93 research outputs found

    Experimental Identification of the Inverse Dynamic Model: Minimal Encoder Resolution Needed Application to an Industrial Robot Arm and a Haptic Interface

    Get PDF
    Ce chapitre de livre, accessible par internet, décrit une méthode pour connaître l'influence de l'erreur de mesure sur le résultat final. Elle revient à utiliser une méthode classique utilisée dans l'évaluation de la robustesse des simulations numériques vis à vis de la troncature liée au codage des réels par les ordinateurs. (la méthode CESTAC :Contrôle et Estimation Stochastique des Arrondis de Calculs)

    SYMORO+: A SYSTEM FOR THE SYMBOLIC MODELLING OF ROBOTS

    Get PDF
    International audienceThis paper presents the software package SYMORO+ for the automatic symbolic modelling of robots. This package permits to generate the direct geometric model, the inverse geometric model, the direct kinematic model, the inverse kinematic model, the dynamic model, and the inertial parameters identification models. The structure of the robots can be serial, tree structure or containing closed loops. The package runs on Sun stations and PC computers, it has been developed under MATHEMATICA and C language. In this paper we give an overview of the algorithms used in the different models, the computational cost of the dynamic models of the PUMA robot are given

    Refined Instrumental Variable method for non-linear dynamic identification of robots

    Get PDF
    The identification of the dynamic parameters of robot is based on the use of the inverse dynamic identification model which is linear with respect to the parameters. This model is sampled while the robot is tracking “exciting” trajectories, in order to get an over determined linear system. The linear least squares solution of this system calculates the estimated parameters. The efficiency of this method has been proved through the experimental identification of a lot of prototypes and industrial robots. However, this method needs joint torque and position measurements and the estimation of the joint velocities and accelerations through the bandpass filtering of the joint position at high sample rate. So, the observation matrix is noisy. Moreover identification process takes place when the robot is controlled by feedback. These violations of assumption imply that the LS estimator is not consistent. This paper focuses on the Refined Instrumental Variable (RIV) approach to over-come this problem of noisy observation matrix. This technique is applied to a 2 degrees of freedom (DOF) prototype devel-oped by the IRCCyN Robotic team

    Global Identification of Joint Drive Gains and Dynamic Parameters of Parallel Robots

    Get PDF
    International audienceOff-line robot dynamic identification methods are based on the use of the Inverse Dynamic Identification Model (IDIM), which calculates the joint forces/torques (estimated as the product of the known control signal-the input reference of the motor current loop-with the joint drive gains) that are linear in relation to the dynamic parameters, and on the use of linear least squares technique to calculate the parameters (IDIM-LS technique). Most of the papers dealing with the dynamic parameters identification of parallel robots are based on simple models, which take only the dynamics of the moving platform into account. However, for advanced applications such as output force control in which the robot interaction force with the environment are estimated from the values of the input reference, both identifications of the full robot model and joint drive gains are required to obtain the best results. In this paper a systematic way to derive the full dynamic identification model of parallel robots is proposed in combination with a method that allows the identification of both robot inertial parameters and drive gains. The method is based on the total least squares solution of an over-determined linear system obtained with the inverse dynamic model. This model is calculated with available input reference of the motor current loop and joint position sampled data while the robot is tracking some reference trajectories without load on the robot and some trajectories with a known payload fixed on the robot. The method is experimentally validated on a prototype of parallel robot, the Orthoglide

    A New Recursive Instrumental Variables Approach for Robot Identification

    Get PDF
    International audienceThe work presented in this paper focus on robot identification and presents a method based on the use of instrumental variables (IV). When dealing with en-bloc and offline identification of robots, the instrumental matrix constructed with the inverse dynamic model (IDM) and simulated data obtained from the simulation of the direct dynamic model (DDM). In this paper, a new recursive IV approach relevant for robot identification is presented. The instrumental matrix is constructed with the IDM and the references and their derivatives which are previously filtered by the transfer function of the position closed loop. This new way of building the instrumental matrix avoids the simulation of the DDM and offers some perspectives for online identification and real-time implementation. This recursive IV method termed IDIM-RIV (Inverse Dynamic Identification Model Recursive Instrumental Variables) is experimentally validated on the two degrees-of-freedom SCARA robot. Finally, some hints for real-time implementation are provided

