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Abstract

The identification of the dynamic parameters ofatbils based on the use of the inverse dynamiciitkiton model which
is linear with respect to the parameters. This rhizdsampled while the robot is tracking “excitingéjectories, in order to
get an over determined linear system. The lineastlequares solution of this system calculateetienated parameters.
The efficiency of this method has been proved thhotihe experimental identification of a lot of mtypes and industrial
robots. However, this method needs joint torque @osition measurements and the estimation of tim yelocities and
accelerations through the bandpass filtering efjdint position at high sample rate. So, the oleg@n matrix is noisy.
Moreover identification process takes place whenrtbot is controlled by feedback. These violatiohassumption imply
that the LS estimator is not consistent. This pdpeuses on the Refined Instrumental Variable (Régproach to over-
come this problem of noisy observation matrix. Thishnique is applied to a 2 degrees of freedomRDfototype devel-

oped by the IRCCyN Robotic team.

Keywords Identification algorithms, Least-squares methd&tshot dynamics

1. Introduction

The usual identification method based on the irevers
dynamic model (IDM) and LS technique has been ss:ce
fully applied to identify inertial and friction pameters of
a lot of prototypes, industrial robots and hasnbeg-
tended to cars, worksite engine, human being audic
interfaces (Atkeson, An, et Hollerbach 1986)(Swever
al. 1997)(Khosla et Kanade  1985)(Koztowski
1998)(Raucent et al. 1992)(Gautier 1986)(Restréiaae-
tier 1995)(Gautier 1997)(Venture et al. 2006) (A-&
maire et al. 2006)(Janot et al. 2007) among oth&rsiny
case, a derivative bandpass data filtering is reduio cal-
culate the joint velocities and accelerations. Mosr
identification process is carried out with a feeddbaon-
trolled robot. These conditions may lead to aatioh of
statistical independence between the residual hadb-
servation matrix which implies that the LS solutignnot
consistent. To overcome this problem of noisy ols@wn
matrix, several methods have been proposed in &is& p
Extended Kalman Filtering, total least-squarestrimsen-
tal Variable method

As far as total least squares are concerned, wd use
them in order to identify simultaneously dynamid ainive
gain parameters (Gautier, P.O. Vandanjon, et PrE334).
However, we did not succeed in applying this methmd
take into account the feedback which correlatesitise.

Instrumental Variable method was already applied in
robotics (Puthenpura et Sinha 1986). This method wa
used in order to identify a SISO system linear witbpect
to the state in an open loop configuration for eaxis of
an industrial robot. In this paper, the IV is apglifor a
dynamic model of a robot non linear with respecttte
state and in closed loop configuration.

Recently, the Instrumental Variable (IV) approacasw
renewed in the context of closed loop linear cartdirs
system.

This method is particularly interesting becauseitsf
simplicity. Indeed, no noise model identificatianrieeded
and the IV estimator is consistent even if the edsgscol-
ored (Young et Jakeman 1979), (Séderstrom et Stoica
1989). However, this technique was generally agpte
discrete system linear with respect to the statietwis not
the case in robotics. The choice of the instrunvaniable
depends on the context. Moreover, the method was de

We show in (Gautier et Poignet 2001) that Extendedsigned in open loop system. Progressively, algmstisuit-

Kalman Filtering is more complicated without impesv
ments of results.
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able to our context, i.e. continuous time and clok®p
system, have emerged. In particular, the so-caletvC
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algorithm (Simplified Refined Instrumental VariakGon-
tinuous-time) for open loop system, based on ailianx
model as instrument variable, is a good candidateur
problem (Young 2006). Very recently, this last aition
was modified in order to take into account closampl sys-
tem (Gilson et al. 2006)(Young, Garnier, et Gils209)
but still in the frame of system linear with respéx the
state. This technique is implemented in the MATLAB
CONTSID toolbox developed by the CRAN team
(Garnier, Gilson, et Cervellin 2006).

A derivation of this IV method was first succeskful
applied on a 1 DOF haptic device (P-O. Vandanjoalet
2007). This derivation is based on the use of b¢hin-
verse dynamic model (IDM) and the direct dynamiaeio
(DDM). The robustness to data filtering and to ithali-
zation as the calculation of the optimal solutioerevpre-
sented in (Janot, P-O. Vandanjon, et Gautier 2086jv-
ever, the consistence of the estimation (like ial
rules), the convergence of the purposed algorithchthe
robustness to control laws were not introduceds Plaiper
deals with these issues and the IV method is choig on
a 2 DOF prototype robot developed by the IRCCyN ro-
botic team. This direct drive prototype is very hslited
to our purpose because it emphasizes non linegliogu
contrary to industrial robots with high gear ratio.

The paper is organized as follows: section 2 regitve
usual identification technique of the dynamic pagtams of
the robot. Section 3 presents the Instrumental aMjéei
techniques. The experimental results are giveredtian 4.
Finally, section 5 is the conclusion

2. IDIM

The inverse dynamic model (IDM) of a rigid robotnto
posed ofn moving links calculates the motor torque vector
Tm» @S a function of the generalized coordinatesthait
derivatives. It can be obtained from the NewtoneEwdr
the Lagrangian equations, (W. Khalil et Dombre 2002
(Featherstone et Orin 2008). It is given by thdofeing
relation:

@

Tgmn=M () § + N(q, Q)
Where, g, ¢ and ¢ are respectively th¢nx1) vectors of
generalized joint positions, velocities and acelens,
M(q) is the (nxn) robot inertia matrix, andN(qg, ) is
the nxl) vector of centrifugal, Coriolis, gravitational and
friction forces/torques.
The choice of the modified Denavit and Hartenbeagnies
attached to each link allows to obtain a dynamiciehdin-
ear in relation to a set of standard dynamic patarsgy,,
(Gautier 1986), (Gautier et W. Khalil 1990):

