161 research outputs found

    Understanding Link Dynamics in Wireless Sensor Networks with Dynamically Steerable Directional Antennas

    Get PDF
    Abstract. By radiating the power in the direction of choice, electronicallyswitched directional (ESD) antennas can reduce network contention and avoid packet loss. There exists some ESD antennas for wireless sensor networks, but so far researchers have mainly evaluated their directionality. There are no studies regarding the link dynamics of ESD antennas, in particular not for indoor deployments and other scenarios where nodes are not necessarily in line of sight. Our long-term experiments confirm that previous findings that have demonstrated the dependence of angleof-arrival on channel frequency also hold for directional transmissions with ESD antennas. This is important for the design of protocols for wireless sensor networks with ESD antennas: the best antenna direction, i.e., the direction that leads to the highest packet reception rate and signal strength at the receiver, is not stable but varies over time and with the selected IEEE 802.15.4 channel. As this requires protocols to incorporate some form of adaptation, we present an intentionally simple and yet efficient mechanism for selecting the best antenna direction at run-time with an energy overhead below 2 % compared to standard omni-directional transmissions.

    Improving the performance of wireless sensor networks using directional antennas

    Get PDF
    Over the last decades, lots of new applications have emerged thanks to the availability of small devices capable of wireless communications that form Wireless Sensor Networks (WSNs). These devices allow sensing, processing, and communication of multiple physical variables while keeping a low power consumption. During the last years, most of the research efforts were spent on the development and optimization of wireless communication protocols, aiming to maximize the reliability of the network while achieving the lowest possible power consumption. In this thesis, we study how to improve the performance of these WSNs by using directional antennas. Directional antennas can provide a higher gain and reduce the interference with other nodes by concentrating the radiated power in a certain direction. We present the different kinds of directional antennas available for WSNs, and we select the 6-element SPIDA antenna as a case of study. We present an electromagnetic model of this antenna, and we incorporate it into the COOJA network simulator. We report the first complete characterization of this antenna, including the radiation pattern and S11 parameters. The characterization shows that the antenna has a maximum gain of 6.8 dBi, a Half-Power Beamwidth (HPBW) of 113° and a module of S11 parameter of -7.5 dB at the central frequency (fc = 2.4525 GHz). We also present a novel way to optimize the antenna without changing its design by isolating multiple director elements. We show that with this technique, the performance of the antenna can be improved in terms of maximum gain, narrower HPBW, and a lower module of the S11 parameter without making any changes in the antenna itself. We evaluate the impact of supporting directional communications in the different layers of the network stack. We analyze the different challenges that arise and propose optimizations to overcome them in order to take advantage of the benefits of directional communication. We present an analysis of the state-of-the-art in neighbor discovery protocols for WSNs with directional antennas, and we propose, implement end evaluate two novel fully directional protocols: Q-SAND and DANDi. We compare both of them with SAND, a fully directional neighbor discovery protocol. DANDi is a fully directional asynchronous and dynamic neighbor discovery protocol where the contention resolution relies on a collision detection mechanism. To the best of our knowledge, DANDi is the fastest neighbor discovery protocol for WSN with directional antennas, with the additional advantage of being able to discover every reliable communication link in a network without requiring any prior information of the network topology. We combine the directional neighbor discovery protocol with MAC and routing optimizations in order fully take advantage of the benefits of using directional antennas. We focus on convergecast, a typical data collection application where every node sends packets periodically to a sink node. We present DirMAC, a novel MAC protocol that fully supports directional communication, together with four different heuristics to optimize the performance of the protocols. One of these heuristics has the added major benefit of being completely distributed and with no need for offline processing. Our evaluation shows that optimizations at both the MAC and routing layers are needed in order to reap the benefits of using directional antennas for convergecast. Our results show that the performance of the network can be greatly improved in terms of packet delivery rate, energy consumption, and energy per received packet, and that we obtain the largest performance improvements in networks with dense traffic. Simulations with different node densities show that when using directional antennas the PDR increases up to 29%, while energy consumption and energy per received packet decreases by up to 