21 research outputs found

    The Design of Secure and Efficient P2PSIP Communication Systems

    Full text link

    Enabling technologies for decentralized interpersonal communication

    Get PDF
    In the recent years the Internet users have witnessed the emergence of Peer-to-Peer (P2P) technologies and applications. One class of P2P applications is comprised of applications that are targeted for interpersonal communication. The communication applications that utilize P2P technologies are referred to as decentralized interpersonal communication applications. Such applications are decentralized in a sense that they do not require assistance from centralized servers for setting up multimedia sessions between users. The invention of Distributed Hash Table (DHT) algorithms has been an important, but not an inclusive enabler for decentralized interpersonal communication. Even though the DHTs provide a basic foundation for decentralization, there are still a number of challenges without viable technological solutions. The main contribution of this thesis is to propose technological solutions to a subset of the existing challenges. In addition, this thesis also presents the preliminary work for the technological solutions. There are two parts in the preliminary work. In the first part, a set of DHT algorithms are evaluated from the viewpoint of decentralized interpersonal communication, and the second part gives a coherent presentation of the challenges that a decentralized interpersonal communication application is going to encounter in mobile networks. The technological solution proposals contain two architectures and two algorithms. The first architecture enables an interconnection between a decentralized and a centralized communication network, and the second architecture enables the decentralization of a set of legacy applications. The first algorithm is a load balancing algorithm that enables good scalability, and the second algorithm is a search algorithm that enables arbitrary searches. The algorithms can be used, for example, in DHT-based networks. Even though this thesis has focused on the decentralized interpersonal communication, some of the proposed technological solutions also have general applicability outside the scope of decentralized interpersonal communication

    Secure interworking with P2PSIP and IMS

    Get PDF
    Paper presented at the 2010 International Symposium on Collaborative Technologies and Systems (CTS). (c) 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. Paper also available from the publisher: http://dx.doi.org/10.1109/CTS.2010.5478476In this paper, we propose a secure system model for interconnection between P2PSIP and IMS domains. The interworking solution is based on P2P-IMS GateWay (PIGW), which acts as a normal peer in P2PSIP network and a 3. party IMS Application Server (AS) in IMS network. The security is achieved by implementing Chord Secure Proxy (CSP) and enhanced with subjective logic based trust model. We also implement this system model and analyze it in several aspects: number of hops and delay, trust improvement and protection against malicious or compromised intermediate peers. We conclude that the proposed architecture is feasible and improves security. As far as we know our research is the first study that proposes secure internetworking P2PSIPS and IMS

    Security in peer-to-peer communication systems

    Get PDF
    P2PSIP (Peer-to-Peer Session Initiation Protocol) is a protocol developed by the IETF (Internet Engineering Task Force) for the establishment, completion and modi¿cation of communication sessions that emerges as a complement to SIP (Session Initiation Protocol) in environments where the original SIP protocol may fail for technical, ¿nancial, security, or social reasons. In order to do so, P2PSIP systems replace all the architecture of servers of the original SIP systems used for the registration and location of users, by a structured P2P network that distributes these functions among all the user agents that are part of the system. This new architecture, as with any emerging system, presents a completely new security problematic which analysis, subject of this thesis, is of crucial importance for its secure development and future standardization. Starting with a study of the state of the art in network security and continuing with more speci¿c systems such as SIP and P2P, we identify the most important security services within the architecture of a P2PSIP communication system: access control, bootstrap, routing, storage and communication. Once the security services have been identi¿ed, we conduct an analysis of the attacks that can a¿ect each of them, as well as a study of the existing countermeasures that can be used to prevent or mitigate these attacks. Based on the presented attacks and the weaknesses found in the existing measures to prevent them, we design speci¿c solutions to improve the security of P2PSIP communication systems. To this end, we focus on the service that stands as the cornerstone of P2PSIP communication systems¿ security: access control. Among the new designed solutions stand out: a certi¿cation model based on the segregation of the identity of users and nodes, a model for secure access control for on-the-¿y P2PSIP systems and an authorization framework for P2PSIP systems built on the recently published Internet Attribute Certi¿cate Pro¿le for Authorization. Finally, based on the existing measures and the new solutions designed, we de¿ne a set of security recommendations that should be considered for the design, implementation and maintenance of P2PSIP communication systems.Postprint (published version

    An interoperable and secure architecture for internet-scale decentralized personal communication

