10 research outputs found

    Sensors for Vital Signs Monitoring

    Get PDF
    Sensor technology for monitoring vital signs is an important topic for various service applications, such as entertainment and personalization platforms and Internet of Things (IoT) systems, as well as traditional medical purposes, such as disease indication judgments and predictions. Vital signs for monitoring include respiration and heart rates, body temperature, blood pressure, oxygen saturation, electrocardiogram, blood glucose concentration, brain waves, etc. Gait and walking length can also be regarded as vital signs because they can indirectly indicate human activity and status. Sensing technologies include contact sensors such as electrocardiogram (ECG), electroencephalogram (EEG), photoplethysmogram (PPG), non-contact sensors such as ballistocardiography (BCG), and invasive/non-invasive sensors for diagnoses of variations in blood characteristics or body fluids. Radar, vision, and infrared sensors can also be useful technologies for detecting vital signs from the movement of humans or organs. Signal processing, extraction, and analysis techniques are important in industrial applications along with hardware implementation techniques. Battery management and wireless power transmission technologies, the design and optimization of low-power circuits, and systems for continuous monitoring and data collection/transmission should also be considered with sensor technologies. In addition, machine-learning-based diagnostic technology can be used for extracting meaningful information from continuous monitoring data

    Automated Classification of Medical Percussion Signals for the Diagnosis of Pulmonary Injuries

    Get PDF
    Used for centuries in the clinical practice, audible percussion is a method of eliciting sounds by areas of the human body either by finger tips or by a percussion hammer. Despite its advantages, pulmonary diagnostics by percussion is still highly subjective, depends on the physician\u27s skills, and requires quiet surroundings. Automation of this well-established technique could help amplify its existing merits while removing the above drawbacks. In this study, an attempt is made to automatically decompose clinical percussion signals into a sum of Exponentially Damped Sinusoids (EDS) using Matrix Pencil Method, which in this case form a more natural basis than Fourier harmonics and thus allow for a more robust representation of the signal in the parametric space. It is found that some EDS represent transient oscillation modes of the thorax/abdomen excited by the percussion event, while others are associated with the noise. It is demonstrated that relatively few EDS are usually enough to accurately reconstruct the original signal. It is shown that combining the frequency and damping parameters of these most significant EDS allows for efficient classification of percussion signals into the two main types historically known as resonant and tympanic . This classification ability can provide a basis for the automated objective diagnostics of various pulmonary pathologies including pneumothorax

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS 1994), volume 1

    Get PDF
    The AIAA/NASA Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS '94) was originally proposed because of the strong belief that America's problems of global economic competitiveness and job creation and preservation can partly be solved by the use of intelligent robotics, which are also required for human space exploration missions. Individual sessions addressed nuclear industry, agile manufacturing, security/building monitoring, on-orbit applications, vision and sensing technologies, situated control and low-level control, robotic systems architecture, environmental restoration and waste management, robotic remanufacturing, and healthcare applications

    Social work with airports passengers

    Get PDF
    Social work at the airport is in to offer to passengers social services. The main methodological position is that people are under stress, which characterized by a particular set of characteristics in appearance and behavior. In such circumstances passenger attracts in his actions some attention. Only person whom he trusts can help him with the documents or psychologically

    Error handling in multimodal voice-enabled interfaces of tour-guide robots using graphical models

