∙ 𝐿𝐿𝑗𝑗 (11) 

Step 5. If 𝑊𝑊𝑊𝑊1 ≤ 𝑊𝑊𝑊𝑊2, that is 

(𝑁𝑁 − 𝑗𝑗 + 1) ∙ 𝑈𝑈𝑗𝑗 + (𝑁𝑁 − 𝑙𝑙 + 1) ∙ 𝐿𝐿𝑙𝑙 ≤ (𝑁𝑁 − 𝑗𝑗 + 1) ∙ 𝑈𝑈𝑙𝑙 + (𝑁𝑁 − 𝑙𝑙 + 1) ∙ 𝐿𝐿𝑗𝑗, (12) 

we use sequence S1 to process job j earlier than job l, otherwise, we use S2. 

We define the difference between 𝐿𝐿𝑗𝑗  and 𝐿𝐿𝑙𝑙  as 𝑑𝑑𝑑𝑑 = 𝐿𝐿𝑙𝑙 − 𝐿𝐿𝑗𝑗 , and the difference 

between 𝑈𝑈𝑗𝑗  and 𝑈𝑈𝑙𝑙  as 𝑑𝑑𝑑𝑑 = 𝑈𝑈𝑗𝑗 − 𝑈𝑈𝑙𝑙 . Figure 2 shows the deviation between the lower 

bound and upper bound. Then the equation (8) can be expressed as follows, 

(𝑁𝑁 − 𝑗𝑗 + 1) ∙ (𝑈𝑈𝑗𝑗 − 𝑈𝑈𝑙𝑙) ≤ (𝑁𝑁 − 𝑙𝑙 + 1) ∙ (𝐿𝐿𝑙𝑙 − 𝐿𝐿𝑗𝑗) (13) 

(𝑁𝑁 − 𝑗𝑗 + 1) ∙ 𝑑𝑑𝑑𝑑 ≤ (𝑁𝑁 − 𝑙𝑙 + 1) ∙ 𝑑𝑑𝑑𝑑 (14) 

 
Figure 2: The deviation between lower bound and upper bound. 

The programming logic of EP and ES is summarized as follows: 

Applying the SPT rule to 𝐿𝐿𝑗𝑗 ∙ 𝑈𝑈𝑗𝑗and 𝐿𝐿𝑗𝑗 + 𝑈𝑈𝑗𝑗, generating the EP and ES sequences 

respectively. 

Given a sequence π for EP or ES, Figure 3 shows the programming logic of EP and 

ES heuristics. 

 

𝑈𝑈𝑙𝑙  𝐿𝐿𝑙𝑙  

𝐿𝐿𝑗𝑗 𝑈𝑈𝑗𝑗 

dL dU 
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Figure 3: The programming logic of EP and ES heuristics. 
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In fact, EP and ES heuristics sequence the jobs according to the following rules, 

𝐿𝐿𝑗𝑗 ∙ 𝑈𝑈𝑗𝑗 ≤ 𝐿𝐿𝑗𝑗+1 ∙ 𝑈𝑈𝑗𝑗+1, and (15) 

𝐿𝐿𝑗𝑗 + 𝑈𝑈𝑗𝑗 ≤ 𝐿𝐿𝑗𝑗+1 + 𝑈𝑈𝑗𝑗+1, respectively. (16) 

To optimize the worst-case performance, DK’s scheme is more appropriate and 

gives useful insight for robust scheduling. However, we challenge DK’s scheme that a 

solution to optimize the worst-case does not necessarily optimize the average expected 

performance. Therefore, our scheduling scheme for trade-off balancing considers not only 

the worst-case scenario, but also the average expected performance. Accordingly, our ToB 

heuristic outperforms DK’s EP and ES heuristics on both the worst-case and average 

performances. 

2.6 Statistical process control 

Based on the concept of exchangeability, Shewhart (1931) proposed the concept of 

a state of statistical control which is the precursor to the statistical process control (SPC) 

method, and successfully promoted and applied it in the communication industry and 

military industry. 

According to John (2003), the SPC is a basic set of tools for process management, 

improving the process design, enhancing the consistency, reducing production costs, and 

improving the quality of products from a process by controlling input factors. The benefits 

of the SPC include but not limited to the following: 

i. The application range is very wide. It can be used in any process in which output is 

measured by certain specifications. 

ii. The decision is rational. 

iii. The involvement in the improvement process increases the ‘awareness’ of quality. 
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iv. The experience of the workforce is enhanced. 

v. Leaders are more methodological. 

vi. Communication is improved. 

Ishikawa (1974) developed 7-QC tools, which are 

i. Stratification/Divide and Conquer Method, 

ii. Histogram, 

iii. Check Sheet/Tally Sheet, 

iv. Cause-and-Effect/Fishbone/Ishikawa Diagram, 

v. Pareto Chart/80-20 Rule, 

vi. Scatter Diagram, and 

vii. Control/Shewhart Chart, 

and 7-SUPP (Ishikawa, 1974), which are 

i. Stratification, 

ii. Defect Mapping, 

iii. Events Logs, 

iv. Flowchart, 

v. Progress Centers, 

vi. Randomization, and 

vii. Sample Size Determination. 

These tools help us understand the application breadth of the SPC. The other useful 

concept is statistical quality control (SQC). The difference between SQC and SPC is the 

application scope of the above tools. Using these tools to observe the outputs which are 
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dependent factors is the process of SQC while using these tools to control the inputs which 

are independent factors is the process of the SPC. 

Duncan (1959) introduced the general theory of control charts which are the most 

basic tool for the SPC technique. It not only a tool for illustrating a stage of statistical 

control and achieving the purpose of control but also a tool for indicating what level the 

control reached. 

A typical control chart contains two parts. One is the centerline which stands for 

the average value of observed variables. The other part is two control limit lines, i.e., the 

upper control limit (UCL) and the lower control limit (LCL). Generally, if all or nearly all 

samples fall between the control limit, we could consider that the process is in control. But 

sometimes, the process was under suspicion of being out of control even if all sample points 

did fall between the control limit (Montgomery, 2009). Figure 4 is an example of such a 

situation. As shown in Figure 4, all points fall between UCL and LCL, however, two of 

these points plotted upper the center line while others fall below the centerline. Clearly, the 

𝑥̅𝑥 chart in Figure 4 has no random pattern. The other type of control charts is the R charts. 

 
Figure 4: The control chart example. 
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Montgomery (2009) introduced two Phases of applications of 𝑥̅𝑥 charts and R charts: 

Phase one: Suppose that a quality characteristic is normally distributed with mean 

𝜇𝜇 and standard deviation 𝜎𝜎, where both mean 𝜇𝜇 and standard deviation 𝜎𝜎 are known. If 𝑥𝑥1, 

𝑥𝑥2, …, 𝑥𝑥𝑛𝑛 is a sample of size n, then the average of this sample is 𝑥̅𝑥 = 𝑥𝑥1+𝑥𝑥2+ …+𝑥𝑥𝑛𝑛
𝑛𝑛

. Suppose 

that m samples are available, each containing n observations on the quality characteristic. 

Let 𝑥̅𝑥1 , 𝑥̅𝑥2 , …, 𝑥̅𝑥𝑚𝑚  be the average of each sample. 𝑥̿𝑥 = 𝑥̅𝑥1+𝑥̅𝑥2+ …+𝑥̅𝑥𝑚𝑚
𝑚𝑚

. The range of the 

sample is 𝑅𝑅 = 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 . Let 𝑅𝑅1 , 𝑅𝑅2 , …, 𝑅𝑅𝑚𝑚  be the ranges of the m samples. The 

average range is 𝑅𝑅� = 𝑅𝑅1+𝑅𝑅2+ …+𝑅𝑅𝑚𝑚
𝑚𝑚

. Then the control limits for the 𝑥̅𝑥 chart are: UCL = 𝑥̿𝑥 +

𝐴𝐴2𝑅𝑅� and LCL = 𝑥̿𝑥 − 𝐴𝐴2𝑅𝑅�. The control limits for the R chart are: UCL = 𝐷𝐷4𝑅𝑅� and LCL =

𝐷𝐷3𝑅𝑅�. 𝐴𝐴2 is a constant which is tabulated for various sample size. 𝐷𝐷3 and 𝐷𝐷4 are constants 

that are tabulated for various values of n. After plotting the 𝑥̅𝑥 chart and the R chart, the next 

step is analyzing the result. If all points are between the control limits and there is no trend 

of shifting, we can conclude that the process is in control in the past and use the control 

limits for process control in the future (Montgomery, 2009). 