&)

Tidm = IDM st(q'q!'q))(st

Where IDM ,(q,4,d), is the (nxN,) jacobian matrix of
T4m. With respect to thg Nox1) vector y,, of the stan-
dard parameters given by:

X=X X x| ©)

Preprint submitted to Automatica

With:
15 = X4 XY, XZ, Y, YZ 22 MX, MY, MZ, M 1y Py Fg
TOffj ’

where:
0 XX;, XY ,XZ ,YY ,YZ , Z., are the six components

of the inertia matrix,’ J;, oflinkj at the origin of frame
i,

0 MX;, MY, , MZ , are the components of the first mo-
ments, MS,, of link j,

0 M; isthe mass of link j,

o0 la;, is a total inertia moment for rotor and gearsof

tuator j.

o Fv;, Fc;, are the viscous and Coulomb friction pa-
rameters of joint j.

0 7,4 =Ofg; +Ofy, is an offset parameter whe@f, is

the dissymmetry of the Coulomb friction with resptr
the sign of the velocity an®f; is due to the current

amplifier offset which supplies the motor.
0 N, =14xn, is the number of standard parameters.

Fsj

The base parameters are the minimum number of dy-
namic parameters from which the dynamic model ocan b
calculated. They are obtained from the standardtiéhe
parameters by eliminating those which have no effec
the dynamic model, and by regrouping some others by
means of linear relations. They can be determingdgu
simple closed-form rules (Gautier et W. Khalil 1998
using a numerical method based on the QR deconmosit
(Gautier 1991).

The minimal inverse dynamic model can be written as

Tigm = IDM (q,q,f]))( (4)
Where:

IDM (0,4.,d) , is the (nxb) matrix of the minimal set of
basis functions of the rigid body dynamics, (5)
x . is the(bx1) vector of theb base parameters. (6)

Because of perturbations due to noise measurement a
modeling errors, the actual force/torque differs from
T4 DY @n errore, such that:

T=14,+e=IDM(q,q,9 y +e (7)
Equation (7) gives the Inverse Dynamic Identifioati
Model (IDIM).

We consider the off-line identification of the badg-
namic parameterg , given measured or estimated off-line

data for 7 and (g, g, ), collected while the robot is

tracking some planned trajectories.
Usually, the signals available from the robot coltér

are the joint position measurement and (hﬂl) control
signal vectorv, , calculated according to the control law.
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Then (g, g, ¢) in (7) are estimated Wit(@, a}q) respec-
tively, obtained by bandpass filtering the measoireq
(Gautier 1997). The derivatives are off-line cadtat
without phase shift, using a central differenceodtbm of
the lowpass filtered positioq . The filtered positiong is
off-line calculated with a non causal zero-phaggtdi fil-
ter by processing the input datg through a lowpass But-

terworth filter in both the forward and reverseediion,
using the filtfilt procedure from Matlab.

The control signalv, , is connected to the input current
reference of the current closed-loop of the ametfi
which supplies the motors. Assuming that the curren
closed-loop has a large bandwidth, greater thamis00s
transfer function is equal to its static gaig,, in the fre-
guency range (less than 10Hz) of the rigid robaotashgics.
Then, the actual force/torque, is calculated with the rela-
tion:

T = gTVT

where:

g, . is the(nxn) diagonal matrix of the drive gains,
with:

9, =K K K

where:

o K,,is the(nxn) gear ratios diagonal matrix of the joint

(8)

(9)

drive chains §, = K,q, with ¢, the velocity on the
motor side),

o K,,is the(nxn) static gains diagonal matrix of the cur-
rent amplifiers,

o K,,is the(nxn) diagonal matrix of the electromagnetic

motor torque constants.
o0 Those parameters have a priori values, given byuman

Yi, 7,(t)
Y (7)=| o [V YR =] (11)
Yfrr]n Ti (tﬂn )
o w, IDM (&(t,) . &(t) ¢ )
W (9a9=| | W= (12)
Wi, IDM * @(t, ). &(t, ). &(t, )

where: i i
IDM ' @(t,).G(t),&(t)) , is the jth row of the(nxb) re-
gressor matrixDM (d(tk),a(tk) a( t)), (5).
Y, and W/, represent then equations of joinj,
n, =T~ f,. is the number of sample measurements.
The notatioanm(IDM(?q,Aqfq))= Wm(“q?q?;% will be
used also to recall that/,,
of IDM (q,afq).
In order to eliminate high frequency force/torqumple in
7, and to window the identification frequency rangt®

the model dynamics, a parallel decimation procedmne
pass filters in parallel,, and each column ofw,, and

resamples them at a lower rate, keeping one saovae
n, . This parallel decimation can be carried out vitik

Matlab decimate function, where the lowpass fittat-off
frequency is equal t0.8x f_ /(2xn, ).

is calculated with a sampling

After the data acquisition procedure and the pelrai-
cimation of (10), we obtain the over determine@insys-
tem:

Y(2)=w(aagx+p
where:

(13)

facturers, which can be checked with special testsg, Y(r) ,is the(rx1) vector of measurements, built from

(Restrepo et Gautier 1995).

The inverse dynamic identification model (IDIM) (i8)
calculated at a frequency measuremént using samples

of (”q, quq) to calculatelDM (dfq?q) and samples of;,

to calculater with (8), at different timed, , k=1,...,n,,
while the robot is tracking a reference trajectory
(9., .q) . during the time lengtf,,._, of the trajectory.

obs

The equations of each joint are regrouped togethexl
the trajectory to get an over-determined lineatesyissuch
that:

Yin (7) =W (009 2+ 9 1 (10)
With:
Preprint submitted to Automatica 3

the actual force/torque,
0 W(Aq,Aq,'At), is the (rxb) observation matrix, built from

the estimated value(ﬂﬁ,a,%l) of (0, g, 79).
0 p,isthe(rx1) vector of errors.
o r=n*n,/n, ,isthe number of rows in (13).