    Get PDF
    Mobile service robots are going to play an increasing role in the society of humans. Voice-enabled interaction with service robots becomes very important, if such robots are to be deployed in real-world environments and accepted by the vast majority of potential human users. The research presented in this thesis addresses the problem of speech recognition integration in an interactive voice-enabled interface of a service robot, in particular a tour-guide robot. The task of a tour-guide robot is to engage visitors to mass exhibitions (users) in dialogue providing the services it is designed for (e.g. exhibit presentations) within a limited time. In managing tour-guide dialogues, extracting the user goal (intention) for requesting a particular service at each dialogue state is the key issue. In mass exhibition conditions speech recognition errors are inevitable because of noisy speech and uncooperative users of robots with no prior experience in robotics. They can jeopardize the user goal identification. Wrongly identified user goals can lead to communication failures. Therefore, to reduce the risk of such failures, methods for detecting and compensating for communication failures in human-robot dialogue are needed. During the short-term interaction with visitors, the interpretation of the user goal at each dialogue state can be improved by combining speech recognition in the speech modality with information from other available robot modalities. The methods presented in this thesis exploit probabilistic models for fusing information from speech and auxiliary modalities of the robot for user goal identification and communication failure detection. To compensate for the detected communication failures we investigate multimodal methods for recovery from communication failures. To model the process of modality fusion, taking into account the uncertainties in the information extracted from each input modality during human-robot interaction, we use the probabilistic framework of Bayesian networks. Bayesian networks are graphical models that represent a joint probability function over a set of random variables. They are used to model the dependencies among variables associated with the user goals, modality related events (e.g. the event of user presence that is inferred from the laser scanner modality of the robot), and observed modality features providing evidence in favor of these modality events. Bayesian networks are used to calculate posterior probabilities over the possible user goals at each dialogue state. These probabilities serve as a base in deciding if the user goal is valid, i.e. if it can be mapped into a tour-guide service (e.g. exhibit presentation) or is undefined – signaling a possible communication failure. The Bayesian network can be also used to elicit probabilities over the modality events revealing information about the possible cause for a communication failure. Introducing new user goal aspects (e.g. new modality events and related features) that provide auxiliary information for detecting communication failures makes the design process cumbersome, calling for a systematic approach in the Bayesian network modelling. Generally, introducing new variables for user goal identification in the Bayesian networks can lead to complex and computationally expensive models. In order to make the design process more systematic and modular, we adapt principles from the theory of grounding in human communication. When people communicate, they resolve understanding problems in a collaborative joint effort of providing evidence of common shared knowledge (grounding). We use Bayesian network topologies, tailored to limited computational resources, to model a state-based grounding model fusing information from three different input modalities (laser, video and speech) to infer possible grounding states. These grounding states are associated with modality events showing if the user is present in range for communication, if the user is attending to the interaction, whether the speech modality is reliable, and if the user goal is valid. The state-based grounding model is used to compute probabilities that intermediary grounding states have been reached. This serves as a base for detecting if the the user has reached the final grounding state, or wether a repair dialogue sequence is needed. In the case of a repair dialogue sequence, the tour-guide robot can exploit the multiple available modalities along with speech. For example, if the user has failed to reach the grounding state related to her/his presence in range for communication, the robot can use its move modality to search and attract the attention of the visitors. In the case when speech recognition is detected to be unreliable, the robot can offer the alternative use of the buttons modality in the repair sequence. Given the probability of each grounding state, and the dialogue sequence that can be executed in the next dialogue state, a tour-guide robot has different preferences on the possible dialogue continuation. If the possible dialogue sequences at each dialogue state are defined as actions, the introduced principle of maximum expected utility (MEU) provides an explicit way of action selection, based on the action utility, given the evidence about the user goal at each dialogue state. Decision networks, constructed as graphical models based on Bayesian networks are proposed to perform MEU-based decisions, incorporating the utility of the actions to be chosen at each dialogue state by the tour-guide robot. These action utilities are defined taking into account the tour-guide task requirements. The proposed graphical models for user goal identification and dialogue error handling in human-robot dialogue are evaluated in experiments with multimodal data. These data were collected during the operation of the tour-guide robot RoboX at the Autonomous System Lab of EPFL and at the Swiss National Exhibition in 2002 (Expo.02). The evaluation experiments use component and system level metrics for technical (objective) and user-based (subjective) evaluation. On the component level, the technical evaluation is done by calculating accuracies, as objective measures of the performance of the grounding model, and the resulting performance of the user goal identification in dialogue. The benefit of the proposed error handling framework is demonstrated comparing the accuracy of a baseline interactive system, employing only speech recognition for user goal identification, and a system equipped with multimodal grounding models for error handling

    Cognitive Foundations for Visual Analytics

    Get PDF
    In this report, we provide an overview of scientific/technical literature on information visualization and VA. Topics discussed include an update and overview of the extensive literature search conducted for this study, the nature and purpose of the field, major research thrusts, and scientific foundations. We review methodologies for evaluating and measuring the impact of VA technologies as well as taxonomies that have been proposed for various purposes to support the VA community. A cognitive science perspective underlies each of these discussions

    Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets

    Get PDF
    Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (, , ), where is an entity {i.e. element, concept, idea, theory, logical proposition, etc.}, is the opposite of , while is the neutral (or indeterminate) between them, i.e., neither nor .Based on neutrosophy, the neutrosophic triplets were founded, which have a similar form (x, neut(x), anti(x)), that satisfy several axioms, for each element x in a given set.This collective book presents original research papers by many neutrosophic researchers from around the world, that report on the state-of-the-art and recent advancements of neutrosophic triplets, neutrosophic duplets, neutrosophic multisets and their algebraic structures – that have been defined recently in 2016 but have gained interest from world researchers. Connections between classical algebraic structures and neutrosophic triplet / duplet / multiset structures are also studied. And numerous neutrosophic applications in various fields, such as: multi-criteria decision making, image segmentation, medical diagnosis, fault diagnosis, clustering data, neutrosophic probability, human resource management, strategic planning, forecasting model, multi-granulation, supplier selection problems, typhoon disaster evaluation, skin lesson detection, mining algorithm for big data analysis, etc
    corecore