Phase two: Using the reliable control limits generated by Phase one to monitor 

future production (Montgomery, 2009). 

It is crucial to draw suitable control limits. With narrow control limits, the 

probability of ‘type I error’ goes up. However, with wide control limits, the risk of having 

‘type II error’ is increased. Shewhart (1931) introduced a recommendation of setting 

±3*standard deviations for balancing the risk of ‘type I error’ and ‘type II error’. 

Leavengood and Reeb (1999) further summarized SPC with two advantages of the 

application, that is, Defects are effectively prevented by monitoring and controlling 
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variation, and substantial improvement was achieved by improving the performance of the 

system and avoiding or reducing variation. 

In addition to control charts, two process capability indices of 𝐶𝐶𝑝𝑝 and 𝐶𝐶𝑝𝑝𝑝𝑝 are also 

extensively used in the industry: 

𝐶𝐶𝑝𝑝 = 𝑈𝑈𝑈𝑈𝑈𝑈−𝐿𝐿𝐿𝐿𝐿𝐿
6𝜎𝜎�

 (17) 

𝐶𝐶𝑝𝑝𝑝𝑝=min (𝐶𝐶𝑝𝑝𝑝𝑝, 𝐶𝐶𝑝𝑝𝑝𝑝) (18) 

where lower and upper specification limits, [LSL, USL] are generally determined externally, 

such as customer preference, 𝜎𝜎� is the estimated process standard deviation, 𝐶𝐶𝑝𝑝𝑝𝑝 and 𝐶𝐶𝑝𝑝𝑝𝑝 are 

one-sided process capability ratios. Given estimated sample mean for the population, 𝜇̂𝜇, 

𝐶𝐶𝑝𝑝𝑝𝑝 and 𝐶𝐶𝑝𝑝𝑝𝑝 can be calculated by 

𝐶𝐶𝑝𝑝𝑝𝑝 = 𝜇𝜇�−𝐿𝐿𝐿𝐿𝐿𝐿
3𝜎𝜎�

 for the lower specification only, and (19) 

𝐶𝐶𝑝𝑝𝑝𝑝 = 𝑈𝑈𝑈𝑈𝑈𝑈−𝜇𝜇�
3𝜎𝜎�

 for the upper specification only. (20) 

We can design reasonable specification limits to help decision-makers choose a 

heuristic with the largest value of 𝐶𝐶𝑝𝑝 and 𝐶𝐶𝑝𝑝𝑝𝑝 when facing processing time uncertainty and 

trade-offs among KPIs. 
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CHAPTER 3.  METHODOLOGY 

The presentation of our methodology is organized as follows. In Section 3.1, we 

provide a problem description with assumptions and notations, followed by a summary of 

mathematical definitions of total completion time (TCT) and variance of completion times 

(VCT). In Section 3.2, we present our ToB heuristic with its formulation scheme and 

mathematical description. In Section 3.3, we discuss how we integrate the MPT model with 

our ToB heuristic. In Section 3.4, we introduce how can we apply the SPC techniques for 

robust production control. 

3.1 Problem description 

The assumptions for the problem are stated as follows, 

i. The stage has been set up at time zero. 

ii. All jobs are available at time zero. 

iii. Preemption is not allowed. 

iv. The job sequence cannot be changed during the operation. 

v. The stage just can operate one job at a time. 

Notations are used in problem description and formulation are as follows, 

N: the number of jobs; 

pj: the processing time of job j on the machine, where  j=1, …, N; 

I: the total instances number, i = 1, … , I; 

V: the levels of coefficient of variation (CV) in processing times,  
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v = 1, …, V; 

S: the samples randomly generated for each CV level, s = 1, …, S; 

H: 

K: 

 

Cj: 

wk: 

the heuristics for sequencing for h = 1, …, H; 

the number of KPIs, k = 1, …, K for general cases, for this thesis work 

k=1 for TCT and k=2 for VCT; 

the completion time for job j; 

the weight for KPI k. 

3.1.1 Total completion time (TCT) 

For N jobs one-stage production problem, we have N! possible sequences, which is 

our solution space.  Because there is no setup time for the stage and all jobs are available 

at time zero, we can calculate maximum completion time (MCT) and total completion time 

(TCT) as following equations. Figure 5 is the Gantt chart for one-stage production problems. 

As shown in Figure 5, the completion time of the first job equals the processing time of the 

first job, 

𝐶𝐶1 = 𝑝𝑝1 (21) 

then we can calculate MCT, also called makespan or 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 by 

𝐶𝐶𝑗𝑗 = 𝐶𝐶𝑗𝑗−1 + 𝑝𝑝𝑗𝑗, with 𝐶𝐶0 = 0 (22) 

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐶𝐶𝑁𝑁 = ∑ 𝑝𝑝𝑗𝑗𝑁𝑁
𝑗𝑗=1  (23) 

and TCT, also called flow time or ∑𝐶𝐶𝑗𝑗, by 

𝑇𝑇𝑇𝑇𝑇𝑇 = ∑𝐶𝐶𝑗𝑗 =∑ 𝐶𝐶𝑗𝑗𝑁𝑁
𝑗𝑗=1 = ∑ (𝑁𝑁 − 𝑗𝑗 + 1) ∙ 𝑝𝑝𝑗𝑗𝑁𝑁

𝑗𝑗=1  (24) 
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which is the sum of weighted processing times. We set 𝑊𝑊1 = (𝑁𝑁 − 𝑗𝑗 + 1). 

 
Figure 5: Gantt chart for one-stage production problem. 

For deterministic N jobs one-stage production, the processing time of all the jobs 

on the stage is determined, so 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 is a constant. But for TCT, its weights (𝑁𝑁 − 𝑗𝑗 + 1) are 

independent of processing times. The optimal solution for min (TCT) is ordering jobs in a 

nondecreasing sequence, i.e., the SPT rule. 

3.1.2 Variance of completion times (VCT) 

The other important measurement for the production performance is the variance 

of completion times (VCT), formulated by the following equation, 

𝑉𝑉𝑉𝑉𝑉𝑉 = 1
𝑁𝑁
∑ (𝐶𝐶𝑗𝑗 −𝑀𝑀𝑀𝑀𝑀𝑀)2𝑁𝑁
𝑗𝑗=1  (25) 

where MFT is the mean flow time, i.e., 

𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑇𝑇𝑇𝑇𝑇𝑇
𝑁𝑁

  (26) 

Although Eilon and Chowdhury (1977) have already presented that optimal flow 

time variance sequence must be V-shaped which orders the jobs that before the shortest job 

in descending order of processing times (LPT rule) and after the shortest job in ascending 

Time 𝐶𝐶𝑁𝑁 𝐶𝐶𝑁𝑁−1 𝐶𝐶3 𝐶𝐶2 𝐶𝐶1 

St
ag

e 𝑝𝑝1 𝑝𝑝2 𝑝𝑝3 𝑝𝑝𝑁𝑁 

0 
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order of processing times (SPT rule), Kubiak (1993) showed that minimizing VCT is NP-

hard. It has led researchers to conduct extensive and in-depth studies. Kanet (1981) 

generate an easier way to find the optimal of min(VCT), which is minimizing the total 

absolute differences in completion times (TADC), i.e., minimizing 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = ∑ (𝑗𝑗 − 1)(𝑁𝑁 − 𝑗𝑗 + 1) ∙ 𝑝𝑝𝑗𝑗𝑁𝑁
𝑗𝑗=1  (27) 

which is also the sum of weighted processing times. We set 𝑊𝑊2 = (𝑗𝑗 − 1)(𝑁𝑁 − 𝑗𝑗 + 1). 𝑊𝑊2 

is also independent on processing times. 

3.2 ToB Heuristic for one-stage production scheduling 

Since 𝑊𝑊1 is a first-order equation and 𝑊𝑊2 is second-order equation of j, we can tell 

the inconsistency between min (TCT) and min (VCT) by equations (24) and (27) which is 

the first source of trade-offs. 