    A new closed-loop output error method for parameter identification of robot dynamics

    Get PDF
    Off-line robot dynamic identification methods are mostly based on the use of the inverse dynamic model, which is linear with respect to the dynamic parameters. This model is sampled while the robot is tracking reference trajectories that excite the system dynamics. This allows using linear least-squares techniques to estimate the parameters. The efficiency of this method has been proved through the experimental identification of many prototypes and industrial robots. However, this method requires the joint force/torque and position measurements and the estimate of the joint velocity and acceleration, through the bandpass filtering of the joint position at high sampling rates. The proposed new method requires only the joint force/torque measurement. It is a closed-loop output error method where the usual joint position output is replaced by the joint force/torque. It is based on a closed-loop simulation of the robot using the direct dynamic model, the same structure of the control law, and the same reference trajectory for both the actual and the simulated robot. The optimal parameters minimize the 2-norm of the error between the actual force/torque and the simulated force/torque. This is a non-linear least-squares problem which is dramatically simplified using the inverse dynamic model to obtain an analytical expression of the simulated force/torque, linear in the parameters. A validation experiment on a 2 degree-of-freedom direct drive robot shows that the new method is efficient

    An improved instrumental variable method for industrial robot model identification

    Get PDF
    Abstract Industrial robots are electro-mechanical systems with double integrator behaviour, necessitating operation and model identification under closed-loop control conditions. The Inverse Dynamic Identification Model (IDIM) is a mechanical model based on Newton’s laws that has the advantage of being linear with respect to the parameters. Existing Instrumental Variable (IDIM-IV) estimation provides a robust solution to this estimation problem and the paper introduces an improved IDIM-PIV method that takes account of the additive noise characteristics by adding prefilters that provide lower variance estimates of the IDIM parameters. Inspired by the prefiltering approach used in optimal Refined Instrumental Variable (RIV) estimation, the IDIM-PIV method identifies the nonlinear physical model of the robot, as well as the noise model resulting from the feedback control system. It also has the advantage of providing a systematic prefiltering process, in contrast to that required for the previous IDIM-IV method. The issue of an unknown controller is also considered and resolved using existing parametric identification. The evaluation of the new estimation algorithms on a six degrees-of-freedom rigid robot shows that they improve statistical efficiency, with the controller either known or identified as an intrinsic part of the IDIM-PIV algorithm

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Joint Dynamics and Adaptive Feedforward Control of Lightweight Industrial Robots

    Get PDF
    The use of lightweight strain-wave transmissions in collaborative industrial robots leads to structural compliance and a complex nonlinear behavior of the robot joints. Furthermore, wear and temperature changes lead to variations in the joint dynamics behavior over time. The immediate negative consequences are related to the performance of motion and force control, safety, and lead-through programming.This thesis introduces and investigates new methods to further increase the performance of collaborative industrial robots subject to complex nonlinear and time-varying joint dynamics behavior. Within this context, the techniques of mathematical modeling, system identification, and adaptive estimation and control are applied. The methods are experimentally validated using the collaborative industrial robots by Universal Robots.Mathematically, the robot and joint dynamics are considered as two coupled subsystems. The robot dynamics are derived and linearly parametrized to facilitate identification of the inertial parameters. Calibrating these parameters leads to improvements in torque prediction accuracy of 16.5 %-28.5 % depending on the motion.The joint dynamics are thoroughly analyzed and characterized. Based on a series of experiments, a comprehensive model of the robot joint is established taking into account the complex nonlinear dynamics of the strain-wave transmission, that is the nonlinear compliance, hysteresis, kinematic error, and friction. The steady-state friction is considered to depend on angular velocity, load torque, and temperature. The dynamic friction characteristics are described by an Extended Generalized Maxwell-Slip (E-GMS) model which describes in a combined framework; hysteresis characteristics that depend on angular position and Coulomb friction that depend on load torque. E-GMS model-based feedforward control improves the torque prediction accuracy by a factor 2.1 and improve the tracking error by a factor 1.5.An E-GMS model-based adaptive feedforward controller is developed to address the issue of friction changing with wear and temperature. The adaptive control strategy leads to improvements in torque prediction of 84 % and tracking error of 20 %
    corecore