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A B S T R A C T   

The technological advances recently brought to the manufacturing arena (collectively known as Industry 4.0) 
offer huge possibilities to improve decision-making processes in the shop floor by enabling the integration of 
information in real-time. Among these processes, scheduling is often cited as one of the main beneficiaries, given 
its data-intensive and dynamic nature. However, in view of the extremely high implementation costs of Industry 
4.0, these potential benefits should be properly assessed, also taking into account that there are different ap
proaches and solution procedures that can be employed in the scheduling decision-making process, as well as 
several information sources (i.e. not only shop floor status data, but also data from upstream/downstream 
processes). 

In this paper, we model various decision-making scenarios in a shop floor with different degrees of uncertainty 
and diverse efficiency measures, and carry out a computational experience to assess how real-time and advance 
information can be advantageously integrated in the Industry 4.0 context. The extensive computational exper
iments (equivalent to 6.3 years of CPU time) show that the benefits of using real-time, integrated shop floor data 
and advance information heavily depend on the proper choice of both the scheduling approach and the solution 
procedures, and that there are scenarios where this usage is even counterproductive. The results of the paper 
provide some starting points for future research regarding the design of approaches and solution procedures that 
allow fully exploiting the technological advances of Industry 4.0 for decision-making in scheduling.   

1. Introduction 

The incorporation of cutting-edge technologies into production sys
tems that is taking place in the last years has given rise to the so-called 
‘fourth industrial revolution’ or Industry 4.0 (see e.g. 49). A main 
characteristic of Industry 4.0 is the integration of heterogeneous data 
and knowledge [33], a fact that –at least theoretically– streamlines 
decision-making [50]. However, although the information integration is 
an emerging topic that has attracted the attention of many researchers in 
the last years (4) and has been applied in many industrial areas (see e.g. 
[30,31,35]), its use in the scheduling sector is very scarce. In this regard, 
scheduling is often cited as one of the decision-making processes that 
could benefit most from Industry 4.0 [39] since, in real-world sched
uling, the data required for this decision problem are often subject to 
uncertainty and may change over time [29]. On the one hand, the 
so-called predictive approaches (i.e. executing the initial schedule 
without changes) may not cope efficiently with the dynamic behaviour 

that constitutes the trademark of nowadays manufacturing [37], and 
therefore the intrinsic criticality of scheduling processes becomes even 
more salient in the context of Industry 4.0 [40]. On the other hand, the 
integration of updated data for revising the existing schedule –i.e. 
rescheduling– is not new, since the so-called predictive-reactive ap
proaches are well-known to deal with unforeseen events (machine 
breakdowns, new jobs arrival, etc.), but it is not until recently when the 
ability of incorporating available real-time information has started to be 
explored. Indeed, the management of real-time information is consid
ered one of the main research lines in Industry 4.0-based scheduling [17, 
36,39]. 

Despite the potential for the improvement of operations nurtured by 
Industry 4.0 (see e.g. 9 for a summary of benefits), the capital involved 
in its implementation is extremely high [7]. Hence, it is critical to assess 
the potential advantages of the use of this information in providing a 
more efficient scheduling [19]. Moreover, Industry 4.0 technologies 
may enable not only accessing to real-time shop floor data, but they can 
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also provide advance information regarding the flow of raw materials 
entering to the process (either coming from providers or from a process 
upstream), and with respect to the constraints required by downstream 
processes or by customers [16]. Clearly, the access to all data sources in 
information integration is costly and sometimes even impossible (32), 
therefore it is also crucial to analyse separately the contribution of each 
one of them to the global scheduling efficiency. More specifically, the 
questions motivating this research are:  

• How much the predictive approaches can be improved by predictive- 
reactive ones using real-time, integrated information collected not 
only from the shop floor status, but also from upstream/downstream 
processes? Note that this question is not trivial, as 1) there are so
lution procedures within the predictive approach –such as e.g. sto
chastic scheduling– that can effectively handle shop floor 
uncertainties and 2) there is evidence that, in certain cases, deter
ministic predictive approaches may be quite robust to uncertainty 
(see e.g. 14). Furthermore, it is known that continuous scheduling 
updates such as in the predictive-reactive approach may introduce 
nervousness in the system and may not improve its efficiency (see the 
evidence collected by 25).  

• What is the contribution of the different data sources in improving 
the scheduling process (including downstream/upstream informa
tion flows)? This is an aspect that, to the best of our knowledge, has 
been neglected in the literature so far, which has focused mainly on 
data regarding the shop floor status. Indeed, recent papers address
ing production scheduling in the context of Industry 4.0 point out to 
the need of conducting further research by investigating additional 
sources of uncertainty such as changes in the due dates and material 
shortages [19]. 

To investigate these questions, we conduct a series of experiments 
aimed at quantifying the benefits in scheduling for different widely- 
employed scheduling criteria. We use the flowshop as the testing plat
form in our experiments, due to its extensive use both in practice and in 
academia. We employ two different scheduling criteria (total flowtime 
and total tardiness), the first one as a typical objective aimed at maxi
mizing the internal efficiency of the process, and the second 1 aimed at 
complying with the requirements of downstream processes/customers. 
Taking into account these different criteria, we develop several sce
narios, each one determined by a specific approach to solve the sched
uling decision-problem by means of a specific solution procedure. These 
scenarios range from the case where predictive approaches and deter
ministic procedures are used to solve a scheduling problem, to the case 
where predictive-reactive approaches are coupled with stochastic solu
tion procedures. 

The extensive experimentation carried out allows extracting a 
number of conclusions which can be useful for practitioners and aca
demics. Perhaps the bottom line is that it should not be taken for granted 
that integrated, real-time information (i.e. using real-time shop floor 
data and advanced information from upstream/downstream processes) 
will improve the efficiency of the operations per se –at least regarding the 
scheduling process, since such higher efficiency heavily depends on the 
proper choice of scheduling approaches, on the data sources, and on 
how the solution procedures use these data. For instance, it is relatively 
less important to have shop floor status data in real-time than having 
advance downstream and upstream information. Among the two latter, 
upstream information can be much more useful in increasing the quality 
of the schedule. On the other hand, for a predictive scheduling approach, 
it seems that stochastic methods do not seem to greatly outperform 
deterministic ones, being much CPU-time consuming than the latter 
ones. However, this is not the case in predictive-reactive scenarios, 
where their higher computational requirements seem to pay-off. 

The rest of the paper is organised as follows: in Section 2, we 
introduce the problem background and discuss the related literature. A 
formal description of the problem and the research methodology are 

presented in Section 3. The experimental scenarios are detailed in Sec
tion 4, while the computational results are shown in Section 5. Finally, 
the conclusions of our study are discussed in Section 6. 

2. Background 

The research conducted in this paper refers to three interrelated 
areas. The first one is the efficiency of the different approaches that can 
be used for scheduling (more specifically, that of predictive scheduling 
as compared to predictive-reactive approaches). The second one is 
related to the effectiveness of stochastic vs deterministic scheduling 
procedures, both for predictive and for predictive-reactive approaches. 
Finally, our research analyses the usage of real-time information for 
scheduling decisions. In these three areas, we will briefly describe the 
main contributions and point out the open research questions. 