Our ToB heuristic aims to balance the trade-off between the two KPIs, flow time 

minimization and completion time variance minimization in one-stage production. The 

scheme is to allocate preference on the two KPIs using modern portfolio theory (MPT), so 

we introduce 𝛼𝛼 to TADC in equation (27) and (1 − 𝛼𝛼) to TCT in equation (24), generating 

out our ToB heuristic as follows, 

𝑧𝑧 = 𝛼𝛼 ∙ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + (1 − 𝛼𝛼)  ∙ 𝑇𝑇𝑇𝑇𝑇𝑇 (28) 

=  𝛼𝛼 ∙ ∑ (𝑗𝑗 − 1)(𝑁𝑁 − 𝑗𝑗 + 1) ∙ 𝑝𝑝𝑗𝑗𝑁𝑁
𝑗𝑗=1 +(1 − 𝛼𝛼)∙ ∑ (𝑁𝑁 − 𝑗𝑗 + 1) ∙ 𝑝𝑝𝑗𝑗𝑁𝑁

𝑗𝑗=1  

= ∑ [(𝑗𝑗 − 2) 𝛼𝛼 + 1](𝑁𝑁 − 𝑗𝑗 + 1) ∙ 𝑝𝑝𝑗𝑗𝑁𝑁
𝑗𝑗=1  (29) 

The value 𝑧𝑧 is the sum of weighted processing times. We also set weight 

𝑊𝑊3 = [(𝑗𝑗 − 2)𝛼𝛼 + 1](𝑁𝑁 − 𝑗𝑗 + 1). (30) 
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Equation (29) is a quadratic function of jfor a given 𝛼𝛼 and a finite set of N jobs. 

Since the parabola opens downward (the quadratic coefficient< 0), we can take the first-

order derivative with respect to j, 𝑊𝑊3  reaches its maximum at 𝑗𝑗 = 𝑁𝑁+3
2
− 1

2𝛼𝛼
. The main 

scheme of our ToB heuristic is sorting the processing times in descending order and sorting 

weights in ascending order, then matching the two orders together to get a sequence. 

Changing preference 𝛼𝛼 = 0.0 : 0.1 : 1.0, our ToB heuristic generates 11 sequences 

for trade-off balancing. When 𝛼𝛼 = 0.0 and 𝛼𝛼 = 1.0, according to the equation (28), it makes 

us completely inclined to min (TCT) and min (VCT), respectively. The overall 

computational complexity of our ToB heuristics is only 𝒪𝒪(𝑁𝑁log𝑁𝑁), the same as that of 

LEPT or SEPT, but much simpler than that of EP or ES. 

3.3 Modern portfolio theory (MPT) 

Based on the mathematical summary of the MPT model in Chapter Two, our ToB 

heuristic is formed by allocating preference on the two KPIs. The normalized deviations of 

the ToB heuristic for TCT and VCT are plugged into equations (8) and (9) in calculating 

the expected return (E) and the risk (𝜎𝜎2): 

𝐸𝐸 = 𝑤𝑤1∆𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑤𝑤2∆𝑉𝑉𝑉𝑉𝑉𝑉 (31) 

𝜎𝜎2 = 𝑊𝑊𝑇𝑇𝛴𝛴𝛴𝛴 = [𝑤𝑤1 𝑤𝑤2] �𝜎𝜎1 0
0 𝜎𝜎2

� �1 𝜌𝜌
𝜌𝜌 1� �

𝜎𝜎1 0
0 𝜎𝜎2

� �
𝑤𝑤1
𝑤𝑤2� 

= 𝑤𝑤12𝜎𝜎12 + 2𝑤𝑤1𝑤𝑤2𝜌𝜌𝜎𝜎1𝜎𝜎2 + 𝑤𝑤22𝜎𝜎22 (32) 

with 𝑤𝑤1, 𝑤𝑤2 ≥0 and 𝑤𝑤1 + 𝑤𝑤2= 1. 

We have already known that the inconsistency between min (TCT) and min (VCT) 

by equations (24) and (27), which means 𝜌𝜌 is equal to neither 0, 1 nor –1. The properties 
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of a linear function (31) and a quadratic function (32) show the second source of trade-offs 

between expected return and risk. 

When we have a set of portfolios (several weights), the efficient portfolio frontier 

will be generated. The efficient portfolio frontier offers analytical advice for making 

decisions that balancing the trade-offs. Any point on the efficient frontier means, for a 

given risk σ, the expected return cannot be further maximized, or for a given expected 

return E, the risk cannot be further minimized. For a portfolio of normalized deviations, 

the smaller the expected value of E and the smaller the risk of σ, the better the trade-offs 

balancing. 

3.4 Statistical process control (SPC) 

According to Chapter Two, Section 2.6, 𝑥̅𝑥 chart and R chart are the two most basic 

control charts. In our research, given numbers of I instances and numbers of S samples for 

each instance, the sample mean for an instance on asset k can be calculated by 

𝑥̅𝑥𝑘𝑘,𝑖𝑖 = 1
𝑆𝑆
∑ 𝑑𝑑𝑘𝑘,𝑖𝑖,𝑠𝑠
𝑆𝑆
𝑠𝑠=1  for i = 1, …, I, k = 1, …, K, (33) 

where 𝑑𝑑𝑘𝑘,𝑖𝑖,𝑠𝑠 is the return from asset k for instance i in sample s. To generate an 𝑥̅𝑥 chart, we 

need the value of the centerline and two control limits, i.e., the upper control limit (UCL) 

and the lower control limit (LCL). For 𝑥̅𝑥 chart, the value of centerline is the grand mean of 

asset k: 

𝑋𝑋𝑘𝑘 = 1
𝐼𝐼
∑ 𝑥̅𝑥𝑘𝑘,𝑖𝑖
𝐼𝐼
𝑖𝑖=1  for k = 1, …, K. (34) 

The variation range for an instance can be calculated by 

𝑅𝑅𝑘𝑘,𝑖𝑖 = max
{𝑆𝑆}

�𝑑𝑑𝑘𝑘,𝑖𝑖,𝑠𝑠� − min
{𝑆𝑆}

�𝑑𝑑𝑘𝑘,𝑖𝑖,𝑠𝑠�. (35) 
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For R chart, the value of the centerline is the average variation range: 

𝑅𝑅�𝑘𝑘 = 1
𝐼𝐼
∑ 𝑅𝑅�𝑘𝑘,𝑖𝑖
𝐼𝐼
𝑖𝑖=1  for k = 1, …, K. (36) 

The control limits for the 𝑥̅𝑥 chart are: 

UCL = 𝑋𝑋𝑘𝑘 + 𝐴𝐴2𝑅𝑅�𝑘𝑘, (37) 

UCL = 𝑋𝑋𝑘𝑘 + 𝐴𝐴2𝑅𝑅�𝑘𝑘, (38) 

and the control limits for the R chart are: 

UCL = 𝐷𝐷4𝑅𝑅�𝑘𝑘 (39) 

LCL = 𝐷𝐷3𝑅𝑅�𝑘𝑘 (40) 

𝐶𝐶𝑝𝑝 and 𝐶𝐶𝑝𝑝𝑝𝑝 are defined in Section 2.6. They are useful to verify if the process is 

under control. Qualitatively, the larger the 𝐶𝐶𝑝𝑝  and 𝐶𝐶𝑝𝑝𝑝𝑝 , the better the process is under 

control. Quantitatively, 𝐶𝐶𝑝𝑝 has a useful practical interpretation, that is 𝑃𝑃 = ( 1
𝐶𝐶𝑝𝑝

)100, the 

percentage of a specification band used by the process. A large value of P means the 

process is well controlled. Additionally, because 𝐶𝐶𝑝𝑝𝑝𝑝  measures the process centering, a 

large value of 𝐶𝐶𝑝𝑝𝑝𝑝  indicates the process fluctuates around the target and the process 

performance is consistent over time. 
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CHAPTER 4. CASE STUDY 

To test the ability of our ToB heuristic in addressing three challenges in one-stage 

production scheduling, we design our case studies comprehensively.  This chapter is 

organized as follows. In section 4.1, we illustrate the design scheme of our case studies.  