    Get PDF
    Interpersonal network communications, including Voice over IP (VoIP) and Instant Messaging (IM), are increasingly popular communications tools. However, systems to date have generally adopted a client-server model, requiring complex centralized infrastructure, or have not adhered to any VoIP or IM standard. Many deployment scenarios either require no central equipment, or due to unique properties of the deployment, are limited or rendered unattractive by central servers. to address these scenarios, we present a solution based on the Session Initiation Protocol (SIP) standard, utilizing a decentralized Peer-to-Peer (P2P) mechanism to distribute data. Our new approach, P2PSIP, enables users to communicate with minimal or no centralized servers, while providing secure, real-time, authenticated communications comparable in security and performance to centralized solutions.;We present two complete protocol descriptions and system designs. The first, the SOSIMPLE/dSIP protocol, is a P2P-over-SIP solution, utilizing SIP both for the transport of P2P messages and personal communications, yielding an interoperable, single-stack solution for P2P communications. The RELOAD protocol is a binary P2P protocol, designed for use in a SIP-using-P2P architecture where an existing SIP application is modified to use an additional, binary RELOAD stack to distribute user information without need for a central server.;To meet the unique security needs of a fully decentralized communications system, we propose an enrollment-time certificate authority model that provides asserted identity and strong P2P and user-level security. In this model, a centralized server is contacted only at enrollment time. No run-time connections to the servers are required.;Additionally, we show that traditional P2P message routing mechanisms are inappropriate for P2PSIP. The existing mechanisms are generally optimized for file sharing and neglect critical practical elements of the open Internet --- namely link-level security and asymmetric connectivity caused by Network Address Translators (NATs). In response to these shortcomings, we introduce a new message routing paradigm, Adaptive Routing (AR), and using both analytical models and simulation show that AR significantly improves message routing performance for P2PSIP systems.;Our work has led to the creation of a new research topic within the P2P and interpersonal communications communities, P2PSIP. Our seminal publications have provided the impetus for subsequent P2PSIP publications, for the listing of P2PSIP as a topic in conference calls for papers, and for the formation of a new working group in the Internet Engineering Task Force (IETF), directed to develop an open Internet standard for P2PSIP

    Enabling technologies for decentralized interpersonal communication

    Get PDF
    In the recent years the Internet users have witnessed the emergence of Peer-to-Peer (P2P) technologies and applications. One class of P2P applications is comprised of applications that are targeted for interpersonal communication. The communication applications that utilize P2P technologies are referred to as decentralized interpersonal communication applications. Such applications are decentralized in a sense that they do not require assistance from centralized servers for setting up multimedia sessions between users. The invention of Distributed Hash Table (DHT) algorithms has been an important, but not an inclusive enabler for decentralized interpersonal communication. Even though the DHTs provide a basic foundation for decentralization, there are still a number of challenges without viable technological solutions. The main contribution of this thesis is to propose technological solutions to a subset of the existing challenges. In addition, this thesis also presents the preliminary work for the technological solutions. There are two parts in the preliminary work. In the first part, a set of DHT algorithms are evaluated from the viewpoint of decentralized interpersonal communication, and the second part gives a coherent presentation of the challenges that a decentralized interpersonal communication application is going to encounter in mobile networks. The technological solution proposals contain two architectures and two algorithms. The first architecture enables an interconnection between a decentralized and a centralized communication network, and the second architecture enables the decentralization of a set of legacy applications. The first algorithm is a load balancing algorithm that enables good scalability, and the second algorithm is a search algorithm that enables arbitrary searches. The algorithms can be used, for example, in DHT-based networks. Even though this thesis has focused on the decentralized interpersonal communication, some of the proposed technological solutions also have general applicability outside the scope of decentralized interpersonal communication