In Y and W, the equations of each joint are grouped
together such that:

Y! w
Y=| .|
Yn

W (14)
Wn
where Y’ and W' represent then,, / n, equations of joint

j-
The ordinary LS (OLS) solutiony minimizes the
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squared 2-nornﬂp||2 "lof the vector of errors.

Using the base parameters and tracking “excitied”
erence trajectories (Gautier et W. Khalil 1992pwlito get
a full rank and well conditioned matrW . The LS solu-
tion x is given by:

5 =((WTW)_1 va) Y= WY

It is computed using the QR factorization \&f. Stan-

dard deviationsax ,

from statistics under the assumptions tatis a determi-
nistic matrix, thanks to the data filtering procezide-

(15)

scribed above, ang , is a zero-mean additive independent

Gaussian noise, with a covariance mattix, such that:
_ Ty — 2

C, =Ep") =571, (16)

where E is the expectation operator ard, the (rxr)

identity matrix.

An unbiased estimation of the standard deviatignis:

52 =|y -w|* /(r-b) (17)
The covariance matrix of the estimation error igegi

by:

Cy =Ell -0 -0"1=c;(W'W)™ (18)
o =C, (i,i) is the " diagonal coefficient ofC,, . The

relative standard deviatio¥o; is given by:

%o; =1000; /|%]. for [3,|#0 (19)

The OLS can be improved by taking into accountediff
ent standard deviations on joinj equations errors

(Gautier 1997). Each equation of joint in (13), (14), is
weighted with the inverse of the standard deviatibthe

error calculated from OLS solution of the equatiaf
joint j , given by:

Yi(z,)=w! (IDMj (E],q,'C'])))(+pj (20)
This weighting operation normalizes the errors 18)(
and gives the weighted LS (WLS) estimation of tle p

rameters.

This identification method is illustrated in Fig. 1
The calculation of the velocities and acceleratiares re-
quired using well tuned bandpass filtering of thiaf posi-
tion (Gautier 1997).
One of the numerous validations of the identifizgatis to
simulate, a posteriori, the direct dynamic modeDiD
given by (10) and to compare the simulated trajéego
with real trajectories when the torques are theesd@rhese
comparisons have to be done on trajectories whierew
not used for the identification process.

G=M7(a)r - N(qa,q) (21)

Preprint submitted to Automatica 4

are estimated using classical results

(4.9 .4) l
H Control law

Yin(7)

lowpass filtering

sampling {m )
+ bandpass
filtering

r(t) a(t)
Robot

+ downsampling Inverse Dynamic
Identification Model|
o IDIM .
w,, (oM (a54) | o, (i | 668
PRI Tobs R . 2 | v
Y(1), W(IDM(q,q,c)) X:mmHY -W/\/H X
X s

Linear LS

Fig. 1:IDIM LS identification scheme.

3. Instrumental variable technique
3.1. Theoretical approach

From a theoretical point of view, the statisticakamp-
tions for efficient LS estimation are violated imaptical
applications. In the equation (13), the observatigatrix
W is built from the measured joint positions q dran |,
which are numerically computed from ,q ,q . Therefore
the observation matrix is noisy. Moreover identéfion is
carried out in closed-loop control. These violasiaf as-
sumption imply that the LS estimatoy,, may be non con-
sistent. Indeed, from (13) , it comes:

WTY=W Wy+ Wp,, =W'W y (22)
With p,, is the vector of errors (errors in variable) when
W is corrupted by nois&/ = W, - AW

Poy =MW )Y +p

Thanks to the Slutsky’s theorem, it is obtained:

-1
plim%=x+plim[%WmTij plim[%n wnp] (24)

(23)

m- o m- oo m- oo

With:
plim is the convergence in probability,
firis the number of repetition ® and p,,,

W, (resp. p..., ) is the concatenation &V (resp.p,, ).

Under the classical assumptions:

plim(inTWm) = E(WT V\) is positive definite  (25)
m-w M

(26)

m- o

plim(%wmT pevm) =E(W'p,) exists

As p,, depends on the observation maWik according to

(23), E(W'p) # 0. Therefore, the estimator is not consis-
tent.
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Instrumental Variable method deals with this prablef
noisy observation matrix (called error in variablghe sta-
tistical frame) and can be statistically optimah{iison et

Mackinnon 1993) (Young et Jakeman 1979). The Instru Vk(j\ka)zws(qs GG ;ka)

mental Variable Method proposes a consistent egtiniey
building the instrument matrix V such as (22) beesm

VTY = VIW +VTp, =V W, (27)

The instrumental variable solutior,, , is the solution of
(27):

R -1

wo=(VTw) VY (28)

In the followingV is calculated as a function ¢f, . That
defines an iterative procedure such as:

~ -1

Xvks = (VkTW) VY
where : V, =V (7w )
This needs for(VkTW) to be a regular matrix. Assuming:

(29)

pIim(inTmej is non singular and, (30)
m-— oo m ’

; 1.1 T
pllm (_Vk mpevmj = E(Vk pev) =0 (31)
m-— oo m ’

With V, . is the concatenation &f,
for any k, Y., converges toy with m. Indeed, with the

Slutsky’s theorem, we obtain:
-1
plim 5y, = x+plim(ivk;vvm] plim[i\ﬁmpevmj (32)
m " m "

m- oo m- o m- oo

And with (30) and (31), it comes:
p“m;(vk =X

Then the IV estimator is consistent.