In section 4.2, we compare the performance of 16 heuristics on single-objective 

optimization problems and for two types of processing times, one of which is for static 

processing times, and the other for variation in processing times.  In section 4.3, we present 

the fluctuations of trade-off balancing along with variation in processing times, based on 

the modern portfolio theory model.  We also illustrate how we use our ToB heuristic to 

further optimize the expected return and the risk for multi-objective optimization.  In 

section 4.4, we present how we use our ToB heuristic to facilitate stochastic production 

control, in terms of statistical process control (SPC) techniques. 

4.1 The design scheme of case studies 

4.1.1 A list of variables 

i. The number of jobs ranges from N = 5, 6, …, 10. 

ii. The number of instances is 50 for each job number. The total number of instances 

is I = 6×50 = 300 for i = 1, …, I. 

iii. The processing times for each instance are randomly generated following a uniform 

distribution between [1, 99]. 

iv. To describe the processing time uncertainty, we introduce a measurement of a 

probability distribution or frequency distribution, the coefficient of variation (CV). 

Its mathematical definition is a ratio of the standard deviation 𝜎𝜎 to the mean 𝜇𝜇, 
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𝐶𝐶𝐶𝐶 = 𝜎𝜎
𝜇𝜇

. Since we can estimate CV by using the ratio of the sample standard 

deviation to the sample mean, we determined the sample by 𝑝𝑝 = 𝐸𝐸(𝑝𝑝) +

√3𝐸𝐸(𝑝𝑝)𝐶𝐶𝐶𝐶(2𝑈𝑈 − 1), where 𝑈𝑈 is a uniform random number from [0, 1], 𝐸𝐸(𝑝𝑝) is 

the expected value for processing time. We set 𝐶𝐶𝐶𝐶 ≤ 1 √3⁄   to avoid processing 

times falling below zero which cannot happen in a production scenario. So, the 𝐶𝐶𝐶𝐶 

changes in the interval [0.1, 0.5] with increments of 0.1. Thus, we have 5 𝐶𝐶𝐶𝐶 levels 

in total for v = 1, …, V. 

v. S = 50 samples for each 𝐶𝐶𝐶𝐶 level and each instance with s = 1, …, S. The total 

number of samples = The total number of instances×The total number of 𝐶𝐶𝐶𝐶 

levels×The number of samples for each 𝐶𝐶𝐶𝐶 level and each instance = 300∙×5×50 

= 75,000. 

vi. H = 16 heuristics for evaluation with h = 1, …, H. We aimed to compare our ToB 

heuristic (11 sequences in total) with EP and ES heuristics. Since the shortest 

expected processing time (SEPT) rule is a classic stochastic scheduling method to 

address processing time uncertainty in min (TCT), we take it into consideration. 

And we also take account of the longest expected processing time (LEPT) rule, the 

antithetical to the sequence generated by the SEPT rule. Our ToB heuristic, SEPT, 

and LEPT rules sequences the expected processing times, 𝐸𝐸(𝑝𝑝𝑗𝑗), and the last two 

rules arrange the expected processing time in a nondecreasing order and a 

nonincreasing order, respectively. As introduced in Section 2.5, EP and ES 

heuristics operate the sequence of the job on lower and upper bounds of processing 

times. We also compared our ToB heuristic with the first come first served rule 

(FCFS) which does not depend on processing times and sequence jobs in the order 
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in which they arrive. Because all jobs are available at time zero, we regard the 

sample sequence at time zero as the sequence generated by the FCFS rule. In total, 

16 sequences are generated for each sample, with 11 sequences by the ToB 

heuristic, and one by each of the EP, ES, SEPT, LETP, and FCFS methods, 

respectively. 

vii. We focus on two KPIs with k =1 for TCT and k =2 for VCT. 

viii. 𝑦𝑦𝑘𝑘,𝑣𝑣,𝑖𝑖,𝑠𝑠,ℎ is the actual value of a KPI k generated from a heuristic h for instance i in 

sample s on level v. Generally, since there are different units or scales for different 

KPIs, normalization should be considered. The units for our data are identical, but 

we cannot be sure that samples are on the same scale. So, it is necessary to 

normalize KPIs on the same scale. Min-max feature scaling is a common method 

to bring the data into the range [0, 1].The best (minimum) and worst (maximum) 

solutions to minimize total completion time (TCT) and completion times variance 

(VCT) are max
{𝐻𝐻}

�𝑦𝑦𝑘𝑘,𝑣𝑣,𝑖𝑖,𝑠𝑠,ℎ�  and min
{𝐻𝐻}

�𝑦𝑦𝑘𝑘,𝑣𝑣,𝑖𝑖,𝑠𝑠,ℎ� , respectively. The following 

expression will be used for results analysis of the case studies: 

Normalized Deviation (ND): 

𝑁𝑁𝑁𝑁𝑘𝑘,𝑣𝑣,𝑖𝑖,𝑠𝑠,ℎ =
𝑦𝑦𝑘𝑘,𝑣𝑣,𝑖𝑖,𝑠𝑠,ℎ−𝑚𝑚𝑚𝑚𝑚𝑚

{𝐻𝐻}
�𝑦𝑦𝑘𝑘,𝑣𝑣,𝑖𝑖,𝑠𝑠,ℎ�

𝑚𝑚𝑚𝑚𝑚𝑚
{𝐻𝐻}

�𝑦𝑦𝑘𝑘,𝑣𝑣,𝑖𝑖,𝑠𝑠,ℎ�−𝑚𝑚𝑚𝑚𝑚𝑚
{𝐻𝐻}

�𝑦𝑦𝑘𝑘,𝑣𝑣,𝑖𝑖,𝑠𝑠,ℎ�
  (41) 

Average Normalized Deviation (AND): 

𝐴𝐴𝑁𝑁𝑁𝑁𝑘𝑘,𝑣𝑣,ℎ = 1
𝐼𝐼
∑ (1

𝑆𝑆
∑ 𝑁𝑁𝑁𝑁𝑘𝑘,𝑣𝑣,𝑖𝑖,𝑠𝑠,ℎ) =𝑆𝑆
𝑠𝑠=1

𝐼𝐼
𝑖𝑖=1

1
𝐼𝐼𝐼𝐼
∑ ∑ 𝑁𝑁𝑁𝑁𝑘𝑘,𝑣𝑣,𝑖𝑖,𝑠𝑠,ℎ

𝑆𝑆
𝑠𝑠=1

𝐼𝐼
𝑖𝑖=1  (42) 

Maximum Normalized Deviation (MND): 

𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘,𝑣𝑣,𝑖𝑖,ℎ = 𝑚𝑚𝑚𝑚𝑚𝑚
{𝑆𝑆}

(𝑁𝑁𝑁𝑁𝑘𝑘,𝑣𝑣,𝑖𝑖,𝑠𝑠,ℎ) for each CV level. (43) 

Average Maximum Normalized Deviation (AMND): 
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𝐴𝐴𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘,𝑣𝑣,ℎ = 1
𝐼𝐼
∑ 𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘,𝑣𝑣,𝑖𝑖,ℎ
𝐼𝐼
𝑖𝑖=1  for all instances. (44) 

As for static processing times, there will be no subscript of v for the above 

expressions. 

4.1.2 Evaluation scheme 

Based on three challenges that motivate us on one-stage production scheduling, we 

designed our case study. The following strategies corresponded to three challenges we 

faced. 

i. Given the challenge that trade-offs between two KPIs, i.e., the trade-offs between 

min (TCT) and min (VCT) in production scheduling. The proposed ToB heuristic 

was generated to balance the trade-offs. We compare the performance of 16 

heuristics on single-objective optimization problems, i.e., min (TCT) and min 

(VCT), and for two types of processing times, one of which has static processing 

times, and the other has variation in processing times. Results are shown in Section 

4.2. 

ii. Given the challenge that trade-offs between the mean and the variance in multi-

objective optimization, we integrate the concept of modern portfolio theory (MPT) 

into our ToB heuristic to balancing the trade-offs between the expected return and 

the risk. Firstly, we show the fluctuations of trade-off balancing along with 

variation in processing times. Then, we also present how our ToB heuristic 

facilitates multi-objective optimization based on the modern portfolio theory model. 

Results are shown in Section 4.3. 