Regarding the scheduling approaches, the classical paper by Vieira 
et al. [48] describes a general framework to classify them. It is usual to 
distinguish between approaches that use dispatching rules (or reactive 
approach), and those carrying out a schedule generation [5]. In the 
reactive approach, a priority rule is employed to decide which job is 
processed first once a machine becomes idle, so there is no need to 
explicitly generate a schedule. Although this approach is fast and easy to 
implement, there is empirical evidence that, for complex systems with 
high competition for resources, it is usually outperformed by approaches 
using schedule generation and it will not be discussed further. 

Among the approaches using schedule generation, it is usual to 
distinguish between the two following approaches:  

• Predictive approaches. In the predictive approach, a schedule is built 
at the beginning of the decision period, and this schedule is executed 
regardless the new events that might occur during its execution. 
Although most of the classical scheduling literature assumes that, in 
this approach, the schedule is generated assuming that the data are 
deterministic (or at least that their variance is sufficiently small so 
their means are statistically representative), this does not have to be 
the case, as the unforeseen events can be incorporated in the initial 
schedule in an implicit manner by e.g. generating robust schedules, 
or schedules that assume some probability distribution in the data so 
the average value of the scheduling criteria is estimated via simu
lation (see some examples of this approach in [3,14,23]).  

• Predictive-reactive procedures. In the predictive-reactive approach, a 
predictive schedule (base schedule) is generated as in the predictive 
approach. However, a modified schedule can be generated 
(rescheduling) in view of the incoming information. Again, the 
procedure to generate the modified schedule can be deterministic, or 
it can incorporate some stochastic considerations. 

Clearly, the frequency or timing for triggering the rescheduling 
procedure is critical. According to Church and Uzsoy [5], Sabu
ncuoglu and Bayiz [41], Vieira et al. [48], three different policies 
have been considered in the literature: 
• Continuous rescheduling (CR). In this policy, rescheduling is per

formed every time an event that is recognised by the system (e.g. 
new job arrivals, machine breakdowns, etc) occurs.  

• Periodic rescheduling (PR). In this policy, the rescheduling process is 
trigged in given time intervals (rescheduling points or times). 

• Event-driven rescheduling (EDR). In this case, the process is trig
gered if certain conditions related to the system occurs. Note that 
both CR and PR can be seen as a particular case of EDR (as it is 
done e.g. in 48), but most of the literature introduces this differ
entiation (e.g. 1), and this will also be the case here. 

The literature is abundant in contributions comparing the ap
proaches to generate a schedule in different layouts. Sabuncuoglu and 
Bayiz [41] compare two specific predictive and reactive approaches in a 
dynamic deterministic job shop scheduling problem with and without 
machine breakdowns. More specifically, they use a deterministic 
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procedure as the predictive procedure (a beam-search-based construc
tive heuristic) which is compared against a dispatching rule applied as 
the reactive procedure. In their study, the predictive procedure clearly 
improves the reactive one, although is more affected by the distur
bances. More recently, Larsen and Pranzo [29] propose a new frame
work which using a solver addresses a dynamic job shop scheduling 
problem.Framinan et al. [12] compare different rescheduling strategies 
against the predictive approach in a flowshop scheduling problem with 
stochastic processing times. These two recent contributions find that, 
under certain conditions, the rescheduling procedure does not improve 
the solutions for makespan minimisation. Particularly, Larsen and 
Pranzo [29] found no benefit in rescheduling when the range of pro
cessing times is narrow, while in Framinan et al. [12] the same result is 
observed when the variability is high. 

As it can be seen, despite these contributions, there are questions that 
remain open regarding the scheduling approaches. The first one refers to 
the fact that most works consider the makespan as objective, which is 
known to be very robust with respect to the variability of the solutions, 
so it is interesting to know whether these results also hold for other 
objectives. Furthermore, the solution procedures employed for 
rescheduling are –to the best of our knowledge– based on either deter
ministic scheduling or on dispatching rules, whereas the use of sto
chastic rescheduling methods such as the one discussed below has not 
been employed. 

Regarding the second topic (the effectiveness of stochastic / deter
ministic procedures), in the context of predictive approaches, Framinan 
and Perez-Gonzalez [14] compare both approaches for a flowshop 
layout with variable processing times and makespan minimisation as 
objective. They find that the deterministic procedures work quite well as 
compared to their stochastic counterpart, particularly when the vari
ability of the processing times is high. However, to the best of our 
knowledge, this comparison has not been discussed in the context of 
predictive-reactive approaches. 

Finally, with respect to the use of real-time information integration 
for rescheduling, the literature is very scarce. In the single machine 
setting, the work by [6] employs experimentation to show that there are 
different strategies in which the real-time information regarding the 
processing times can be advantageously employed. The paper by Fra
minan et al. [12] investigates the problem of incorporating real-time 
information in a flowshop to reschedule the jobs with the objective of 
minimizing the makespan. They find that a careful choice of base 
schedule, rescheduling policy and rescheduling procedures is required 
to take advantage of the additional real-time information. Finally, the 
recent paper by [19] studies a flexible job shop with uncertainties 
regarding the arrival of new jobs and machine breakdowns. In this 
setting, the authors find that the usage of real-time information can 
substantially improve the performance of the system. As it can be seen, 
in none of these studies external sources of variability (i.e. upstream and 
downstream processes) are considered. 

As a summary of the state-of-the-art described in the section, further 
research is needed to assess the contribution of different sources of real- 
time data, as well as on the scheduling approaches and solution pro
cedures that can benefit from the integration of this data in the decision- 
making process. In the next section, we present the methodology 
employed to carry out this research. 

3. Research methodology 

In this section we present the research methodology by first intro
ducing the manufacturing process modeled in the experiments. Since in 
some cases several process variables and data are unknown at the time of 
the decision-making process, these are denoted using capital letters in 
the following. 

As discussed in Section 1, the experiments to be carried out refer to 
the problem of scheduling jobs in a flowshop layout. In this problem, 
there are n jobs, each one composed of m operations that have to be 

carried out in a set of m machines, oij denoting the operation of job j that 
has to be performed on machine i and Pij denoting its processing time. In 
addition, each job has a release date Rj, which is typically imposed by 
the availability of raw materials for the process, either coming from 
upstream processes or from suppliers. Similarly, each job j is charac
terized by a due date Dj, which may represent a customer requirement or 
an expected completion time from downstream processes in the facility. 

In most real-life settings, processing times are not known in advance, 
although some estimation can be provided based on historical data. 
Similarly, there is uncertainty in the release dates and in the due dates of 
the jobs: upstream processes/suppliers are not, in general, fully reliable, 
while customers or downstream processes are subject to uncertainty 
themselves and therefore may change their requirements or expecta
tions. However, some estimate can be provided on both Rj and Dj based 
either on the initial commitments (requirements) from suppliers (cus
tomers) or from historical/estimate data from upstream (downstream) 
processes. Let us denote by p̂ij, r̂ j and d̂j such estimated values. When
ever the actual realizations of Pij, Rj and Dj are known for a given 
instance, the corresponding lowercase letter is employed (i.e. pij, rj and 
dj) 

In this setting, the goal of the decision-making problem is to find the 
sequence of jobs Π := (π1,…, πn) on the machines that minimises the 
expected value of the flow time (

∑
∀jE[Fj]) or the expected value of the 

total tardiness (
∑

∀jE[Tj]). The flowtime of job j (Fj) and the tardiness of 
that job (Tj) are defined by Eqs. 1 and 2, respectively: 

Fj = Cmj − Rj (1)  

Tj = max
{

0,Cmj − Dj
}

(2)  

where the completion times, Cij, are defined by Eq. 3. 

