5 research outputs found

    Descriptive Complexity for Counting Complexity Classes

    Full text link
    Descriptive Complexity has been very successful in characterizing complexity classes of decision problems in terms of the properties definable in some logics. However, descriptive complexity for counting complexity classes, such as FP and #P, has not been systematically studied, and it is not as developed as its decision counterpart. In this paper, we propose a framework based on Weighted Logics to address this issue. Specifically, by focusing on the natural numbers we obtain a logic called Quantitative Second Order Logics (QSO), and show how some of its fragments can be used to capture fundamental counting complexity classes such as FP, #P and FPSPACE, among others. We also use QSO to define a hierarchy inside #P, identifying counting complexity classes with good closure and approximation properties, and which admit natural complete problems. Finally, we add recursion to QSO, and show how this extension naturally captures lower counting complexity classes such as #L

    The Consequences of Eliminating NP Solutions

    No full text
    Given a function based on the computation of an NP machine, can one in general eliminate some solutions? That is, can one in general decrease the ambiguity? This simple question remains, even after extensive study by many researchers over many years, mostly unanswered. However, complexity-theoretic consequences and enabling conditions are known. In this tutorial-style article we look at some of those, focusing on the most natural framings: reducing the number of solutions of NP functions, refining the solutions of NP functions, and subtracting from or otherwise shrinking #P functions. We will see how small advice strings are important here, but we also will see how increasing advice size to achieve robustness is central to the proof of a key ambiguity-reduction result for NP functions
    corecore