45 
 

iii. Given the challenge that uncertainties exist in the real production environment, we 

use SPC techniques to show fluctuations of process performance, how we set up 

specification limits and how our ToB heuristic facilitates SPC techniques to 

generate specification limits. Results are shown in Section 4.4. 

4.2 Single-objective optimization 

To verify the effectiveness of our ToB heuristic in balancing trade-offs among KPIs, 

we compare the performance of 16 heuristics on single-objective optimization problems, 

i.e., min (TCT) and min (VCT). The following is the result for two types of one-stage 

production. The first type is the production with static processing times. The other one is 

the production with variation in processing times. The smallest values will be highlighted 

in bold in the following subsections. 

4.2.1 For static processing times 

For the production with static processing times, the results are shown in Table 1 

and Table 2. From Table 1, we can tell that, with single-objective min (TCT), our ToB 

heuristic with 𝛼𝛼 = 0.0 is the same as the SEPT rule, has the same performance as the EP 

and ES heuristics with the smallest average normalized deviation (AND) and smallest 

maximum normalized deviation (MND). From Table 2, we can tell that, with single-

objective min (VCT), our ToB heuristic with 𝛼𝛼 = 0.5 to 1.0 has the smallest AND and the 

smallest MND. Additionally, we can tell the inconsistencies between min (TCT) and min 

(VCT) for static processing times from both Table 1 and Table 2, in terms of a small 

deviation achieved by a heuristic on one KPI, but a large one on the other. 
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Table 1: AND and MND from min (TCT) for static processing times. 
 ToB(α) EP ES SEPT LEPT FCFS 0.0 0.1 0.2 0.3 0.4 0.5~0.9 1.0 

AND .000 .001 .115 .236 .390 .610 .764 .000 .000 .000 1.000 .490 
MND .000 .038 .287 .363 .484 .895 .986 .000 .000 .000 1.000 .996 

Table 2: AND and MND from min (VCT) for static processing times.  
 ToB(α) EP ES SEPT LEPT FCFS 0.0 0.1 0.2 0.3 0.4 0.5~1.0 
AND .983 .978 .642 .381 .161 .000 .983 .983 .983 .289 .637 
MND 1.000 1.000 1.000 .958 .726 .001 1.000 1.000 1.000 .540 1.000 

4.2.2 For stochastic processing times 

We manage the grand AMND for each number of jobs, which is across I = 50 

instances in Table 3. From Table 3, we can tell that ToB(0.0) heuristic is the same as the 

SEPT rule, both of which generate the smallest grand AMND when the number of jobs is 

relatively large (N=7, 8, 9, 10). When the number of jobs is relatively small (N=5, 6), the 

EP and ES heuristics generate the smallest grand AMND of 0.262 and 0.237, respectively. 

Comparatively, the LEPT rule always generates the largest deviations. Our ToB heuristic 

outperforms other heuristics when the number of jobs is relatively large. 

Table 3: AMND from min (TCT) from the number of jobs perspective. 

N 
ToB(α) 

EP ES SEPT LEPT FCFS 
0.0 0.1 0.2 0.3 0.4 0.5~0.9 1.0 

5 .264 .264 .372 .576 .787 .923 .973 .262 .262 .264 1.000 .749 

6 .241 .241 .342 .670 .807 .913 .957 .237 .237 .241 1.000 .808 

7 .143 .143 .319 .607 .762 .889 .945 .144 .145 .143 1.000 .741 

8 .154 .154 .519 .677 .785 .882 .934 .164 .162 .154 1.000 .757 

9 .116 .116 .482 .647 .761 .864 .920 .120 .120 .116 1.000 .737 

10 .106 .121 .542 .650 .767 .849 .904 .107 .106 .106 1.000 .709 

From each CV level perspective, we manage the AMND across I = 300 instances in 

Table 4. From Table 4, we can tell that the EP and ES heuristics generate the smallest 

maximum deviations from min (TCT) at CV = 0.2 and 0.3, respectively. Our ToB(0.0) 
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heuristic has the same performance as the EP and ES heuristics with the smallest maximum 

deviation at CV = 0.1 and 0.4. However, ToB(0.0) heuristic generates the smallest 

maximum deviation of 0.425 at CV = 0.5 and the smallest grand average of 0.171 across 5 

CV levels. Same as that in Table 3, the LEPT rule generates the largest deviations at all CV 

levels and the largest grand average. 

Table 4: AMND from min (TCT) from the CV levels perspective. 

CV 
ToB(α) 

EP ES SEPT LEPT FCFS 
0.0 0.1 0.2 0.3 0.4 0.5~0.9 1.0 

0.1 .008 .010 .169 .333 .514 .721 .841 .008 .008 .008 1.000 .576 

0.2 .048 .050 .261 .474 .657 .824 .906 .047 .047 .048 1.000 .670 

0.3 .121 .124 .397 .636 .811 .917 .960 .120 .120 .121 1.000 .762 

0.4 .250 .253 .578 .812 .926 .975 .988 .250 .250 .250 1.000 .844 

0.5 .425 .429 .740 .935 .983 .997 .998 .436 .435 .425 1.000 .898 

Avg. .171 .173 .429 .638 .778 .887 .939 .172 .172 .171 1.000 .750 

We manage the grand AND for each number of jobs in Table 5 and for individual 

CV level in Table 6. From Table 5, we can tell that ToB(0.0) heuristic generates the 

smallest deviations from min (TCT) for all job numbers and ToB(0.1) heuristic generates 

the smallest deviations from N = 5 to N = 9. We can also tell that as the number of jobs 

increases, the deviation tends to decrease for all heuristics except for the LEPT rule and 

the FCFS rule. From Table 6, we can tell that our ToB(0.0) heuristic is the same as the 

SEPT rule, both of which generate the smallest deviation among all heuristics for each of 

5 CV levels, and the average normalized deviation across 5 CV levels is only 0.025. 

Comparatively, the LEPT rule always generates the largest deviations, and its grand 

average deviation across 5 CV levels is 0.982. The grand average deviations across 5 CV 

levels are 0.027 and 0.026 for the EP and ES heuristics, respectively. Our ToB heuristic 

outperforms the EP and ES heuristics at all 5 CV levels. 
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Table 5: AND from min (TCT) from the number of jobs perspective. 

N 
ToB(α) 

EP ES SEPT LEPT FCFS 
0.0 0.1 0.2 0.3 0.4 0.5~0.9 1.0 

5 .045 .045 .088 .187 .369 .638 .820 .046 .046 .045 .963 .485 

6 .036 .036 .078 .253 .396 .612 .754 .038 .037 .036 .971 .533 

7 .018 .018 .093 .244 .392 .613 .761 .019 .019 .018 .988 .491 

8 .022 .022 .187 .289 .418 .588 .718 .024 .024 .022 .985 .498 

9 .015 .015 .187 .293 .418 .588 .713 .017 .017 .015 .991 .495 

10 .014 .020 .228 .319 .436 .571 .688 .016 .016 .014 .993 .467 

Table 6: AND from min (TCT) from the CV levels perspective. 

CV 
ToB(α) 

EP ES SEPT LEPT FCFS 
0.0 0.1 0.2 0.3 0.4 0.5~0.9 1.0 

0.1 .001 .002 .117 .238 .391 .610 .763 .002 .002 .001 1.000 .491 

0.2 .007 .008 .125 .248 .396 .608 .756 .008 .008 .007 .997 .492 

0.3 .016 .017 .134 .259 .403 .604 .747 .017 .017 .016 .991 .497 

0.4 .035 .036 .156 .277 .412 .598 .733 .037 .037 .035 .975 .494 

0.5 .065 .066 .185 .300 .423 .589 .712 .069 .068 .065 .947 .500 

Avg. .025 .026 .143 .264 .405 .602 .742 .027 .026 .025 .982 .495 
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From equation (42), we can calculate the AND from min (VCT). Table 7 is from 

the number of jobs perspective and Table 8 is from the CV levels perspective. From Table 

7 and Table 8, we can tell that ToB(0.5, …, 1.0) heuristics have the smallest average 

deviations at each number of jobs and individual CV levels, and the smallest grand one of 

0.054 across all CV levels. However, the performance of the EP and ES heuristics is not 

very well. 

Table 7: AND from min (VCT) from the number of jobs perspective. 