Ci,πj = max
{

Ci− 1,πj ,Ci,πj− 1

}
+ Pi,πj , ∀i = 2,…,m, j = 1,…, n (3)  

In addition, Ci,π0 = 0 and C1,πj are defined by the following expression: 

C1,πj = max
{

Rπj ,C1,πj− 1

}
+ Pi,πj ,∀j = 1,…, n (4) 

The choice of these two objectives for the experiments is motivated 
by the fact that they are extremely good indicators of both the internal 
and external performance of a schedule: On the one hand, flowtime 
minimization is known to be well-aligned with work-in-process and 
average cycle time minimization (which are related to inventory and 
lead time costs) while performing reasonably well with respect to 
throughput maximization (which is related to equipment utilization) 
[13]. On the other hand, tardiness minimization is a critical indicator for 
downstream processes or customers, as it is also widely employed to 
assess the effectiveness of the operations (see e.g. 46). Finally, note that 
we assume that the same sequence of jobs is adopted for all machines 
(permutation constraint), a hypothesis that is widely used. 

As discussed in Section 2, one option is to solve the scheduling de
cision problem using a predictive approach. In this case, since the 
scheduling decision is made before, at the beginning of the decision 
interval, Pij, Rj, and Dj are uncertain and some estimates of them have to 
be produced to be employed in the scheduling procedure. However, in a 
predictive-reactive approach, this schedule may be reviewed at a later 
time. At this point in time, different data sources might be available. 
More specifically, these are:  

• Shop floor status data (S F). In this case, the actual processing status 
of each job at the time of the rescheduling is known, so it is possible 
to know what jobs have been already processed (or are being pro
cessed) by some machine. Thus, the rescheduling process could 
incorporate the actual realizations of the completion times.  

• Advance downstream data (S C). In this case, at the beginning of the 
decision period, for each job j a due date d̂j is given by the customers 
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or it is set by some procedure as the expected time to initiate the 
downstream process. This initial due date can be changed in the 
future, as the internal variability of the customers’ (downstream) 
processes may delay or expedite the need of this job. However, as the 
time advances there is a point where a final due date (the same or 
different than the initial one) is confirmed and frozen (i.e. it cannot 
be further modified). This information could eventually be passed in 
real-time to the rescheduling process, so the decision-making pro
cedure might use it.  

• Advance upstream data (S S). In this case, the initial release date r̂ j 

quoted for each job j can be subject to changes due to suppliers or 
upstream processes variability. Similar to the previous case, there is a 
point where a final, frozen release date is set. Again, this information 
could eventually be passed in real-time to the rescheduling process, 
so the decision-making procedure might use it. 

For a given combination of a scheduling approach, a solution pro
cedure to solve the subsequent scheduling/rescheduling problems, and 
the type of data sources available at the time that the procedure is 
invoked – which is denoted as scenario in the following–, schedules of 
different quality can be obtained. In the next section, we define in detail 
the scenarios to be considered in our research, while the computational 
results obtained are discussed in Section 5. 

4. Experimental scenarios 

Four types of scenarios are considered in this research depending on 
the approach and the type of scheduling/rescheduling procedure 
employed to solve the decision problem:  

• Scenarios (P,D). A deterministic procedure (using the estimates of 
the input data, i.e. p̂ij, r̂ j and d̂j) is employed to obtain an initial 
schedule which is not modified subsequently. These scenarios are 
described in detail in Section 4.1.  

• Scenarios (P,S). A stochastic procedure is employed to obtain an 
initial schedule which is not modified subsequently. This procedure 
assumes that the input data Pij, Rj and Dj follow some known dis
tribution. These scenarios are described in detail in Section 4.2.  

• Scenarios (PR,D). A deterministic procedure (using the estimates of 
the input data, i.e. p̂ij, r̂ j and d̂j) is employed to obtain an initial 
schedule. Then, using a periodic rescheduling policy, each γ time 
units, a deterministic rescheduling procedure is used to provide a 
new schedule. This deterministic rescheduling procedure may use 
data from all/some of the sources described in Section 3, i.e. S F, S S 
and/or S F. These scenarios are described in detail in Section 4.3. 

• Scenarios (PR,S). A stochastic procedure (assuming some distribu
tion of the input data Pij, Rj and Dj) is employed to obtain an initial 
schedule. Then, using a periodic rescheduling policy, each γ time 
units, a stochastic rescheduling procedure is used to provide a new 
schedule. This rescheduling procedure may use data from all/some 
of the sources described in Section 3, i.e. S F, S S and/or S F. These 
scenarios are described in detail in Section 4.4. 

In order to implement these types of scenarios, the different ap
proaches, solution procedures –including different criteria– and data 
availability have to be carefully designed. This design is described in the 
next subsections. Finally, note that, although the periodic rescheduling 
policy is assumed in the scenarios, the experiments have been conducted 
using also other policies and will be briefly discussed in Section 5, even if 
the full results are not presented due to the lack of space. 

4.1. Predictive approach, deterministic procedures (P,D) 

As discussed before, in this type of scenarios a decision is taken by 
solving the corresponding deterministic scheduling problem, and this 

decision is not modified subsequently (predictive approach). The data 
required to solve the scheduling problem (i.e. Pij,Rj and Dj) are not 
known at this time and their mean (i.e. E[Pij], E[Rj], and E[Dj], respec
tively) are used instead. Note that this is equivalent to assume a MMSE 
(Minimal Mean Square Error) estimate of these data if they are inde
pendent and identically distributed. 

Two solution procedures are employed to assess the effect of the 
quality of the solution in this scenario, denoted as P D and P LS

D . P D is a 
proxy of a high-quality, time-consuming solution procedure that would 
eventually yield a near-optimal solution to the problem. P LS

D is a proxy 
of a fast solution procedure (typically a constructive or composite heu
ristic) that, however, would probably yield a solution of lower quality. 
Obviously, the procedures selected are objective-dependent, so we have 
selected the following:  

• For the total flowtime objective (Fm|prmu, rj|
∑

Fj problem), we adapt 
for P D the MRSILS algorithm proposed by Dong et al. [8] due to their 
excellent performance in the Fm|prmu|

∑
Cj problem (see 10). Basi

cally, this metaheuristic iteratively inserts a job into the best position 
of the iteration sequence. Once n jobs have been tested, a sequence is 
randomly selected from a pool and then, is perturbed by inserting a 
random job into another random position. We refer to Dong et al. [8] 
for a fully description of the algorithm. The NEH algorithm (15) is 
used as the initial solution. Regarding P LS

D , it consists in a simple 
insertion-based local search (denoted as LSD) on the solution ob
tained by the previous NEH algorithm, i.e. starting with the NEH 
solution, each job is re-inserted in all positions and the one yielding 
the lowest value of the objective function is retained.  