(33)

3.2. Calculation of the instrumental matrix

The main problem is to find an instrument matrixA/.
usual solution is to build an observation matronfr simu-
lated data instead of measured data. These sirduliaia
(called also instruments) are the outputs of anilianx

model (Young et Jakeman 1979) which is an approxima

tion of the noise-free model of the process todeaiified.

We chose the Direct Dynamic Model of the robot (DDM

given by (21) to be this auxiliary model.

pling of IDIM, IDg(qg,§s,dg . and we choose the in-
strument matrix as:

(22)
Y(7) is calculated from the sampling and filtering loé t
measurements of , andW (q,q,q is calculated through

IDIM using the sampling and filtering af .
* Xuws IS given by (29) which is the LS solution of

(27),
e The algorithm stops when the relative error dases
under a tolerance, ideally chosen to be a smalleum

~led

‘gk

&
k+1 <aq

with the estimation error:
& =Y = WXy,

Actual closed loop robot

| R
l q | qVqu DN
CEQ&OI T robot B |— ’Wﬁ
T Y

‘IDM samp\ln;//flllerlngw (G’a’a) ‘
Tnhs
- TODS

IDMS - Ws(qsqsqg:vk

sampling

1

\ L [Control | ) DOMiw ) _ IDIM

: Law s M(qs)QS_(Ts_N(QquS)) 1 Tsles(qsquuds)f(w
1 T Os:0s.0s :

1

Simulated closed loop robot 1
Fig. 2 : IV identification procedure
3.3. Calculation of the solution

Suitable solutions consist in using orthogonal @ctpn
such as QR decomposition. In this case, we have:

W=QyRy,
V=QR,.

The IV method adapted for dynamic identification of \yjitp:

robots can be resumed by the following algorithhasH
trated

Fig. 2:

e The algorithm is initialized with any the values-
cording to the subsection 3.4.

* At each step of the iterative algorithmyg,¢g,¢.are
calculated by simulation of the closed loop rolvatking
exciting trajectories using the DDM with the paraens
identified at the previous stepY; is obtained as a sam-

Preprint submitted to Automatica 5

Q, and Q,, are orthogonal matrices which are projectors

on the vectorial subspace spanned by the columng of
andW.
R, and R, are upper triangular matrices.

Considering only thé base parameters to be identified, we
check we have at each iteration:

rankRy) = rankQw) = rankR,) = rank@Qy) =b.

This relation guarantees that the mawi¥V is invertible.
Then, equation (27) becomes:

22 September 2010



QY=Q Q Rx+Qw o= QRuR Wy (34)

7y is the LS solution of the last equations.

Compared with LS regressions, the IV method needs

two QR decompositions.

3.4. Initialization of the algorithm

Another problem is to choose the initial valugs.

We can use CAD values, or identified values with th
IDIM method, but we show that there is no needlatfaa
priori values.

We propose an algorithm not sensitive to the ihittandi-
tions, which assumes that the condition

(qddm(j\(k)!qudm(j\{ k)!q ddn(j\( l))g (q:qu)

is satisfied at any iteratiok , and especially fork =0.
This is possible by taking the same control lavucttire
for the actual robot and for the simulated one whh

same performances given by the bandwidth, the lgyabi
margin or the closed-loop poles. Because the stedile-

bot parametersy®, change at each iteratiok, the gains
of the simulated control law must be updated adogrtb

Par

(35)

For example, let us consider a PD control law fache
joint j. The inverse dynamic model IDM (1) for the joint

j, can be written as a decoupled double integragor p
turbed by a coupling force/torque, such that:

Tj = Tigm, :ZM ;i@d +N (g0
. (36)
:Mj,j (q) q] +Z Mj,i (q) .q+ N (q .0): l\,/l,j (C)Jq_ jp
iz]
where p; is considered as a perturbation given by:
P =-2M;@4- N(a9
i

M;;(q) , which depends om , is approximated by a

(37)

constant inertia moment, , given by:

3 =22+, +Ta>( M;(9- 2¢- a'J)

J; , is the maximum value, with respectdg of the in-

(38)

ertia moment around joing; axis. This gives the smallest
damping value and the smallest stability marginttod
closed-loop second order transfer function (42)ileviy
varies.

It can be calculated from a priori CAD values ofritial
parameters and must be taken at leastst |, .

The joint j dynamic model is approximated by a dou- a

ble integrator, wherep; , is a perturbation, as following:

Preprint submitted to Automatica 6

e :m(fj Y )EJ_lj(Ti R ) (39)

Let us consider the joinj PD control of the actual robot
which is illustrated Fig. 3:

b
O’A V,‘ T 116 1 g 1 g
R B

The control input calculated by the robot contnolite
given by:

v, =%, % (4 -q)-"k g

v, ., is the current reference of the current ampéfiehich

Fig. 3: Joint PD control of the actual robot.

(40)

supplies the motor.
The joint j , force/torque is given by:
;=9\, (41)
where:
ag,l , Is the actual drive gain, calculated with theuatt
parameters in (9).
*J;, is the actual value od, .

In order to tune the tracking performances of the

” 9
reference positiorg, , the transfer function— is calcu-

a;
lated with p;=0:
H; = -l = 2. & :
qu p, =0 . aj . + al s+1
o, "%k .
_| 9 1
" q s 2%,
" /=0 +—ls+1
aa)r?j awnj
where:

®w; , is the actual natural frequency which characteriz
the closed-loop bandwidth,

°¢;, is the actual damping coefficient which charecte
izes the closed-loop stability margin, with:

/ °g, 1%, °9
ay = ak a i , az — = i i 43
a%l R K{ an ZJ 2 akpI an ( )
Then it comes:
— a\a‘)nj akv =92 aZ a% an (44)
p; 2 azj ! i J J ag;—

J
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The closed-loop performances are chosen with thizetk
2 poles of a second order transfer function chareetd

by, ‘@, °¢; . where:
e, is the desired natural frequency,

FIJ'

de , iIs the desired damping coefficient.