N 
ToB(α) 

EP ES SEPT LEPT FCFS 
0.0 0.1 0.2 0.3 0.4 0.5~1.0 

5 .933 .933 .815 .606 .314 .072 .933 .933 .933 .194 .642 

6 .947 .947 .822 .451 .241 .068 .948 .948 .947 .281 .543 

7 .951 .951 .738 .424 .213 .047 .951 .951 .951 .289 .624 

8 .939 .939 .512 .334 .168 .054 .941 .941 .939 .356 .628 

9 .945 .945 .487 .303 .152 .043 .946 .946 .945 .376 .690 

10 .946 .921 .398 .252 .120 .041 .949 .947 .946 .421 .629 

Table 8: AND from min (VCT) from the CV levels perspective. 

CV 
ToB(α) 

EP ES SEPT LEPT FCFS 
0.0 0.1 0.2 0.3 0.4 0.5~1.0 

0.1 .978 .974 .640 .382 .162 .004 .978 .978 .978 .290 .633 

0.2 .965 .961 .633 .382 .175 .021 .965 .965 .965 .302 .629 

0.3 .950 .946 .633 .393 .196 .048 .950 .950 .950 .317 .626 

0.4 .926 .922 .625 .404 .223 .081 .928 .928 .926 .334 .622 

0.5 .898 .894 .614 .414 .250 .117 .902 .901 .898 .353 .621 

Avg. .943 .939 .629 .395 .201 .054 .945 .945 .943 .319 .626 

Comparing the deviations in Table 6 which have the min (TCT) criteria and the 

deviations in Table 8 which have the min (VCT) criteria, ToB(0.0) heuristic has the 

smallest average deviations from min (TCT) and ToB(0.5, …, 1.0) heuristics have the 

smallest average deviations from min (VCT). It shows the inconsistencies between min 
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(TCT) and min (VCT) for stochastic processing times, in terms of a small deviation 

achieved by a heuristic on one KPI, but a large one on the other. 

Pareto efficiency can be defined as follows (Li et al., 2019), given a set of H 

methods generating feasible solutions to min (𝑦𝑦𝑘𝑘) problems for k = 1, …, K, a method h is 

Pareto efficient, if and only if there is no other ℎ′∈𝐻𝐻 such that ∀𝑘𝑘 𝑦𝑦ℎ′,𝑘𝑘≤𝑦𝑦𝑘𝑘,ℎ  and ∃𝑘𝑘 

𝑦𝑦ℎ′,𝑘𝑘<𝑦𝑦𝑘𝑘,ℎ . Accordingly, based on the grand averages in Table 6 and Table 8, we can 

determine that our ToB heuristic with 11 𝛼𝛼 is Pareto efficient and dominates the rest of the 

heuristics. 

4.3 Multi-objective optimization 

4.3.1 The fluctuations of trade-off balancing 

Since our ToB heuristic dominates the rest of the heuristics, we eliminate the 

dominated heuristics which are the EP and ES heuristics, the SEPT rule, the LEPT rule, 

and the FCFS rule. Then we just plug the normalized deviations of our ToB heuristic for 

TCT and VCT into the equation (31) and (32) and set [𝑤𝑤1 𝑤𝑤2] as a 501 by 2 matrix, where 

𝑤𝑤1 + 𝑤𝑤2= 1 and 𝑤𝑤1 changing from 0 to 1 with an increment of 0.002 to get the expected 

return (𝐸𝐸) and the risk (σ). The efficient portfolio frontiers at each CV level are shown in 

Figure 6. Accordingly, the value of the expected return (𝐸𝐸) and the risk (σ) are in Table 9 

for the different objectives of min (𝐸𝐸 ) and min (σ), respectively. For a portfolio of 

normalized deviations, the smaller the expected value of 𝐸𝐸 and the smaller the risk of σ, 

the better the trade-offs balancing. From Table 9, we can see that minimum 𝐸𝐸  and 

minimum σ do not occur simultaneously at each CV level, that is, with the objective of min 

(𝐸𝐸 ), the minimum 𝐸𝐸  is 0.293 at CV=0.1 however with the objective of min (σ), the 
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minimum σ is 0.066  at CV=0.1. We can find the same properties for the other CV levels. 

From Figure 6, we can see the fluctuations of trade-off balancing along with variation in 

processing times. Furthermore, it is shown that, as CV level increases from 0.1 to 0.5, the 

efficient portfolio frontier shifts from the left to the right, which means that, as processing 

time uncertainty increases, we need to take a larger risk of σ to achieve the same value of 

𝐸𝐸, or at a given risk level of σ, we need to expect a larger value of 𝐸𝐸 from the portfolio. 

Table 9: Statistics from the MPT model at CV levels. 

CV\Obj. 
min(E) min(σ) 

E σ E σ 
0.1 .293 .400 .426 .066 
0.2 .303 .397 .426 .075 
0.3 .321 .395 .425 .085 
0.4 .341 .393 .426 .095 
0.5 .363 .389 .428 .106 

 
Figure 6: Efficient Portfolio Frontiers at CV Levels. 
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4.3.2 ToB heuristic facilitates multi-objective optimization 

We can also use our ToB heuristic to facilitate the MPT model for multi-objective 

optimization. Our ToB heuristic generates 11 sequences for trade-off balancing with 

preference α = 0.0 : 0.1 : 1.0, respectively. We can consider these 11 sequences as portfolio 

assets to balance trade-offs between minimization of the first-order effect, i.e., minimizing 

the expected return (𝐸𝐸) of the 11 sequences assets, and minimization of the second-order 

effect, i.e., minimizing the risk (σ). From Table 10, we can tell that, when we apply the 

MPT model to min(TCT) and min(VCT), the minimum 𝐸𝐸 is 0.324 with the objective of 

min (𝐸𝐸) and the minimum σ is 0.047 with the objective of min (σ). The value in Table 11 

is the result that our ToB facilitates multi-objective optimization. The 𝐸𝐸 is minimized from 

0.324 in Table 10 to 0.213 in Table 11 and the σ is minimized a lot from 0.047 in Table 10 

to 0.009 in Table 11, which means that, given the variation in processing times or 

fluctuation, the combination of good scheduling methods can achieve a better result on 

minimizing both first-order effect and second-order effect. 

Table 10: Applying MPT to min (TCT) and min (VCT). 
Objectives min (𝐸𝐸) min (σ) 

𝐸𝐸 .324 .430 
σ .371 .047 

Table 11: Applying MPT to 11 sequences generated by the ToB heuristic. 
Objectives min (𝐸𝐸) min (σ) 

𝐸𝐸 .213 .481 
σ .100 .009 
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4.4 Statistical process control (SPC) techniques 

4.4.1 The X bar chart and the R chart 

Given the inconsistency between TCT and VCT and the processing time 

uncertainties at 5 CV levels, we can use control charts to show fluctuations of process 

performance in terms of the 𝑥̅𝑥 chart for sample means and the R chart for variation ranges 

according to our ToB(0.0, 0.4, 1.0) heuristics. 

We use three process performances to plot control charts. In addition to two 

normalized deviations of TCT and VCT, the expected return for each instance and each 

sample is calculated by using equation (31), in which the weight between KPIs is set to 

[𝑤𝑤1 𝑤𝑤2] = [0.5 0.5]. The three process performances are respectively averaged first 

across all 250 samples for 5 CV levels, and then across 50 instances for each of 6 job 

numbers. Statistics of control charts are provided in Table 12. From Table 12, we can see 

that, although ToB(0.0) and ToB(1.0) achieve the smallest grand mean of 𝑥̅𝑥, R, lower 

control limit (LCL) and upper control limit (UCL) on TCT and VCT respectively, ToB(0.4) 

achieves the smallest expected return 𝐸𝐸 of deviations from the MPT model. 

Table 12: Statistics in control charts for TCT, VCT, and the expected returns in the MPT 
model according to ToB(0.0, 0.4, 1.0). 