• For the total tardiness objective (Fm|prmu, rj|
∑

Tj problem), we 
adapt for P D the iterated local search (IARAS) metaheuristic by [11], 
which is the state-of-the-art metaheuristic for the problem. Basically, 
this algorithm iteratively perturbs an iteration solution and search its 
local optimum using an insertion local search method. After that, the 
acceptance criterion proposed by [26] is adopted. This procedure is 
repeated until the stopping criterion is reached. For the perturbation 
phase, the algorithm randomly performs d = 4 adjacent in
terchanges. We refer to [11] for a fully description of this algorithm. 
As in the previous case, in order to adapt the algorithm to the 
Fm|prmu, rj|

∑
Tj problem, the NEH algorithm (27) replaces the initial 

solution of the algorithm. Furthermore, P LS
D is the same as the pre

vious case but replacing the initial solution from [15] by the previous 
NEH variant. 

4.2. Predictive approach, stochastic procedures (P,S) 

In this scenario, a schedule is given at the beginning of the decision 
interval using procedures assuming that the relevant data are random 
variables with a known distribution. This schedule is not modified 
subsequently (predictive approach). 

Regarding the scheduling procedure adopted, we use a stochastic 
version of the procedure employed in the (P,D) scenario. Since the 
evaluation of the objective function is carried out by means of an 
extremely high number of simulations, it does not make sense to 
distinguish among different procedures (fast, slow) as it is done for the 
(P,D) scenario. More specifically, in this scenario an initial deterministic 
solution is obtained by applying the NEH heuristic (15 for the Fm|prmu,
rj|

∑
Fj problem, and 27 for the Fm|prmu, rj|

∑
Tj problem). Then, a sto

chastic variant of the LSD local search (denoted as LSS in the following) is 
applied. This variant is identical in its steps to the deterministic local 
search being the only difference that the value of the objective function 
is estimated by running simulations according to the procedure pro
posed by Framinan and Perez-Gonzalez [14]. We refer the reader to this 
reference for the details of the procedure, and simply recall that the 
parameters of this procedure employed for the experiments are α =

0.001, p = 0.01 and a maximum number of 15,000,000 simulations). 
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This procedure is denoted by PS in the following. 

4.3. Predictive-reactive approach, deterministic procedures (PR,D) 

In this scenario it is assumed that, although an initial schedule (ob
tained from the application of some deterministic procedure such as the 
ones discussed in Section 4.1) is executed, some data from the shop floor 
status or from the downstream/upstream processes are captured in real- 
time and are employed to reschedule the jobs. 

More specifically, a periodic rescheduling (PR) policy is adopted, so a 
rescheduling procedure is performed each γ time units. In our experi
ments, γ is set to 50 time units. The rationale is that, since the processing 
times of the jobs in the testbeds are generated from a random [1,99] 
distribution (see Section 5.1), their average is 50 time units. Therefore, 
using lowest value for γ may render the rescheduling useless, as the 
status of the jobs may be identical to the one since the last reschedule. 
On the contrary, using much higher values for γ can fail to adequately 
respond to the changes in the shop floor status. 

In the PR policy, whenever the rescheduling procedure is triggered at 
time ρ, the set of jobs J considered in the initial schedule is in one of the 
three following sets:  

• Finished jobs (set J F). This set is composed of jobs in J that are 
completed by the time ρ at which the rescheduling procedure is 
invoked, i.e. J F := {j ∈ J : Cmj ≤ ρ}), see Fig. 1, where all jobs until 
position k are finished.  

• In-process jobs (set J P). This set is composed of jobs in J that have 
started to be processed, but are not finished. An example of these jobs 
with at least one operation not finished is shown in Fig. 1 (jobs in 
position k + 1 to j).  

• Remaining jobs (set J R). This set is composed of jobs in J that have 
not been started to be processed in any machine. 

Clearly, there is no rescheduling decision affecting the set J F, as 
these jobs are already completed. Furthermore, although the remaining 
operations of the jobs in J P could be eventually changed, if we assume 
the permutation constraint, their sequence in the remaining machines 
cannot be altered either. Therefore, the jobs in J R are the only ones 
altered by the rescheduling procedure. Note, however, that such 
rescheduling procedure must take into account ai the availability time of 
each machine i, as the machine would become available after processing 

all the corresponding operations from the jobs in J P. Such availability 
has to be estimated, as the processing times are not known in advance. 
To perform this estimation, we use the procedure in Framinan et al. 
[12], can be summarised as follows. First, a reference completion time ̃ciπj 

for each job πj ∈ J F ∪ J P on each machine i is defined. ̃ciπj indicates the 
actual completion time if the operation in machine i is completed by 
time ρ. Otherwise, ̃ciπj is estimated by assuming that the operation would 
take their average processing time and using the actual or average 
(estimated) release date for this job (see Eq. 5). Then, the availability of 
the first machine can be estimated using the reference completion times 
of the in-process and completed jobs, i.e.: a1 = maxj∈{J F∪J P}{c̃1πj}. 
Similarly, the reference completion times can be recursively computed 
for the rest of the machines using Eq. 6, and the availability of machine 
i > 1 is computed, i.e. ai = maxj∈{J F∪J P}{c̃iπj}. 

c̃1πj =

⎧
⎪⎪⎨

⎪⎪⎩

c1πj , if c1πj ≤ ρ

max

{

ρ,max
{

c̃1πj− 1 ,rπj

}

+ p̂1πj

}

, if c1πj− 1 ≤ ρ & c1πj > ρ & rπj ≤ ρ

max
{

ρ, r̂πj

}

+ p̂1πj
, if c1πj− 1 ≤ ρ & c1πj > ρ;& rπj > ρ

(5)  

c̃iπj (∀i> 1) =

{ ciπj , if ciπj ≤ ρ

max

{

ρ,max
{

ci− 1,πj , ci,πj− 1

}
+ p̂iπj

}

, if ciπj > ρ (6) 

Therefore, each γ time units, the availability of each machine is 
determined by the procedure above, and a new schedule for the jobs in 
the J R set is constructed by solving the Fm|prmu, rj, ai|

∑
Fj (Fm|prmu, rj,

ai|
∑

Tj) problems. The procedures to generate these schedules are the 
same than in the predictive approach, i.e. MRSILS and IARAS (note that, 
from a decision problem viewpoint, the only difference between this 
scenario and the predictive one is the set of jobs to be scheduled). 
However, if some real-time data is available at time ρ (either from the 
shop floor status or from the downstream/upstream processes), then this 
data can be incorporated into the decision problem. More specifically, 
the following scenarios depending on the sources of real-time data can 
be considered:  

• Shop floor status data (scenario PR
S F
D ). In this scenario, the shop 

floor status data available at time ρ (i.e. the actual completion times 

Fig. 1. Estimation of initial availabilities.  
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of the jobs in J P) is incorporated into the scheduling procedures. No 
additional data from upstream/downstream processes is assumed to 
be available in this scenario.  

• Advance downstream data (scenario PR
S FC
D ). In this scenario, at 

time ρ, the data related to the downstream process (i.e. the due date 
of the jobs in J R) is known δ time units before its realization. More 
specifically, for each job j, the ‘true’ value of its due date dj is known 
δ time units before its realisation (i.e., if dj ≤ ρ + δ then dj is used as 
input for the decision problem). Furthermore, shop floor status data 
are also available at time ρ. The inclusion of δ as a parameter would 
serve to assess the relevance of timely downstream information in 
this scenario. Clearly, this scenario is only relevant for the total 
tardiness criterion, as the same problem with total flowtime as 
objective does not require downstream data.  

