4,365 research outputs found

    Minimum Sum Edge Colorings of Multicycles

    Get PDF
    In the minimum sum edge coloring problem, we aim to assign natural numbers to edges of a graph, so that adjacent edges receive different numbers, and the sum of the numbers assigned to the edges is minimum. The {\em chromatic edge strength} of a graph is the minimum number of colors required in a minimum sum edge coloring of this graph. We study the case of multicycles, defined as cycles with parallel edges, and give a closed-form expression for the chromatic edge strength of a multicycle, thereby extending a theorem due to Berge. It is shown that the minimum sum can be achieved with a number of colors equal to the chromatic index. We also propose simple algorithms for finding a minimum sum edge coloring of a multicycle. Finally, these results are generalized to a large family of minimum cost coloring problems

    On Colorings of Graph Powers

    Get PDF
    In this paper, some results concerning the colorings of graph powers are presented. The notion of helical graphs is introduced. We show that such graphs are hom-universal with respect to high odd-girth graphs whose (2t+1)(2t+1)st power is bounded by a Kneser graph. Also, we consider the problem of existence of homomorphism to odd cycles. We prove that such homomorphism to a (2k+1)(2k+1)-cycle exists if and only if the chromatic number of the (2k+1)(2k+1)st power of S2(G)S_2(G) is less than or equal to 3, where S2(G)S_2(G) is the 2-subdivision of GG. We also consider Ne\v{s}et\v{r}il's Pentagon problem. This problem is about the existence of high girth cubic graphs which are not homomorphic to the cycle of size five. Several problems which are closely related to Ne\v{s}et\v{r}il's problem are introduced and their relations are presented
    • …
    corecore