 𝑥̅𝑥 LCL(𝑥̅𝑥) UCL(𝑥̅𝑥) 
0.0 0.4 1.0 0.0 0.4 1.0 0.0 0.4 1.0 

TCT .025 .405 .743 .015 .383 .720 .035 .427 .765 
VCT .943 .201 .054 .919 .171 .043 .967 .232 .065 
MPT .484 .303 .398 .474 .296 .387 .494 .310 .409 

 R LCL(R) UCL(R) 
0.0 0.4 1.0 0.0 0.4 1.0 0.0 0.4 1.0 

TCT .109 .234 .238 .062 .132 .135 .156 .335 .342 
VCT .256 .321 .119 .145 .181 .067 .368 .461 .171 
MPT .106 .075 .115 .060 .042 .065 .152 .107 .166 
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The 𝑥̅𝑥 charts and the R charts for normalized deviations for TCT, VCT, and the 

expected returns in the MPT model are plotted in Figure 7 to Figure 15, respectively. From 

these Figures, we can tell that ToB(0.0), ToB(0.4), and ToB(1.0) heuristics have some 

points out of control limits either in X-bar charts or in R charts for all three performance 

measures, which means that processing time uncertainties affect the inconsistency between 

min (TCT) and min (VCT). 

 
Figure 7: Control charts of ND for TCT generated by ToB(0.0). 

 
Figure 8: Control charts of ND for TCT generated by ToB(0.4). 
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Figure 9: Control charts of ND for TCT generated by ToB(1.0). 

 
Figure 10: Control charts of ND for VCT generated by ToB(0.0). 

 
Figure 11: Control charts of ND for VCT generated by ToB(0.4). 
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Figure 12: Control charts of ND for VCT generated by ToB(1.0). 

 
Figure 13: Control charts of ND for the expected returns in the MPT model generated by 

ToB(0.0). 

 
Figure 14: Control charts of ND for the expected returns in the MPT model generated by 

ToB(0.4). 
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Figure 15: Control charts of ND for the expected returns in the MPT model generated by 

ToB(1.0). 

4.4.2 Setting up specification limits 

Besides control charts, two process capability indices of 𝐶𝐶𝑝𝑝  and 𝐶𝐶𝑝𝑝𝑝𝑝  and 

probability to fit specification limits are also extensively used to verify if the process is 

under control. We can design reasonable specification limits to help decision-makers 

choose a heuristic when facing processing time uncertainty and trade-offs among KPIs. 

We can design the lower specification limit (LSL) and upper specification limit 

(USL) by the performance of any heuristic. We just consider our ToB heuristic with 11 

preferences since other heuristics are dominated by our ToB heuristic. The specification 

limits are usually independent from the process performance, being external from 

customers. Given 11 preferences for our ToB heuristic, we have 11 choices for setting up 

specification limits which are [𝐿𝐿𝐿𝐿𝐿𝐿ℎ′, 𝑈𝑈𝑈𝑈𝑈𝑈ℎ′] for ℎ′ ∈ {𝑇𝑇𝑇𝑇𝑇𝑇(0.0), … ,𝑇𝑇𝑇𝑇𝑇𝑇(1.0)}. Then we 

could check the probability of each ℎ′  to fit specification limits. But each heuristic 

achieves the highest probability to fit its own specification limits. 
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4.4.3 ToB heuristic facilitates SPC techniques 

Through the analysis in Section 4.4.2, we carry out the following case studies to 

use our ToB heuristic facilitating SPC techniques. In our case study, all data were 

normalized finalizing normalized deviations vary between [0, 1], and for minimization 

problems, the smaller the value of the objective, the better the performance of a heuristic. 

So, the variation range of normalized deviations falls into [0, 0.5] is better than that fall 

into [0.5, 1]. We divide the range of [0, 0.5] into three equal intervals which are [0, 0.167], 

[0, 0.333], and [0, 0.500] and design the following three specification limits crossing all 

11 sequences for both TCT and VCT at each CV level in Tables 13 and 14, respectively. 

The larger the probability to fit specification limits, 𝐶𝐶𝑝𝑝 and 𝐶𝐶𝑝𝑝𝑝𝑝, the better the process is 

under control, so the largest values will be highlighted in bold in the following tables. From 

Table 13, we can tell that ToB(0.0) heuristic achieves largest probabilities to fit 

specification limits [0, 0.167] and [0, 0.333] and largest 𝐶𝐶𝑝𝑝𝑝𝑝 values in the range of [0, 0.167] 

and [0, 0.333] at each CV level. However, ToB(0.4) heuristic achieves the largest 

probability to fit specification limits [0, 0.500] and the largest 𝐶𝐶𝑝𝑝𝑝𝑝 value in the range of [0, 

0.500] at each CV level. The larger the probability to fit specification limits, the better the 

process is under control. According to equations (18), (19), and (20) 𝐶𝐶𝑝𝑝𝑝𝑝  measures the 

process centering. The larger the value of 𝐶𝐶𝑝𝑝𝑝𝑝, the more centered the process is between 

its specification limits. Moreover, the negative values of 𝐶𝐶𝑝𝑝𝑝𝑝 mean that the process mean 

has drifted over either the LSL or the USL. As for 𝐶𝐶𝑝𝑝 index, ToB(0.0) achieves largest 𝐶𝐶𝑝𝑝 

values from CV = 0.1 to CV = 0.4, but when CV level increase to 0.5, ToB(0.4) achieves 

largest 𝐶𝐶𝑝𝑝 values in all three specification limits. When the specification limits enlarge, the 

probability of fit by ToB(0.4) increases. Equation (17) explains the reason why it is true in 
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this case, where because (USL – LSL) is external and independent from the process 

performance. As long as 𝜎𝜎� is small, 𝐶𝐶𝑝𝑝 is large. From Table 14, we find the same properties 

for probability to fit specification limits and similar properties for 𝐶𝐶𝑝𝑝𝑝𝑝 comparing ToB(0.4) 

with ToB(1.0). However, as for the 𝐶𝐶𝑝𝑝 index, ToB(1.0) achieves the largest 𝐶𝐶𝑝𝑝 values at 

all CV levels. From both Table 13 and Table 14, we can tell that as the CV level enlarges, 

the value of 𝐶𝐶𝑝𝑝 increases correspondingly. 

Table 13: Probability to fit specification limits, 𝐶𝐶𝑝𝑝 and 𝐶𝐶𝑝𝑝𝑝𝑝 for TCT. 

CV [LSL, USL] 
Prob. 𝐶𝐶𝑝𝑝 𝐶𝐶𝑝𝑝𝑝𝑝 

0.0 0.4 1.0 0.0 0.4 1.0 0.0 0.4 1.0 

0.1 
[.000, .167] .631 .000 .000 6.710 .412 .361 .112 -1.114 -2.586 
[.000, .333] .631 .192 .000 13.421 .824 .721 .112 -.290 -1.865 
[.000, .500] .631 .945 .000 20.131 1.236 1.082 .112 .534 -1.144 

0.2 
[.000, .167] .642 .000 .000 1.363 .419 .369 .121 -1.157 -2.614 
[.000, .333] .642 .170 .000 2.725 .838 .738 .121 -.319 -1.875 
[.000, .500] .642 .941 .000 4.088 1.258 1.108 .121 .520 -1.137 

0.3 
[.000, .167] .705 .000 .000 .939 .449 .378 .180 -1.272 -2.638 
[.000, .333] .705 .130 .000 1.879 0.897 .757 .180 -.375 -1.881 
[.000, .500] .705 .941 .000 2.818 1.346 1.135 .180 .522 -1.124 

0.4 
[.000, .167] .779 .000 .000 .618 .454 .389 .259 -1.336 -2.643 
[.000, .333] .781 .099 .000 1.236 .908 .778 .259 -.428 -1.866 
[.000, .500] .781 .925 .001 1.853 1.362 1.166 .259 .479 -1.088 

0.5 
[.000, .167] .829 .000 .000 .478 0.492 .418 .376 -1.514 -2.739 
[.000, .333] .870 .056 .000 .956 .985 0.837 .376 -.530 -1.903 
[.000, .500] .870 .914 .001 1.434 1.477 1.255 .376 .455 -1.066 
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Table 14: Probability to fit specification limits, 𝐶𝐶𝑝𝑝 and 𝐶𝐶𝑝𝑝𝑝𝑝 for VCT. 