• Advance upstream data (scenario PR
S FS
D ). In an analogous manner 

to the previous one, in this scenario, at time ρ, the data related to the 
upstream process (i.e. the release date of the jobs in J R) is known δ 
time units before its realization, i.e. if rj ≤ ρ + δ then its realization rj 

is used as input for the decision problem, which now is relevant both 
for total tardiness and for total flowtime criteria. Furthermore, shop 
floor status data are also available at time ρ.  

• Integrated information (scenario PR
S FCS
D ). In this scenario, the data 

related to both the upstream and downstream processes (i.e. the 
release and due dates of the jobs in J R) are known δ time units before 
their realization, in addition to shop floor status data. 

4.4. Predictive-reactive approach, stochastic procedures 

This scenario differs from the previous one in the procedure 
employed both to generate the base schedule and the rescheduling. In 
this case, the base schedule is provided by the same stochastic procedure 
than in Section 4.2 and, every γ time units, this procedure is applied to 
reschedule the jobs that at this time are in the set J R. For the resched
uling procedure, the same three sub-scenarios regarding the available 
data are considered, i.e.: Shop floor status data (scenario PR

S F
S ), 

Advance downstream data (scenario PR
S FC
S ), Advance upstream data 

(scenario PR
S FS
S ), and Integrated information (scenario PR

S FCS
S ). 

5. Computational results 

In this section we present the computational results of the experi
mentation in the different scenarios. The experiments have been run on 
a cluster of computers Intel Core i7-3770 PC with 3.4 GHz and 16 GB 
RAM and using C# under Visual Studio 2019. All the extensive experi
mentation included in the paper has taken 6.3 years of combined CPU 
time. Due to the high computational effort required by the methods P S 
and PR S methods, two computational evaluation are carried out. 
Firstly, we compare all procedures detailed in Section 4 in a set of small 
instances. After that, we extend some results by comparing the set of 
non-stochastic procedures in medium-big size instances. To do so, we 
explain the generation of the sets of instances in Section 5.1, and we 
analyse the results obtained in the sets of instances in Section 5.2. The 
computational evaluations included in this study are performed for both 
total flowtime and total tardiness minimisation criteria. In addition, all 
comparisons are carried out using the Average Relative Percentage 
Deviation (ARPD, see Eq. 7) as indicators of the quality of the solutions 
for the total flowtime, and the Average Relative Deviation Index (ARDI, 
see Eq. 8) for the total tardiness. I is the total number of instances, OFip is 
the objective function value found by procedure p in instance i, and Besti 
(Worsti) is the best (worst) value found in the instance among all pro
cedure tested. 

ARPD =
100

I
∑I

i=1

OFip − Besti

Besti
(7)  

ARDI =
100

I
∑I

i=1

OFip − Besti

Worsti − Besti
(8)  

5.1. Testbed generation 

In this section, we detail the procedure adopted to generate two sets 
of instances, denoted as β1 and β2. β1 is a benchmark composed of 1,728 
small-sized instances, while β2 is composed of 3456 medium/big in
stances. In both sets, the following parameters have to be defined: 
processing times Pij, due dates Dj, release dates Rj, number of jobs n, and 
number of machines m. Regarding the generation of the due dates, 
several approaches have been used in the literature, see e.g. Gelders and 
Sambandam [18], Hasija and Rajendran [22], Potts and Van Wassen
hove [38]. In this paper, we apply the most widely-employed procedure, 
developed by [38] (see 47), to generate the mean of the due date dis
tributions. This procedure generates the mean of each job according to a 
uniform distribution between P⋅(1 − T − R/2) and P⋅(1 − T+ R/2), 
where T and R are parameters to control the variability in the mean, and 
P is a lower bound of the makespan, taken from Taillard [45]. Regarding 
the release dates, also some approaches have been used in the related 
scheduling problem literature so far. Several authors (see e.g. [28,43, 
44]) use release times generated by uniform distributions between two 
constants values (e.g. rj ∈ [0, 100] or by rj ∈ [0, 200]), while others au
thors (e.g. [2,21,51]) use release dates following a uniform distribution 
between 0 and a multiple of the number of jobs (e.g. [0,5n]). Both ap
proaches have been found by Hall and Posner [20] inadequate to 
generate a wide range of instances. In view of this, we generate four 
types of the means for the release times following a similar procedure as 
Hall and Posner [20] and Mrad et al. [34]:  

1. α = 1: E[Rj] = E[Rj− 1] + X10 where X10 is a random number generated 
from an exponential distribution with mean equals to 10.  

2. α = 2: E[Rj] = E[Rj− 1] + X10 where X50 is a random number generated 
from an exponential distribution with mean equals to 50.  

3. α = 3: E[Rj] = E[Rj− 1] + E[P1,j] + X10.  
4. α = 4: E[Rj] = E[Rj− 1] + E[P1,j] + X50. 

Taking these aspects into account, the parameters used for gener
ating both benchmarks are detailed as follows:  

• Benchmark β1. 1,728 instances are generated with the following 
levels of the parameters n ∈ {10,15,20}, m ∈ {5,10}, α ∈ {1,2,3,4}, 
T ∈ {0.2,0.4,0.6}, and R ∈ {0.2,0.6,1.0}. In addition, we include CV 
as the coefficient of variation (CV = σ

μ) to control the standard de
viation (σ) of the stochastic due dates, release dates and processing 
times. More specifically, four different levels for the coefficient are 
selected (CV ∈ {0.1, 0.5, 1.0, 1.5}) to represent very low, low, me
dium, and large variability in the manufacturing shop floors, 
respectively (see e.g. 24). For each combination of the previous pa
rameters, two instances are generated. Processing times, due dates, 
and release dates are assumed to follow log normal distributions. The 
mean μ of the due dates depends on R and T and on α for the release 
dates, as explained above. Regarding the processing times, we use a 
uniform distribution [1,99] for the mean μ. The standard deviation of 
each previous data is computed by the previous means μ and CV 
according to σ = μCV.  

• Benchmark β2. In this benchmark, we consider the following levels of 
the parameters to reproduce medium-big size instances: n ∈ {25,50,
75}, m ∈ {2, 5, 10, 15}, α ∈ {1, 2, 3, 4}, T ∈ {0.2, 0.4, 0.6}, and R ∈

{0.2, 0.6, 1.0}. Regarding Dj, Rj, Pij, we use the same procedure to 
determine the mean and standard deviation of these stochastic 
distributions. 
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5.2. Computational results 

Computational results are shown in Tables 1 and 2 for total flowtime 
and total tardiness minimisation, respectively. The most extended pro
cedure to solve the stochastic problem under consideration, i.e. the 
deterministic approach, yields an ARPD value of 24.89 and 25.25 for 
total flowtime and total tardiness respectively. The variation of each 
procedure with respect to the coefficient of variation (CV) is shown in 
Tables 3 and 4. 