55% and 46% respectively. Experiments with real nodes validate these results showing a significant performance increase when using directional antennas in our scenarios, with a reduction in the RDC and EPRP of 25% and 15% respectively, while maintaining a PDR of 100%.Durante las últimas décadas, la disponibilidad de pequeños dispositivos con comunicación inalámbrica ha permitido el desarrollo de muchas nuevas aplicaciones. Estos dispositivos forman Redes de Sensores Inalámbricos (RSI, o WSN por sus siglas en inglés) que permiten sensar, procesar y comunicar datos provenientes de variables físicas, mientras que mantienen un bajo consumo energético. En los últimos años, la mayor parte de los esfuerzos de la comunidad científica estuvieron concentrados en el desarrollo y optimización de los protocolos de comunicación inalámbricos, buscando maximizar la confiabilidad de la red y minimizar el consumo energético. En esta tesis estudiamos cómo mejorar el rendimiento de las RSI usando antenas direccionales. Las antenas direccionales pueden proporcionar una mayor ganancia y reducir la interferencia con otros nodos al concentrar la potencia radiada en una cierta dirección. Comenzamos presentando los distintos tipos de antenas direccionales disponibles para las RSI, y seleccionamos la antena SPIDA de 6 elementos como caso de estudio. Luego presentamos un modelo electromagnético de la antena, que incorporamos al simulador de red COOJA. Construimos un primer prototipo con el que realizamos la primera caracterización completa de ésta antena, incluyendo el patrón de radiación y el parámetro S11. La caracterización muestra que la antena tiene una ganancia máxima de 6,8 dBi, un ancho de haz a mitad de potencia (HPBW por sus siglas en inglés) de 113° y un módulo del parámetro S11 de -7,5 dB en la frecuencia central (fc = 2,4525 GHz). También mostramos una forma innovadora de optimizar la antena sin cambiar su diseño utilizando varios elementos directores al mismo tiempo. Mostramos que con esta técnica se puede mejorar el rendimiento de la antena en términos de ganancia máxima, ancho de haz a mitad de potencia, y módulo del parámetro S11. Luego evaluamos el impacto de usar comunicaciones direccionales en las diferentes capas del stack de red. Analizamos los diferentes desafíos que surgen y proponemos optimizaciones para sortearlos. Presentamos un análisis del estado del arte en protocolos de descubrimiento de vecinos en RSI con antenas direccionales, y proponemos, implementamos y evaluamos dos protocolos direccionales : Q-SAND y DANDi. DANDi es un protocolo de descubrimiento de vecinos direccional, asíncrono y dinámico, donde la contienda por el canal se resuelve con un mecanismo basado en la detección de colisiones. Hasta donde sabemos, DANDi es el protocolo de descubrimiento de vecinos más rápido para RSI con antenas direccionales, con la ventaja adicional de que permite descubrir todos los enlaces de comunicación confiables de una red sin requerir ningún conocimiento previo de la topología. Luego combinamos los protocolos de descubrimiento de vecinos con optimizaciones en las capas de ruteo y acceso al medio para construir una aplicación de recolección de datos, donde cada nodo envía paquetes periódicamente a un nodo centralizador. Presentamos DirMAC, un protocolo de acceso al medio innovador que soporta comunicaciones direccionales, junto con cuatro heurísticas que permiten optimizar el rendimiento de los protocolos (una de ellas con la ventaja adicional que es totalmente distribuida). Los resultados muestran que usar antenas direccionales en este tipo de aplicaciones permite mejorar sustancialmente el rendimiento de la red, mostrando las mayores mejoras en redes con alto tráfico. Las simulaciones con diferentes densidades de nodos muestran que al usar antenas direccionales se puede aumentar el ratio de entrega de paquetes en hasta 29%, mientras que el consumo energético y la energía por paquete recibido bajan en hasta 55% y 46% respectivamente. Los experimentos en nodos reales validan estos resultados, mostrando una reducción en el consumo energético y en la energía por paquete recibido de 25% y 15% respectivamente, mientras que mantienen un ratio de entrega de paquetes de 100%

    Electronically-switched Directional Antennas for Low-power Wireless Networks: A Prototype-driven Evaluation

    Get PDF
    We study the benefits of electronically-switched directional antennas in low-power wireless networks. This antenna technology may improve energy efficiency by increasing the communication range and by alleviating contention in directions other than the destination, but in principle requires a dedicated network stack. Unlike most existing works, we start by characterizing a real-world antenna prototype, and apply this to an existing low-power wireless stack, which we adapt with minimal changes. Our results show that: i) the combination of a low-cost directional antenna and a conventional network stack already brings significant performance improvements, e.g., nearly halving the radio-on time per delivered packet; ii) the margin of improvement available to alternative clean-slate protocol designs is similarly large and concentrated in the control rather than the data plane; iii) by artificially modifying our antenna's link-layer model, we can point at further potential benefits opened by different antenna designs