Because the actual values are unknown, the gams ar

calculated from (44), where the unknown actual esju
aa)njy aij a‘] ’ agi ’

desired values w

FIJ'

de , and by their a priori values,

*J,,%g,
d ap
akp - cd‘)nj , akv =92 de d%j aij (45)
i 2 ZJ i grJ
where:

*J; and *g, are a priori values of the actual unknown
]

values®J; and ®g, , respectively.
J

Now, let us consider the joinf PD control of the simu-
lated robot which is illustrated Fig. 4.

Poam
¢ o Tddrq o G Qe
i 5 l im 1 im
w] :

Fig. 4: Joint PD control of the simulated robot.

The variables(v,ddrq + Taam» Qo+ D agm @ dqn) , in Fig.

3, are computed by numerical integration &M ( 7*),
according to (21).

The control law of the simulated robot has the same

structure as the actual one, Fig. 3, where we take:
%g, =%g, , the a priori value ofg ,
a1 — 7k
J; =37,
timation J, , at iteration k.

the value ofJ;, (38), calculated with the es-

*k, , %k, , are the gains of the simulated control law.

They are calculated in order to keep the same pesfo
ances for the simulated closed-loop and for theuadct
closed-loop, that is to say to keep the same desmbies,

‘e and 7, , for the closed-loop poles. Then, it comes:
d Tk

s W al J;

K = d({ =%, . k= 2%, %, apé (46)

]

The proportional gain’k_ , does not depend at all on

) p )
the parameters values, but the derivative gaimeénsimu-

Preprint submitted to Automatica 7

are replaced respectively by their differs from the actual on€'w,

lator , °k, , must be updated Witﬁ}‘ , at each iteratiork .

It is important to note that only the gain in thenglated
closed-loop,slg], is modified during the iterative proce-

dure. The actual gain of the robot control Iaf\k(,J , is not
modified.
. . . d
The simulated closed-loop tuning given Byunj, ¢
i » °¢; » with the following

ratio, calculated by taking (45) into (43):
@y ¢ |™ 70,

(47)

qu”- - de - an apgTi
Usually this ratio is between 0.8 and 1.2. The @ctal-
ues, “w,, °¢;, can be estimated from step response or

frequency analysis of the actual closed-loop. Bi# is not
necessary, because there is little effect on téstification

accuracy, assumind;q,j, is regularly chosen more than 10

times greater than the frequency range of the rdpoam-
ics. This allows to keep
(Gaem(X 1) G X -8 aak x 2) 7 (0,6,6), at each iteration
k.

We propose to take a regular inertia matrix
M (Qygme¥”) » in Order to have a good initialization for the

numerical integration of the DDM given by (21).i3lis

named the "regular initialization".
It can be obtained with:

X° =0, except for,la) =1,j =1,n (48)
The inertia of the rotor and gear of actuafoiis gener-

ally taken into account in the IDM model (1) as:

1, =la; §; (49)

Then, the initial inertia matrix becomes the idgntha-
trix, which is the best regular matrix:

M (g X ) =1, (50)
Another simple regular initialization is to take:
X° =0, except for,Zz} =1,j=1,n (51)

The initial inertia matrix,M (Qyy,X°) » iS No more the

identity matrix, but remains regular.
Another point is to choose the state initial coioditof the

state vector,(0y,(0),8un(0)) . in order to integrate the
DDM. The actual valuegq(0),¢(0)), are supposed to be
not perfectly known because of noises. Then, weosho
(U4am(0) G4ar(0)) = (00,(0),5,(0)), which is close to
(q(O),q(O)). Because the closed-loop transient response

due to different initial conditions differs betwethe actual
and the simulated signals during a transient peaiodp-

proximately, 5/ “a, , the corresponding joint force/torque
samples are eliminated from the identification data
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3.5. Discussion on the assumptions

The IV method is based on two assumptions. Theunst
ments matrix has to be not correlated with the endgee
(31)) and the matrices product between the instrtmea-
trix and the noisy observation matrix has to bé fahk
(see (30)). These two assumptions imply that thedti-
mator is consistent.

As seen in the previous section, the instrumentirmat
built from a deterministic simulation. The only Kirbe-
tween the instrument and the noise could be providei-
rectly from the parameters identified at the prasistep.
This correlation is much lower than the noise om $lys-
tem. Assuming thap,, is a zero-mean additive independ-
ent noise, we have:

E(V peu) 7 BV )E(pe,) =0
Which guarantees the assumption (31).

In this paper, it is assumed that the trajectognisugh ex-
citing in order to identify the base parameterssTheans

that : W, ( d,9,9 which is the noise free observation ma-

trix built from the real trajectory, is full rankccording to
the last section:

(qddm(%k)’qddm(jf ol qak X Q)ﬂ (q,q,'Q) soV, W, .
As W /7 W, =AW, it comesV] W = W[ W, - W.A W

It is not very probable that the noise on the olestérn
matrix AW gives the assumed full rank matN¥ W singu-

lar. Indeed, we collect a very high number of sangd (at
least 500 x b). So, the noises tend to be zero-radditive
independent noises. It means the columng\Wfare inde-
pendent.AW is also a full rank matrix. In addition, we
check we obtain ranR,) = rankRk,) = rankQuw) =

rank@y) = b at each step of the algorithm. Therefore, the

assumption (30) is always true.
4, Experimental Validation
4.1. Case study: modeling of the SCARA robot

The identification method is carried out on a 2reeg
of freedom planar direct drive prototype robot with
gravity effect, shown on Fig. 5. This direct drimetotype
is very well suited to our purpose because it ersizka
non linear coupling when classical industrial rabetith
gear ratio above 50, divides this non-linear phesmon by
at least 2500. Moreover, the dynamic model of tbisot
includes eight parameters which allows us to presen-
eral conditions for the identification. At lastjgtrobot and
its real parameters, called the nominal parameaeesyell
known. Thus, we can check the physical meaninghef t
identified parameters.