The following conclusions can be derived from the results:  

• Overall, when a predictive approach is adopted, there are no great 
differences between taking into account the uncertainties in the 
processing times by using a stochastic approach (P S), and address
ing the problem in a deterministic manner employing the average 
values of the uncertain variables (P LS

D ). This trend is observed 
regardless the degree of uncertainty in the processing times. In view 
of these results and since the former approach is much more time- 
consuming, it is worth questioning if such higher requirements are 
justified by the differences in the quality of the solutions. On the 
other hand, the results are better if the deterministic procedure 
employed is of high quality (P D), which speaks for the importance of 
having efficient deterministic solution procedures for predictive 
scheduling. Note that this conclusion holds both for flowtime and 
tardiness minimisation, and it is in line with prior results for different 
objectives (see e.g. the work by 14 for makespan minimisation). 

• However, if a predictive-reactive approach (i.e. periodic reschedul
ing) is adopted, using a stochastic procedure (PR S) results in sub
stantially better results as compared to the deterministic one (PR D). 
This happens regardless the objective considered, and whether up
stream or downstream data is available, or not. Thereby, e.g. when 
only internal (shop floor status) real-time data are considered, the 
ARPD (ARDI) value is reduced from 31.06 (using PR

S F
D ) to 23.75 

(using PR
S F
S ) in the Fm|prmu, rj|

∑
Fj problem, and from 29.90 

(PR
S F
D ) to 24.22 (PR

S F
S ) in the Fm|prmu, rj|

∑
Tj problem (the hy

pothesis that PR
S F
D = PR

S F
S is rejected in both cases, using a non- 

parametric Mann-Whitney test, with p-values of 0.003 and 0.032, 
respectively). Furthermore, the difference between both approaches 
increases with the degree of uncertainty in the processing times, 

which seems foreseeable. Only for the flowtime objective (where 
downstream data are not required) and for the scenario with lowest 
variability of the processing times (i.e. CV = 0.1) both approaches 
yield similar results.  

• Regarding the usage of external real-time data (i.e. upstream and 
downstream), several conclusions can be obtained:  
• The predictive-reactive approach including data from suppliers 

(PR
S FS
D ) clearly improves the total flowtime of the solutions 

regardless the value of the applied parameter δ (see results in 
Table 5 for δ ∈ {50,100,200,300}). Thereby, e.g. PR

S FS
D with δ =

200 finds an ARPD value of 16.02, which outperforms a resched
uling policy with only shop floor status data (S F) with an ARPD 
value of 31.06 (which means a close to 50% reduction). This is 
confirmed by a p-value of 0.000 using a non-parametric Mann- 
Whitney test (with the hypothesis PR

S FS
D = PR

S F
D ). The 

improvement is even higher using a stochastic rescheduling 
approach with S FS (i.e. PR

S FS
S ) which found an ARPD value of 

7.88 (for δ = 200) versus 23.75 of PR
S F
S .  

• Incorporating advance downstream data in the predictive-reactive 
approach with the objective of total tardiness minimization has a 
much lower incidence than incorporating the advanced upstream 
data when the same time δ is used (we assume δ = 200 in the 
experimentation). Thereby, the ARDI found in scenario PR

S FS
D 

(PR
S FS
S ) is 29.21 (23.83), while in PR

S FC
D (PR

S FC
S ) is 16.84 

(9.93). This conclusion is also confirmed by a Mann-Whitney test 
finding a p-value equal to 0.000 (for the both hypotheses PR

S FC
D =

PR
S FS
D or PR

S FC
S = PR

S FS
S ). In fact, advance downstream in

formation has almost no influence in the quality solution. Thereby, 
the hypothesis that PR

S F
D = PR

S FC
D (PR

S F
S = PR

S FC
S ) cannot be 

rejected finding a p-value equal to 0.625 (0.331).  
• Finally, the advantages of an integrated information scenario are 

worth to be highlighted for both criteria. For instance, for the total 
tardiness, the ARDI is reduced from 29.90 (obtained by PR

S F
D ) to 

16.58 (obtained by PR
S FCS
D ) or to 9.64 (obtained by PR

S FCS
S ). It is 

also interesting to note that the advantages of these additional data 
sources increase with the variability of the scenario: the difference 
between P LS

D and PR
S FCS
S is 2.25 for CV = 0.1 and 33.74 for CV =

Table 1 
Empirical results in small size instances for the Fm|prmu, rj|

∑
Fj problem .  

CV n m P D  P LS
D  P S  PR

S F
D  PR

S FS
D (δ = 200) PR

S F
S  PR

S FS
S (δ = 200)

0.1 10 5 3.05 3.52 2.87 3.26 0.42 3.37 1.01 
0.1 10 10 1.86 2.21 2.11 1.55 0.28 2.04 1.54 
0.1 15 5 5.15 5.64 6.35 4.91 0.77 5.01 3.48 
0.1 15 10 2.54 3.59 3.56 2.62 0.56 3.65 2.18 
0.1 20 5 8.24 10.17 9.70 9.14 0.80 8.94 4.75 
0.1 20 10 4.29 5.37 5.63 4.65 0.63 5.70 4.00 
0.5 10 5 18.26 18.46 18.93 21.72 6.76 18.38 8.71 
0.5 10 10 9.78 9.82 8.27 10.62 5.97 7.56 4.11 
0.5 15 5 28.05 28.17 27.02 32.45 11.53 24.62 7.01 
0.5 15 10 12.76 13.18 11.60 19.19 11.12 11.22 4.87 
0.5 20 5 25.29 27.17 24.32 35.66 13.93 24.24 7.66 
0.5 20 10 17.32 19.09 17.29 30.32 13.24 16.77 4.85 
1 10 5 39.07 35.56 37.03 44.94 18.06 36.09 8.93 
1 10 10 19.22 19.88 18.85 21.76 9.74 18.83 6.81 
1 15 5 38.59 40.21 35.26 48.95 27.49 37.58 9.23 
1 15 10 21.77 25.28 23.85 32.63 16.31 21.23 9.22 
1 20 5 44.22 42.90 45.27 64.27 37.45 43.20 9.82 
1 20 10 29.75 30.22 28.00 36.54 21.57 29.10 12.65 
1.5 10 5 46.15 47.17 44.18 50.39 26.05 43.96 12.89 
1.5 10 10 26.98 28.20 25.25 30.87 16.29 22.69 11.22 
1.5 15 5 54.88 56.15 54.94 65.83 29.72 52.01 11.45 
1.5 15 10 36.88 37.86 39.25 47.56 25.63 34.21 11.77 
1.5 20 5 59.40 61.07 54.66 68.03 31.68 49.55 15.05 
1.5 20 10 43.89 49.36 47.85 57.65 30.78 50.17 15.03 

ARPD 24.89 25.84 24.67 31.06 16.02 23.75 7.84  
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1.5 for the total tardiness case (3.19 and 29.95 for total flowtime, 
respectively).  