    On the benefits of Cross Layer Feedback in Multi-hop Wireless Networks

    Full text link
    Wireless networks operate under harsh and time-varying channel conditions. In wireless networks the time varying channel conditions lead to variable SINR and high BER. The wireless channel is distinct from and more unpredictable than the far more reliable wireline channel. {\em Cross layer feedback} is a mechanism where layers provide {\em selective} information to other layers to boost the performance of wireless networks. {\em Cross layer feedback} can lead to a tremendous increase in the performance of the TCP/IP stack in wireless networks, and an increase in the user's satisfaction level. However, it is possible that naive feedbacks (or optimizations) can work non-coherently; therefore, these can negatively effect the performance of the TCP/IP stack. In this paper, we holistically analyze each layer of the TCP/IP stack, and propose possible Cross layer feedbacks which work coherently. The proposed Cross layer feedbacks can greatly enhance the performance of the TCP/IP stack in wireless networks

    Channel-Access and Routing Protocols for Wireless Ad Hoc Networks with Directional Antennas

    Get PDF
    Medium-access control (MAC) and multiple-hop routing protocols are presented that exploit the presence of directional antennas at nodes in a wireless ad hoc network. The protocols are designed for heterogeneous networks in which an arbitrary subset use directional antennas. It is shown that the new protocols improvement the network`s performance substantially in a wide range of scenarios. A new MAC protocol is presented that employs the RTS/CTS mechanism. It accounts for the constraints imposed by a directional antenna system, and it is designed to exploit the capabilities of a directional antenna. It is shown that the receiver blocking problem is especially detrimental to the performance if the network includes nodes with directional antennas, and a simple solution is presented. A further improvement to the MAC protocol is presented which results in more efficient spatial reuse of traffic channels in the heterogeneous network. The protocol includes a mechanism by which a negotiating node pair dynamically determines if a traffic channel that is in use in the local area can be used concurrently to support additional traffic. It is shown that the new protocol yields significantly better performance than two existing approaches to the reuse of traffic channels. It is also shown that the improvements are achieved over a wide range of network conditions, including different network densities and different spread-spectrum processing gains. A new distributed routing protocol is also presented for use in heterogeneous wireless ad hoc networks. Two components of the routing protocol are jointly designed: a congestion-based link metric that identifies multiple routes with low levels of congestion, and a forwarding protocol that dynamically splits traffic among the multiple routes based on the relative capabilities of the routes. It is shown that the new routing protocol is able to exploit the decoupling of paths in the network resulting from the presence of nodes with directional antennas. Furthermore, it is shown that the protocol adapts effectively to the presence of advantaged nodes in the network. This approach to joint routing and forwarding is shown to result in a much better and more robust network performance than minimum-hop routing

    Planning for Small Cells in a Cellular Network

    Get PDF
    In this thesis, we analyze the effect of deploying small cells on the performance of a network comprising several macro cells. We identify potential locations for low-power base-stations based on the coverage patterns of the macro cells and propose three schemes for placing the small cells. We show that by judiciously installing just two small cells for every macro base-station at these locations and allocating separate resources to all the small cells on a global level, we can increase the performance of the network significantly (~ 45%). An added benefit of our schemes is that we can switch o the macro base-stations at night (when the number of active users is low) and significantly reduce their operation cost.4 month

    A Study of Cross Layer Design compare with Layer Design for MANET

    Get PDF
    Mobile Ad – hoc networks (MANET) are becoming increasingly popular in wireless technology, especially for providing services in disaster area. Mobile users are looking forward to new technologies that allow them to communicate anytime, anywhere, and using any communication device. Mobile ad – hoc networks suffer from several performance limitations, especially related to excessive burden deriving from the layering approach for the TCP / IP protocol stack design. In fact, TCP / IP protocol stack originally designed for wired networks and it is not suitable for wireless and mobile ad hoc networks. In this paper, it focuses on cross layer network design which is especially for wireless and mobile ad hoc networks. The main objective is to how cross layer differ from layered design, cross layer design approaches, challenges of cross layer design and implementation of cross layer design based MANET. And also this article brief the readers an overview of cross layer concept while discussing different cross layer proposals given by researchers
    • …
    corecore