The description of the geometry of the robot uses t
modified Denavit and Hartenberg (DHM) notations (W.
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Khalil et Kleinfinger 1986) which are illustrateah ¢-ig. 6.
The robot is direct driven by 2 DC permanent magnet
tors supplied by PWM amplifiers.

0

N
rd
X

09, ot

Fig. 6: DHM frames of the scara robot.

The dynamic model depends on 8 minimal dynamic pa-
rameters, considering 4 friction parameters:

x=[2Zx Fv, Fo ZZ, LMX, LMY, Fy Fd'
(52)
7Z,,=7Z+ la+ M, 2
22, = 2Z,+ la,
L =0.5m, is the length of the first link.
In the case of the SCARA robot, the parameteidX, ,

and LMY,, are identified instead ofMX, , and MY, , re-
spectively.

The 8 columnsDM,,,k=1,8 of IDM (qg,q,4), in
IDIM (7), are the following:
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ﬂ

IDM ., =IDM ., ={(ﬂ IDM ., =IDM ¢, ={OO&}
sign(g )} {qﬁ%}
IDM., =IDM ., = , IDM ., =IDM Sl
53 Fc, { 0 4 20 b, + G,
_ _| (2, +G ) cosg -g (2¢g- "9 sin
|DM;,5 =IDM LMX, _|: q.l Cosq+ (i sirq2 ’
—(24,+¢,) sing—-q (29+ ‘¢ cos
IDM ¢ =DM ,, :{ % °eqz Cosqq_flq Siig g
1
IDM., =IDM ., = 0 IDM ., =IDM ., = 0
7T Fv, — q2 ’ 8 Fe, — S|gn(q )

53
The closed-loop control is a PD control law (4(05)c?-
cording to Fig. 3, with:
J, =22+ 72Z,+2 LMX,, and J, = ZZ,,.
The actual gains are calculated with (45), takindea
sired damping,“(j =1, for joint 1 and joint 2.

The desired natural frequenc%q;)nj , is chosen according

to the driving capacity without saturation of tleénf drive.
For this robot we obtain a full bandwidth with,

w, =1rd/s, and ‘e =10rd 5.

tion of Y,, and W,

fm?

in (10), is carried out with a sample
rate divided by a factorn, =20, and a lowpass filter cut-
off frequency equal t00.8* /(2*n,)=4Hz .The results of
the IDIM identification are given in Table 1.

Starting with good initial valuesy’= ", IV algo-
rithms converges in only 2 steps to obtain themoattisolu-

tion as shown in the table 2. The IV solution isyvelose
to the IDIM solution. Hence, the IV method does it

sprove the IDIM solution calculated with good bansipa

filtered data.
A validation is plotted on Fig 7, at the frequenugas-
urement, f_ =200Hz. It shows that the actual joint torques,

Y,

fm

(7)., and the torques estimated with the identified mod

el, Y, = Wi (G +Clagm ook ) X2 are very close.

Both methods give a small relative norm error,
IY =WX] /| Y| <3%, which shows a good accuracy for the
model and for the identified values.

It can be seen that the parametdfs,, and Fv,, have
no significant estimations because of their largkative
standard deviation (>30%). They have no significzon-

tribution in the joint torques and they can be edled to
keep a set of essential parameters of a simpldigtmic

The sample rates of the control and of the measemem Model, without loss of accuracy (W. Khalil, Gautiet

are equal to,f,, =200Hz.

Torque data are obtained from (41), and from threecti
reference data, .

The simulation of the robot is carried out with game
reference trajectory and with the same control &imc-
ture as the actual robot.

The gains in the simulator are calculated with (46l
with the same value¥/,=1,"w =1rd/s, and
‘g, =10d .

The new identification process is performed inafiént
cases in order to compare the previous IDIM tealmitp
the new IV technique and to investigate the robesgrof
IV with respect to the initialization, to the ddiléering and
to the closed-loop tuning. All the results are giva Sl
units, on the joint side.

4.2. Comparison of IDIM and IV with good initial
values, Y°= x"
At first, the algorithm is initialized with '™ | the vector

of parameters identified with the IDIM LS estimator
The IDIM LS off-line estimation is carried out with
filtered position g, calculated with a 20Hz cut-off fre-

guency forward and reverse Butterworth filter, amith
the velocmesq and the acceleratlonq,, calculated with
a central difference algorithm daf. The parallel decima-
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Lemoine 2007).

However, we prefer to keep all the parametershan
following, for a better comparison of IDIM and I'denti-
fication methods.