• Regarding shop floor status (S F), the use of real-time data from the 
shop to reschedule has almost no improvement in the solutions. In 
fact, the solution is globally worsened due to the high degree of 
nervousness provoked in the system. Thereby, the deterministic 
approach P D is worsened from 24.89 to 31.06 by applying real-time 
rescheduling with only shop floor status PR

S F
D in the Fm|prmu,

rj|
∑

Fj problem and analogously from 25.25 to 29.90 in the Fm|prmu,
rj|

∑
Fj problem. In case of stochastic approaches, a rescheduling 

approach slightly improves the solution from an ARDI of 24.67 
(using P S) to 23.75 (using PR

S F
S ) for the total tardiness mini

misation (and from 24.48 to 24.22 for total flowtime). However this 
improvement is far to be statistical significance (a p-value of 0.729 is 
found testing the hypothesis ARPDP S = ARPD

PR
S F
S 

using a non- 

parametric Mann-Whitney test for the total flowtime case). 
Thereby, these computational results show how the PR policy does 

not necessarily improve the solutions. Note that a similar conclusion 
is found by Schuh et al. [42] asking to 1300 participants, most of 
them related to mechanical and plant engineering, automotive in
dustries or electrical equipment companies. Regarding previous 
computational studies, this trend has been found by Framinan et al. 
[12] for the PR

S F
D scenario and makespan objective, and our results 

show that for flowtime and tardiness the results are much worse. This 
behaviour can be explained using a simple example on a shop floor 
with only two machines. Originally, Job 1 should be finished in 
machine 1 at time 5 and in machine 2 at time 10. After that job, it was 
scheduled job 2 with processing times 5 and 6 in the first and second 
machines, respectively. However, job 1 is finished at time 3 in the 
first machine and time 13 in the second one. Using real-time data, it 
should be more interesting (for a deterministic rescheduling pro
cedure minimising the total flowtime) to insert first job 3 (with 
processing times 10 and 5 in the first and second machines, respec
tively). Therefore, the flowtime for sequence (1,3,2) would be 53 

Table 2 
Empirical results in small size instances for the Fm|prmu, rj|

∑
Tj problem .  

CV n m P D  P LS
D  P S  PR

S F
D  PR

S FC
D (δ =

200)
PR

S FS
D (δ =

200)
PR

S FCS
D (δ =

200)
PR

S F
S  PR

S FC
S (δ =

200)
PR

S FS
S (δ =

200)
PR

S FCS
S (δ =

200)

0.1 10 5 3.09 3.82 4.49 3.89 3.57 1.45 2.10 4.50 5.06 3.02 3.08 
0.1 10 10 2.52 3.93 3.39 2.26 2.09 1.01 1.14 3.86 3.61 3.05 2.75 
0.1 15 5 6.67 9.46 7.20 6.91 4.48 2.56 4.73 8.97 8.11 5.81 5.79 
0.1 15 10 3.39 6.01 5.50 4.20 4.12 2.14 1.76 6.94 7.95 6.88 5.70 
0.1 20 5 9.42 21.02 15.81 10.78 10.72 5.57 5.32 15.83 19.91 8.67 9.80 
0.1 20 10 6.65 11.49 9.53 5.91 6.06 2.25 4.82 11.00 12.48 8.49 9.52 
0.5 10 5 17.15 16.70 17.01 21.10 22.83 13.10 11.77 17.02 17.91 8.24 9.13 
0.5 10 10 13.09 10.43 10.93 14.11 14.19 10.13 9.89 10.55 9.67 6.57 5.93 
0.5 15 5 29.00 26.92 24.46 30.18 29.35 15.30 11.07 25.67 25.18 10.36 7.98 
0.5 15 10 16.69 15.56 13.13 23.08 22.32 14.60 14.91 13.33 13.66 6.12 6.29 
0.5 20 5 26.86 27.81 26.42 35.79 33.97 19.60 19.08 25.85 24.80 9.25 9.67 
0.5 20 10 20.05 23.57 21.38 30.92 30.34 17.11 16.96 19.01 18.03 7.61 7.54 
1 10 5 36.78 35.21 32.35 38.62 37.60 18.07 16.66 30.56 29.94 10.59 10.90 
1 10 10 23.30 22.40 22.09 26.63 25.80 14.54 14.44 21.80 20.84 9.26 10.06 
1 15 5 40.91 40.75 37.19 50.45 47.92 28.85 28.42 39.37 36.45 14.72 15.34 
1 15 10 22.92 25.27 20.58 29.83 29.82 15.20 14.15 23.10 22.95 9.78 8.24 
1 20 5 44.36 46.47 45.82 56.30 56.14 33.64 37.20 44.03 43.17 15.87 17.12 
1 20 10 30.78 30.89 28.38 35.88 34.52 23.02 22.28 25.07 23.60 11.97 8.18 
1.5 10 5 42.77 41.18 39.13 42.48 41.25 25.23 23.30 40.06 40.05 14.78 14.64 
1.5 10 10 24.21 26.34 23.47 29.10 29.68 17.26 16.85 20.94 20.62 9.36 8.45 
1.5 15 5 52.30 53.15 48.57 63.96 61.30 34.35 32.31 48.03 48.30 15.73 13.80 
1.5 15 10 38.63 37.26 32.71 44.90 43.86 22.56 21.53 32.87 32.91 13.95 13.42 
1.5 20 5 50.50 53.67 51.98 56.79 59.50 35.32 40.22 46.75 42.69 13.20 13.67 
1.5 20 10 43.89 46.48 45.99 53.58 49.64 31.22 27.06 46.16 43.90 15.07 14.39 

ARDI 25.25 26.49 24.48 29.90 29.21 16.84 16.58 24.22 23.83 9.93 9.64  

Table 3 
Grouped computational results in small size instances for the Fm|prmu, rj|

∑
Fj problem .  

CV P D  P LS
D  P S  PR

S F
D  PR

S FS
D (δ = 200) PR

S F
S  PR

S FS
S (δ = 200)

0.10 4.19 5.08 5.04 4.35 0.58 4.79 2.83 
0.50 18.58 19.31 17.90 24.99 10.42 17.13 6.20 
1.00 32.10 32.34 31.38 41.52 21.77 31.00 9.44 
1.50 44.70 46.64 44.36 53.39 26.69 42.10 12.90 
ARPD 24.89 25.84 24.67 31.06 14.86 23.75 7.84  

Table 4 
Grouped computational results in small size instances for the Fm|prmu, rj|

∑
Tj problem .  

CV P D  P LS
D  P S  PR

S F
D  PR

S FC
D (δ =

200)
PR

S FS
D (δ =

200)
PR

S FCS
D (δ =

200)
PR

S F
S  PR

S FC
S (δ =

200)
PR

S FS
S (δ =

200)
PR

S FCS
S (δ =

200)

0.10 5.29 9.29 7.65 5.66 2.50 3.31 5.17 8.52 6.10 5.99 9.52 
0.50 20.47 20.17 18.89 25.86 14.97 13.95 25.50 18.57 7.76 8.03 18.21 
1.00 33.18 33.50 31.07 39.62 22.22 22.19 38.63 30.65 11.64 12.03 29.49 
1.50 42.05 43.01 40.31 48.47 27.66 26.88 47.54 39.13 13.06 13.68 38.08 
ARPD 25.25 26.49 24.48 29.90 29.21 16.84 16.58 24.22 23.83 9.93 9.64  
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against 55 of sequence (1,2,3). However, sequence (1,3,2) would be 
much more sensible to any changes in processing times of job 3. First, 
any delay in job 3 would increase the completion time of the sub
sequent jobs by this amount. Secondly, since the standard deviation 
of the processing time of job 3 in machine 1 is higher than job 2 (the 
mean is higher and the coefficient of variation is constant), although 
sequence (1,2,3) worsens the solution, the latter is more robust as 
there are waiting times between jobs 1 and 2 to avoid forced idle 
times. Obviously, this nervousness in the system highly increases 
when release date are considered (following a similar reasoning) and 
when there are more jobs to be scheduled (as the probability of 
worsening the solutions increases). In this regard, we present in 
Table 6 a comparison of the non-stochastic procedures (i.e. P D, 
PR

S F
D , PR

S FC
D (δ = 200), PR

S FS
D (δ = 200), and PR

S FCS
D (δ = 200)) 

for higher sizes of the instances (these procedures have been tested 
on Benchmark β2). We can observe how an increase in the number of 
jobs or in the release data values worsens the deterministic 

predective-reactive scheduling, which cannot be avoided even for 
the integrated information scenario. 