CV [LSL, USL] 
Prob. 𝐶𝐶𝑝𝑝 𝐶𝐶𝑝𝑝𝑝𝑝 

0.0 0.4 1.0 0.0 0.4 1.0 0.0 0.4 1.0 

0.1 
[.000, .167] .000 .433 .710 .548 .238 3.997 -5.333 .013 .184 
[.000, .333] .000 .847 .710 1.096 .477 7.993 -4.237 .464 .184 
[.000, .500] .000 .916 .710 1.644 .715 11.990 -3.141 .464 .184 

0.2 
[.000, .167] .000 .415 .796 .507 .252 1.077 -4.857 -.024 .276 
[.000, .333] .000 .869 .796 1.014 .505 2.155 -3.842 .480 .276 
[.000, .500] .000 .942 .796 1.522 .757 3.232 -2.828 .529 .276 

0.3 
[.000, .167] .000 .359 .907 0.445 .284 .767 -4.179 -.101 .443 
[.000, .333] .000 .897 .908 0.890 .567 1.534 -3.289 .467 .443 
[.000, .500] .000 .977 .908 1.335 .851 2.301 -2.399 .668 .443 

0.4 
[.000, .167] .000 .272 .928 .403 .279 .601 -3.674 -.190 .583 
[.000, .333] .000 .853 .960 .807 .558 1.202 -2.867 .369 .583 
[.000, .500] .000 .985 .960 1.210 .837 1.803 -2.060 .748 .583 

0.5 
[.000, .167] .000 .179 .821 .379 .301 .537 -3.322 -.302 .322 
[.000, .333] .000 .813 .988 .758 .602 1.074 -2.564 .300 .752 
[.000, .500] .000 .993 .988 1.137 .902 1.611 -1.806 .901 .752 

To better show our ToB(0.0, 0.4, 1.0) heuristics performance, we take probabilities 

of fit on the specification limits of [0.0, 0.5] at CV = 0.1 as an example to plot their process 

capability charts in Figure 16 to Figure 21. The probabilities to fit the specification limits 

are identical to those in Table 13 and Table 14, respectively. 

 
Figure 16: Probabilities of fit on [0.0, 0.5] of ToB(0.0) at CV = 0.1 for TCT. 
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Figure 17: Probabilities of fit on [0.0, 0.5] of ToB(0.4) at CV = 0.1 for TCT. 

 
Figure 18: Probabilities of fit on [0.0, 0.5] of ToB(1.0) at CV = 0.1 for TCT. 

 
Figure 19: Probabilities of fit on [0.0, 0.5] of ToB(0.0) at CV = 0.1 for VCT. 
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Figure 20: Probabilities of fit on [0.0, 0.5] of ToB(0.4) at CV = 0.1 for VCT. 

 
Figure 21: Probabilities of fit on [0.0, 0.5] of ToB(1.0) at CV = 0.1 for VCT. 

Based on the result in Table 13 and Table 14 and the above analysis, we cannot 

choose a heuristic just based exclusively on 𝐶𝐶𝑝𝑝 or 𝐶𝐶𝑝𝑝𝑝𝑝, but on all three statistics. Due to 

the challenge of inconsistency among KPIs and the processing time uncertainty, we might 

have to relax the specification limits to keep process performance under control. 

Overall, we can see that our ToB heuristic effectively addresses the above three 

challenges. First, our ToB heuristic dominates the other 5 heuristics, i.e., EP, ES, SEPT, 

LEPT, and FCFS methods for bi-objective optimization and balances the trade-offs 

between min (TCT) and min (VCT) and the trade-offs between the expected return and the 
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risk through the results of our case studies. Besides, our ToB heuristic is useful for 

controlling stochastic production and gives insights for setting specification limits. 
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CHAPTER 5.  CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

Scheduling for one-stage production is important as a multi-stage production 

process can be modeled as one unit, which provides more insights into the whole process, 

especially when NP-complete or NP-hard problems are involved in multi-objective 

optimization for decision making. Because of the three challenges, i.e., (1) Challenge 1: 

inconsistencies among KPIs, (2) Challenge 2: inconsistencies between the expected return 

and the risk, and (3) Challenge 3: the variation in processing times, one-stage production 

scheduling is still challenging at both theory and application levels. 

The following three problems arise from the three challenges in the practical 

application, respectively: (1) The scheduler may unconsciously make one KPI worse when 

optimizing the other objective. For example, if the scheduler in the medical system blindly 

pursues the improvement of hospital utilization, the patient flow time will decrease (Li et 

al., 2019). (2) When the decision-maker optimizes the expected return, such preference 

will bring about higher risk. (3) A great deal of uncertainties is in actual production, the 

most common manifestation is the variation of processing times, which makes it more 

difficult to address the first and the second aforementioned challenges. 

In dealing with the three challenges to one-stage production scheduling, we propose 

a ToB heuristic with 11 preference 𝛼𝛼  in sequencing. The concept of modern portfolio 

theory has been integrated into our heuristic development. We address the first challenge 

and the second challenge very well by using our ToB heuristic. For Challenge 1, we 

compared our ToB heuristic with five heuristics (ES, EP, SEPT, LEPT, and FCFS) based 

on 15000 samples (300 instances each of which has 50 samples). With the objective of min 
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(TCT), our ToB(0.0) heuristic outperformed the other five heuristics not only at individual 

CV level but also at grand AND across all CV levels with the value of only 0.025. With the 

objective of min (VCT), our ToB(0.5, …, 1.0) heuristic outperformed the other five 

heuristics distinctly. For Challenge 2, we excluded dominated heuristics and presented 

efficient portfolio frontiers at each CV level of our ToB heuristic. It was shown that our 

ToB heuristic was more flexible to reflect the effect of normalized deviations on portfolio 

returns and risks. With different CV levels, the minimum 𝐸𝐸 and the minimum σ did not 

occur simultaneously, which gave us the insight that the fluctuation would affect the first- 

and second-order effects. It was also shown that, as the fluctuation increased, we needed 

to take a greater risk of σ to achieve the same value of 𝐸𝐸 and vice versa. Additionally, our 

ToB heuristic facilitated multi-objective optimization very well when we applied the MPT 

model to 11 orders of our ToB heuristic, getting a smaller σ (0.002) than that (0.047) of 

applying the MPT model to KPIs. In dealing with Challenge 3, Daniels and Kouvelis (1995) 

proposed their scheme for stochastic production scheduling, which is to optimize the worst-

case scenario, that is, to maximize the minimum deviation from the upper bound. 

Accordingly, they developed their EP and ES heuristics for min (TCT). Through the results 

of our case studies, in which variation in processing times is at five levels, we found that 

although the EP and ES heuristics provided good solutions to hedge against processing 

time uncertainty, their solutions were robust when CV≤0.4, our ToB (0.0) generated the 

smallest AMND of 0.425 at CV = 0.5, being more robust. And our ToB(0.0) heuristic 

outperformed the other heuristics not only at individual CV level but also at grand AND 

across all CV levels with the value of only 0.025, which means that our ToB heuristic 
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outperformed the EP and ES heuristics not only on the worst-case scenario (AMND) but 

also on the expected averages (AND). 

For application in industry, it is necessary to set up solid specification limits to 

control stochastic production, not only for addressing the process response of individual 

KPIs but also for addressing the three challenges. Since our ToB heuristic with 11 

preferences provided solid solution space of each KPI as the preference of 𝛼𝛼 spans all 

possible combinations of weights, it is useful to design the control limits of [LCL, UCL] 

for production scheduling, and to verify the specification limits of [LSL, USL] for customer 

service. What’s more, undominated solution space is more accurate to reflect the process 

sensitivity to uncertainties. Results from our ToB heuristic facilitating SPC techniques 

illustrate that we need to take 𝐶𝐶𝑝𝑝, 𝐶𝐶𝑝𝑝𝑝𝑝, and probability to fit the specification limits all 

together into account. 

5.2 Future work 

The next topic for our future research on production scheduling is adaptive 

production control. Variation in processing times is common in manufacturing. 

Consequently, the processing time is a random variable. From a formal point of view, a 

probabilistic - or random - variable is subject to a probability distribution and therefore 

unpredictable, which means it is impossible to know the value of a random variable at time 

t, no matter how accurately we have measured the past data up to time t–1. We plan to 

integrate the prediction of processing times into our ToB heuristic, as actual processing 

times unfold themselves in real-time. Accordingly, we can model the steady-state and the 

stability of a process and achieve adaptive production scheduling and control. 
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