    Prospects of peer-to-peer SIP for mobile operators

    Get PDF
    Tämän diplomityön tarkoituksena on esitellä kehitteillä oleva Peer-to-Peer Session Initiation Protocol (P2PSIP), jonka avulla käyttäjät voivat itsenäisesti ja helposti luoda keskenään puhe- ja muita multimediayhteyksiä vertaisverkko-tekniikan avulla. Lisäksi tarkoituksena on arvioida P2PSIP protokollan vaikutuksia ja mahdollisuuksia mobiilioperaattoreille, joille sitä voidaan pitää uhkana. Tästä huolimatta, P2PSIP:n ei ole kuitenkaan tarkoitus korvata nykyisiä puhelinverkkoja. Työn alussa esittelemme SIP:n ja vertaisverkkojen (Peer-to-Peer) periaatteet, joihin P2PSIP-protokollan on suunniteltu perustuvan. SIP mahdollistaa multimedia-istuntojen luomisen, sulkemisen ja muokkaamisen verkossa, mutta sen monipuolinen käyttö vaatii keskitettyjen palvelimien käyttöä. Vertaisverkon avulla käyttäjät voivat suorittaa keskitettyjen palvelimien tehtävät keskenään hajautetusti. Tällöin voidaan ylläpitää laajojakin verkkoja tehokkaasti ilman palvelimista aiheutuvia ylläpito-kustannuksia. Mobiilioperaattorit ovat haasteellisen tilanteen edessä, koska teleliikennemaailma on muuttumassa yhä avoimemmaksi. Tällöin operaattoreiden asiakkaille aukeaa mahdollisuuksia käyttää kilpailevia Internet-palveluja (kuten Skype) helpommin ja tulevaisuudessa myös itse muodostamaan kommunikointiverkkoja P2PSIP:n avulla. Tutkimukset osoittavat, että näistä uhista huolimatta myös operaattorit pystyvät näkemään P2PSIP:n mahdollisuutena mukautumisessa nopeasti muuttuvan teleliikennemaailman haasteisiin. Nämä mahdollisuudet sisältävät operaattorin oman verkon optimoinnin lisäksi vaihtoehtoisten ja monipuolisempien palveluiden tarjoamisen asiakkailleen edullisesti. Täytyy kuitenkin muistaa, että näiden mahdollisuuksien toteuttamisten vaikutusten ei tulisi olla ristiriidassa operaattorin muiden palveluiden kanssa. Lisäksi tulisi muistaa, että tällä hetkellä keskeneräisen P2PSIP-standardin lopullinen luonne ja ominaisuudet voivat muuttaa sen vaikutuksia.The purpose of this thesis is to present the Peer-to-Peer Session Initiation Protocol (P2PSIP) being developed. In addition, the purpose of this thesis is to evaluate the impacts and prospects of P2PSIP to mobile operators, to whom it can be regarded as a threat. In P2PSIP, users can independently and easily establish voice and other multimedia connections using peer-to-peer (P2P) networking. However, P2PSIP is not meant to replace the existing telephony networks of the operators. We start by introducing the principles of SIP and P2P networking that the P2PSIP is intended to use. SIP enables to establish, terminate and modify multimedia sessions, but its versatile exploitation requires using centralized servers. By using P2P networking, users can decentralize the functions of centralized servers by performing them among themselves. This enables to maintain large and robust networks without maintenance costs resulted of running such centralized servers. Telecommunications market is transforming to a more open environment, where mobile operators and other service providers are challenged to adapt to the upcoming changes. Subscribers have easier access to rivalling Internet-services (such as Skype) and in future they can form their own communication communities by using P2PSIP. The results show that despite of these threats, telecom operators can find potential from P2PSIP in concurrence in adaptation to the challenges of the rapidly changing telecom environment. These potential roles include optimization of the network of the operator, but as well roles to provide alternative and more versatile services to their subscribers at low cost. However, the usage of P2PSIP should not conflict with the other services of the operator. Also, as P2PSIP is still under development, its final nature and features may change its impacts and prospects

    The design of efficient and secure P2PSIP systems

    Get PDF
    Doktorgradsavhandling i informasjons- og kommunikasjonsteknologi, Universitetet i Agder, Grimstad, 201

    Security for Decentralised Service Location - Exemplified with Real-Time Communication Session Establishment

    Get PDF
    Decentralised Service Location, i.e. finding an application communication endpoint based on a Distributed Hash Table (DHT), is a fairly new concept. The precise security implications of this approach have not been studied in detail. More importantly, a detailed analysis regarding the applicability of existing security solutions to this concept has not been conducted. In many cases existing client-server approaches to security may not be feasible. In addition, to understand the necessity for such an analysis, it is key to acknowledge that Decentralised Service Location has some unique security requirements compared to other P2P applications such as filesharing or live streaming. This thesis concerns the security challenges for Decentralised Service Location. The goals of our work are on the one hand to precisely understand the security requirements and research challenges for Decentralised Service Location, and on the other hand to develop and evaluate corresponding security mechanisms. The thesis is organised as follows. First, fundamentals are explained and the scope of the thesis is defined. Decentralised Service Location is defined and P2PSIP is explained technically as a prototypical example. Then, a security analysis for P2PSIP is presented. Based on this security analysis, security requirements for Decentralised Service Location and the corresponding research challenges -- i.e. security concerns not suitably mitigated by existing solutions -- are derived. Second, several decentralised solutions are presented and evaluated to tackle the security challenges for Decentralised Service Location. We present decentralised algorithms to enable availability of the DHTs lookup service in the presence of adversary nodes. These algorithms are evaluated via simulation and compared to analytical bounds. Further, a cryptographic approach based on self-certifying identities is illustrated and discussed. This approach enables decentralised integrity protection of location-bindings. Finally, a decentralised approach to assess unknown identities is introduced. The approach is based on a Web-of-Trust model. It is evaluated via prototypical implementation. Finally, the thesis closes with a summary of the main contributions and a discussion of open issues

    Media Processing in Video Conferences for Cooperating Over the Top and Operator Based Networks

    Get PDF
    Telecom operators have dominated the communication industry for a long time by providing services with guaranteed quality of service. Such services are provided by the operator at the cost of maintaining a high grade network. With the introduction of broadband and internet, many over the top (OTT) services have emerged. These services use the underlying operator networks as a mere bit pipe while all service intelligence resides in the application running on the client device. Introduction of OTT services has seen a good response from general users who are no longer bound to services provided by the network operator. This in turn has caused operators and telecom companies to loose the ownership of their customers. This thesis takes media processing in video conferencing as a case study to compare the two competing domains of operator networks and OTT networks. Both domains offer video conferencing to end users, but they follow different architectures. The study shows that OTT services can perform much better if they utilize support of the underlying network. This will also bring the user base back to the network operator. The proposal is to turn the competition into cooperation between both parties. Assessments are done from both technical as well as business perspectives to assert that such cooperative agreements are possible and should be experimented in real life
    corecore