For the sake of brevity, preliminary analyses with the other 
rescheduling policies are not included in this paper. Nevertheless, it is 
worth mentioning that no statistically difference has been found, in both 
β1 and β2, comparing the considered periodic rescheduling strategy and 
an event-driven strategy triggered each time that a job is finished in the 
first machine (12) for total flowtime minimisation, which achieves e.g. 
in β1 an ARPD of 30.49 versus 31.06 finding by PR

S F
S (the hypothesis 

that both rescheduling procedures obtain the same ARPD cannot be 
rejected finding a p-value of 0.888 using a Mann-Whitney test). 

6. Conclusions 

In this paper, we explore the potential advantages of information 
integration (both real-time shop floor status and advanced upstream/ 
downstream processes data) that the technological advances of Industry 
4.0 make available. More specifically, we want to assess how such 
integration can improve shop floor performance when it is used as input 
for the scheduling decision-making process, depending on the data 
sources available, and on the approach and solution procedure adopted 
for scheduling. To do so, we simulate a common shop floor layout (i.e. 
the flowshop) and define different scenarios formed by a combination of 
(re)scheduling approaches, solution procedures and objective functions, 
and different data sources. 

Regarding the solution procedures, the best performance has been 
obtained by the stochastic procedures, both in the predictive and in the 
predictive-reactive approaches, improving the deterministic ones. 
However, these improvements in the quality of the solutions must be 
balanced with the extremely high computational effort required by the 
stochastic procedures as compared to the deterministic ones. In this 
regard, the deterministic procedures are very efficient for the predictive 
approach if a balance between the quality of the solutions and the 
computational effort is sought. However, when embedded in a 
predictive-reactive approach (without considering advanced informa
tion from upstream/downstream processes), it has been found that, in 
most cases, these deterministic procedures induce nervousness in the 
system and that this translates in a poor quality of the solutions. Only for 
instances with a very low coefficient of variation, some solution 
improvement can be found. Regarding the importance of the different 
data sources, the experimentation highlights the importance of advance 
upstream information rather than using shop floor data, as the quality of 
the solutions for both objective functions (ARPD and ARDI) has been 
reduced up to 50% as compared to the same scenario without upstream 

Table 5 
Procedure PR

S FC
D using different values of δ to solve the Fm|prmu, rj|

∑
Fj 

problem .  

CV n m PR
S FS
D (δ =

50)
PR

S FS
D (δ =

100)
PR

S FS
D (δ =

200)
PR

S FS
D (δ =

300)

0.1 10 5 2.25 1.78 0.42 0.65 
0.1 10 10 1.16 1.09 0.28 0.73 
0.1 15 5 4.65 3.89 0.77 2.42 
0.1 15 10 2.29 2.05 0.56 1.13 
0.1 20 5 7.29 6.50 0.80 1.80 
0.1 20 10 3.52 2.97 0.63 1.93 
0.5 10 5 15.02 11.65 6.76 9.82 
0.5 10 10 9.71 8.12 5.97 7.22 
0.5 15 5 17.44 13.86 11.53 10.19 
0.5 15 10 15.40 12.10 11.12 12.42 
0.5 20 5 18.86 20.24 13.93 16.39 
0.5 20 10 19.33 16.82 13.24 14.97 
1 10 5 24.82 19.98 18.06 18.34 
1 10 10 15.74 13.85 9.74 9.85 
1 15 5 30.48 26.10 27.49 27.97 
1 15 10 16.29 16.65 16.31 15.30 
1 20 5 48.77 48.77 37.45 44.52 
1 20 10 21.19 19.39 21.57 21.40 
1.5 10 5 31.80 28.71 26.05 27.50 
1.5 10 10 17.80 19.36 16.29 17.72 
1.5 15 5 38.00 42.92 29.72 31.21 
1.5 15 10 25.72 25.58 25.63 23.90 
1.5 20 5 38.52 34.69 31.68 37.98 
1.5 20 10 33.73 28.23 30.78 29.13 

ARPD 19.16 17.72 16.02 14.86  

Table 6 
Computational results of deterministic procedures on Benchmark β2.    

Fm|prmu, rj|
∑

Fj  Fm|prmu, rj |
∑

Tj    

P D  PR
S F
D  PR

S FCS
D (δ = 200) P D  PR

S F
D  PR

S FCS
D (δ = 200) PR

S FC
D (δ = 200) PR

S FS
D (δ = 200)

CV  0.1 9.82 22.26 10.10 38.86 60.27 29.06 58.99 31.73 
0.5 13.52 42.17 26.24 36.13 71.67 43.06 66.81 48.11 
1 21.56 46.42 24.78 41.28 69.33 38.65 66.80 42.58 
1.5 27.29 47.92 24.95 44.89 68.78 38.71 63.97 42.14 

n  25 25.37 34.67 13.69 53.42 66.26 30.96 62.22 34.67 
50 16.96 39.45 21.73 38.77 68.76 37.39 63.28 41.71 
75 11.81 44.96 29.12 28.66 67.51 43.76 66.92 47.05 

m  2 25.01 56.36 26.01 41.49 76.19 37.46 68.84 44.73 
5 19.23 40.59 23.08 41.83 67.62 36.40 65.11 41.98 
10 14.87 32.87 18.50 40.45 64.11 37.00 63.12 37.19 
15 12.60 27.93 18.13 37.23 61.61 38.66 59.17 40.41 

α  1 7.93 8.73 6.78 51.22 45.17 28.05 34.61 39.28 
2 18.12 41.00 23.04 38.41 70.52 38.32 69.65 40.38 
3 18.65 49.39 27.86 32.38 73.16 44.08 72.81 43.55 
4 27.49 59.67 28.38 39.13 81.20 39.04 79.51 41.36 

ARPD 18.05 39.69 21.51 40.29 67.51 37.37 64.14 41.14  
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and downstream information. In contrast, the effect of downstream in
formation hardly has some incidence in the quality of the solutions. 

As future research lines, the results highlight the importance of 
making proper choices regarding rescheduling approaches and solution 
procedures to take advantage of the additional data provided by In
dustry 4.0. Perhaps one way to do so (at least for the deterministic 
procedures) is to use additional criteria to provide robust solutions. In 
this regard, e.g. the maximisation of waiting time could provide some 
time to reduce the nervousness of the system. This provides an inter
esting research avenue within the domain of deterministic solution 
procedures, which seems to cope quite well with the system uncertainty 
in the predictive approach. Finally, it has to be noted that the best 
overall solutions have been found by integrating and making available 
all data sources for a stochastic solution procedure embedded in a 
predictive-reactive approach. Despite the procedure is heavily time- 
consuming and therefore cannot be applicable with nowadays com
puters, it points out towards the need of speeding up these procedures to 
make them feasible in the future. 
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