—

— — — - Measurement: Yfm
Estimation: Ye
~ Error = Yfm - Ye

Motor torque (Nm)

|| - - - Measurement: Yfm

Estimation: Ye
— ~ Error=Yfm-Ye

0.5

wa Vi

Motor torque (Nm)
o

Sample number



Fig. 7.1V validati

on

Table 1: IDIM identification

Parametef Y™ [ 2o, | %o,

7Z.. 3.44 | 0.034| 0.50

Fv, 0.03 0.031| 52.0

Fc, 0.82 0.1 6.0

ZZ, 0.062 | 0.0006 0.51

LMX, 0.121 | 0.0014 0.56

LMY, 0.007 | 0.0007 5.0

Fv, 0.013 | 0.006 | 23.0

Fc, 0.137 | 0.006 | 2.30

!Y -wy™™ || /[ Y[=0.024

Table 2: IV identification

Parametel X 20, %o,
7Z.. 3.44 | 3.45| 0.036] 0.52
Fv, 0.03 | 0.04 | 0.032] 40.0
Fc, 0.82 | 0.82 | 0.05 3.0
ZZ, 0.062| 0.061 0.0006 0.49
LMX, 0.121] 0.124 0.0018 0.52
LMY, 0.007| 0.007 0.000%5 3.5
Fv, 0.013]| 0.013 0.0084 30.0
Fc, 0.137| 0.137 0.008] 3.0
!Y—Wj("’! /[ Y|=0.021 |

4.3. IV, validation of the regular initialization,

M (Qyq

m'j(O)ZIZ'

The robustness of [V with respect to a wrong afita-
tion, such as the regular initialization (50),nsestigated.
The initial values of the dynamic parameters aremi

by (48), with:
X’=[1 001

000 ¢

The identified values given in Table 3, are vegysel to
those given in Table 1. This result validates #gutar ini-
tialization procedure.
Moreover the algorithm converges in only 3 stepd &n
not time consuming.

Table 3: IV identification with regular initializen

Parametef ¥° | X° 20, | %o
27 1.0] 3.45| 0.036 0.52
Fv, 0.0| 0.04| 0.032] 40.(¢
Fc, 0.0| 0.82 0.05 3.0
ZZ, 1.0 | 0.061] 0.0006 0.49

Preprint submitted to Automatica

10

LMX, 0.0 | 0.124] 0.0013 0.57
LMY, 0.0 | 0.007] 0.000% 3.5
Fv, 0.0 | 0.013] 0.0084 30.4
Fc, 0.0 ] 0.137] 0.008 3.0

The relative norm errors on joint position, velgcitnd
acceleration are plotted on Fig.8 ,with the followileg-
end:

« norm error relative to the actual filtered joirdsition,
“qddm —qu” /||?:1].||, velocity Hq‘idm —qu /“ qu, and accel-
eration, ”qddm —a]” /”;:1]“ where (d?qu) are calculated

as given in section 4.2.
* norm error relative to the reference joint pasiti

“qddm -0, / q velocity, “qddrr, -q / Q| and accel-
eration,”qddm -4, ” /“ ! “ .
The assumption (35),

(Aagm( X 1) Yaam X -8 aek X D) (d&h) at each iteration

k, is confirmed Fig. 8, with a constant relativermoerror
close to 0.5% for the position, 5%, for the velpcind
10%, for the acceleration.

These results validate the updating procedure (@6),
the simulated PD control law gains.

It can be seen also on Fig 8 that the simulatgddiary,

(Gagm(Z 1)+ Yaan( X )-8 aal X )+ is 3 to 5 times closer to
the actual one,(d,f'q,i’q), than to the reference one,

(9.4 .q), with a relative norm error close to 1.5% for

the position, 15%, for the velocity and 30%, foe tccel-
eration. Moreover, this error depends on the cldsed
bandwidth. It means that computing the observatiarrix

in (13) with the reference trajectorfg, .G ,q ), leads to a
bad identification of the dynamic parameters.
Then, the assumption

a(qddm()}k)iq(jdm(;( W, a ddn()A( l))ﬂ (fm qu) , is valid.
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We have seen that

The fast convergence of each parameter is showWalife (Ugam (X1 Gaen 7 106 carl X ) 7 (qah) at each iteration
4 , and is plotted on Fig 10.
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k, with a constant small error. On the contrary, thlative
torque norm error, given in Table 3, and plottedrim 12,
dramatically decreases in only 3 steps. This shbeSast
algorithm convergence.

4.4. Comparison of IDIM and IV, without data
filtering.

All the actual and simulated data are sampledf at
200Hz.
The IDIM LS estimation is carried out with the messl
joint position g, and with (aa) calculated by a central

difference algorithm ofqg, without lowpass Butterworth
filtering. There is no parallel decimation. IDIMeRults
are given in Table 5

IV starts with the regular initialization. IV Ressilare giv-
en in Table 6.

Table 5: IDIM identification results without datidtéring

Parametef Y™™ [ 20, | %o:
77.. 15 | 005 16
Fv, 0.095 | 0.15| 80.0
Fc, 055 | 0.26 | 23.3
7z, 0.14 | 0.018 6.7
LMX, 0.63 0.035 2.7
LMY, |01 | 0023 118
Fv, 0.001 | 0.143 700.G
Fc, 0.19 0.244] 68.40
Iy -wx™ /[¥[=0.8

Table 6: IV identification results without datatéiting

20 32

Paramete ¥~ | x 20, %o
77 1.0| 345 | 0.007| 0.1
Fv, 0.0 0.05| 0.023| 21.0
Fc, 0.0 0.81 | 0.004| 0.24
ZZ, 1.0 | 0.061] 0.0004 0.3
LMX, 0.0 | 0.124] 0.001% 0.3
LMY, 0.0 | 0.008 0.0009 5.6
Fv, 0.0 | 0.023] 0.0022 48.0
Fc, 0.0 0.13 | 0.0038 15
[V =Wx™" ] /[¥[=0.08

The identified values with IDIM are not good whilee
identified values with IV are still good.
IDIM fails because of the too large noise in theatva-

tion matrix, me(q,Aq,?' , coming from the derivation of

g, without lowpass filtering. Then the LS estimatitn

biased.

IV succeeds the observation

W5fm(0ddm,qddm ,'qddmi(k), is calculated without noise with

because

the simulated valueftyy,  Gggm: Q) -
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This validation shows that IV cancels the bias@M es-
timation, coming from a noisy estimation <(ﬁ,q,‘q),

which gives a too noisy observation matiix_, ( q,Aq,'A' .

4.5. IV robustness with respect to error in the si-
mulated closed-loop tuningg,

This section investigates the effect of an errawben
the actual value®w, , and the simulated valu&, , of the

natural frequency which represents the closed-loapd-
width.

The IV identification is performed taking half thalues
of the full ones given in section 3.4,

‘w, = “wy 12=1/2 (rdis) and “w, = ‘w, / 2=10/2 (rd/s),

and the same procedure used to obtain results sirown
Table 2, that is to say a frequency measurement,
f.,=200Hz, and a parallel decimation with a factor,
n, =20, and a lowpass filter cut-off frequency equal t
4Hz.

The parameters, given in Table 7, converge in éndyeps

to values which are very close to those obtainethinle 2,
with a full closed-loop bandwidth.

Table 7: IV with half full bandwidth

=0 16

Parameten x~ | x 20; %o,
77 . 1.0 344 | 0.014| 0.2
Fv, 0.0| 0.02 | 0.012] 15.0
Fc, 00| 0.86 | 0.016] 1.0
ZZ, 1.0 | 0.060[ 0.0001 0.1
LMX, 0.0 | 0.124] 0.0002 0.1
LMY, 0.0 | 0.007] 0.0003 2.0
Fv, 0.0 0.01 ] 0.003] 10.0
Fc, 0.0 | 0.13 | 0.0008 0.3

The relative norm errors on joint position, velgcind
acceleration are plotted on Fig 11, with the saagehd as
previously.

It can be seen that,

(Gagm( 1) Yaam X -8 aek X D) (dﬁh) at each iteration

k, with a constant norm error larger but closeh® value
obtained with the full bandwidth, Fig.11, close @%% for
the position, 5%, for the velocity and 10%, for thecel-

matrix, eration.
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The relative torque norm error, given in Table Ada
plotted on Fig 12, decreases in 6 steps, only twicee
than with the full bandwidth (see Table 3). Thiswh that
IV is not very sensitive to error in the simulateldsed-
loop bandwidth, provided the control law structuee
known.

However, IV fails beyond 1/3 of the full bandwidtiijth

d d, . f
w < ‘w, /3.
5. Discussion and conclusion

One of the improvements of our algorithm is to avibie
acceleration calculation. It is one of the majofficlilt
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points of the LS identification technique. In thengral
case, this problem is solved by a suitable datarifilg.
But, the choice of the cut-off frequency is crucidilthe
cut-off frequency is too low the system is ill-caimhed
and the main parameters are badly identified. @nother
hand, if the cut-off frequency is too large, thesetvation
matrix is strongly noisy and the LS estimator igdgid. It is
the reason why some techniques have been devetoped
overcome this problem: by integrating the dynamadsi
(Slotine et Weiping Li 1987)(Middleton et Goodwif88)
or by using the power (Gautier 1997). The drawhacke
method integrating the dynamic model is the compghex
pression of the model. The drawback of the powedehis
the loss of information due to the mix of torqubsleed,
the dynamic effect of the wrist is negligible congxh to
the effect of the first three axes.

The IV method is not affected by these problems be
cause we keep all dynamic equations. In additios |V is
less sensitive to the choice of cut-off frequenoynpared
with the LS technique. From our point of view, algo-
rithm acts implicitly as an adaptative filter. Itk the
high frequency noises are eliminated thanks tdntegra-
tion of the MDD while the frequency bandwidth ofrdn-
terest is determined by the bandwidth of the cldseg.
Finally, experimental results have proven thatgtefilter-
ing is not necessary.

Another major improvement of our approach is to en-
sure the bandwidth of the closed loop in the sitoula
scheme. By this way, we have alwayg,(;,¢close to

d,q ,q. The correlation between the instrument matrix

and the observation matrix is still high becausés \still
close toW,x. That means we ensure the crucial assumptions

E(VT'p )=0 and V'W invertible, and this explains why

our algorithm works very well.

Our approach can be seen as an extension of the so
called SRIVC algorithm (Simplified Refined Instrumal
Variable Continuous-time) adapted recently for etbs
loop system (Gilson et al. 2006) (Young, Garnig¢rGé-
son 2009). However, these algorithms are quite demp
cated and need prefiltering. They do not adapigtia of
the simulated feedback as it is proposed in thigepa
Therefore, our method is not only an applicationthaf IV
to robotics but enrich the IV methodology by promgl
insights from robotics.

With our algorithm, the inverse and direct dynamic
models are both validated at the same time. Uptg, the
DDM was validated a posteriori in simulation. Tigsin-
teresting for industrial applications because #igorithm
saves time. In addition, if something goes wrorgt t
means the dynamic model is not valid since the Bthod
is robust to data filtering.

This paper has presented an extension and an afpqtic
of the IV method. This technique was successfuyligliad
on a 2 DOF prototype robot. From these experiménts,
comes that our IV algorithm is not sensitive toadfiter-
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ing, gives additional improvements and can be hélfor
practice. In addition, the convergence of the psegoal-
gorithm is granted. Indeed, the bandwidth of theset
loop implemented to control the robot is ensuretha si-
mulation. This is done by adapting the gains. Bnat is
also robust to the initialization.

However, to apply our algorithm properly, the stuve
of the control law applied to control the robot be
known.

Future works concern the use of this techniquelém-
tify flexibilities.
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