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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Univ-Nantes

https://core.ac.uk/display/53012859?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00520261


Preprint submitted to Automatica  1 22 September 2010 

Refined Instrumental Variable method for non-linear dynamic  

identification of robots 

A. Janota, P-O Vandanjonb, M Gautierc

 

a Haption SA, Laval, France, alexande.janot@haption.com  
b Laboratoire Central des Ponts et Chaussées, Nantes, France, pierre-olivier.vandanjon@lcpc.fr  

c Institut de Recherche en Communication et Cybernétique de Nantes, France, maxime.gautier@irccyn.ec-nantes.fr 
 
 

 
 

Abstract 

The identification of the dynamic parameters of robot is based on the use of the inverse dynamic identification model which 
is linear with respect to the parameters. This model is sampled while the robot is tracking “exciting” trajectories, in order to 
get an over determined linear system. The linear least squares solution of this system calculates the estimated parameters. 
The efficiency of this method has been proved through the experimental identification of a lot of prototypes and industrial 
robots. However, this method needs joint torque and position measurements and the estimation of the joint velocities and 
accelerations through the bandpass  filtering of the joint position at high sample rate. So, the observation matrix is noisy. 
Moreover identification process takes place when the robot is controlled by feedback. These violations of assumption imply 
that the LS estimator is not consistent. This paper focuses on the Refined Instrumental Variable (RIV) approach to over-
come this problem of noisy observation matrix. This technique is applied to a 2 degrees of freedom (DOF) prototype devel-
oped by the IRCCyN  Robotic team.  
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1. Introduction 

The usual identification method based on the inverse 
dynamic model (IDM) and LS technique has been success-
fully applied to identify inertial and friction parameters of 
a lot of prototypes, industrial robots  and has been ex-
tended to cars,  worksite engine, human being and haptic 
interfaces (Atkeson, An, et Hollerbach 1986)(Swevers et 
al. 1997)(Khosla et Kanade 1985)(Kozłowski 
1998)(Raucent et al. 1992)(Gautier 1986)(Restrepo et Gau-
tier 1995)(Gautier 1997)(Venture et al. 2006) (C-E Le-
maire et al. 2006)(Janot et al. 2007) among others. At any 
case, a derivative bandpass data filtering is required to cal-
culate the joint velocities and accelerations. Moreover 
identification process is carried out with a feedback con-
trolled robot.  These conditions may lead to a violation of 
statistical independence between the residual and the ob-
servation matrix which implies that the LS solution is not 
consistent. To overcome this problem of noisy observation 
matrix, several methods have been proposed in the past: 
Extended Kalman Filtering, total least-squares, Instrumen-
tal Variable method .  

We show in (Gautier et Poignet 2001) that Extended 
Kalman Filtering is more complicated without improve-
ments of results. 

As far as total least squares are concerned, we used 
them in order to identify simultaneously dynamic and drive 
gain parameters (Gautier, P.O. Vandanjon, et Presse 1994). 
However, we did not succeed in applying this method to 
take into account the feedback which correlates the noise. 

Instrumental Variable method was already applied in 
robotics (Puthenpura et Sinha 1986). This method was 
used in order to identify a SISO system linear with respect 
to the state in an open loop configuration for each axis of 
an industrial robot. In this paper, the IV is applied for a 
dynamic model of a robot non linear with respect to the 
state and in closed loop configuration. 

Recently, the Instrumental Variable (IV) approach was 
renewed in the context of closed loop linear continuous 
system. 

This method is particularly interesting because of its 
simplicity. Indeed, no noise model identification is needed 
and the IV estimator is consistent even if the noise is col-
ored (Young et Jakeman 1979), (Söderström et Stoica 
1989). However, this technique was generally applied to 
discrete system linear with respect to the state which is not 
the case in robotics. The choice of the instrument variable 
depends on the context. Moreover, the method was de-
signed in open loop system. Progressively, algorithms suit-
able to our context, i.e. continuous time and closed loop 
system, have emerged. In particular, the so-called SRIVC 
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algorithm (Simplified Refined Instrumental Variable Con-
tinuous-time) for open loop system, based on an auxiliary 
model as instrument variable, is a good candidate to our 
problem (Young 2006). Very recently, this last algorithm 
was modified in order to take into account closed loop sys-
tem (Gilson et al. 2006)(Young, Garnier, et Gilson 2009) 
but still in the frame of system linear with respect to the 
state. This technique is implemented in the MATLAB 
CONTSID toolbox developed by the CRAN team 
(Garnier, Gilson, et Cervellin 2006). 

A derivation of this IV method was first successfully 
applied on a 1 DOF haptic device (P-O. Vandanjon et al. 
2007). This derivation is based on the use of both the in-
verse dynamic model (IDM) and the direct dynamic model 
(DDM). The robustness to data filtering and to the initiali-
zation as the calculation of the optimal solution were pre-
sented in (Janot, P-O. Vandanjon, et Gautier 2009). How-
ever, the consistence of the estimation (like statistical 
rules), the convergence of the purposed algorithm and the 
robustness to control laws were not introduced. This paper 
deals with these issues and the IV method is carried out on 
a 2 DOF prototype robot developed by the IRCCyN ro-
botic team. This direct drive prototype is very well suited 
to our purpose because it emphasizes non linear coupling 
contrary to industrial robots with high gear ratio. 

The paper is organized as follows: section 2 reviews the 
usual identification technique of the dynamic parameters of 
the robot. Section 3 presents the Instrumental Variable 
techniques. The experimental results are given in section 4. 
Finally, section 5 is the conclusion 
 

2. IDIM 

The inverse dynamic model (IDM) of a rigid robot com-
posed of n moving links calculates the motor torque vector 

idmτ , as a function of the generalized coordinates and their 
derivatives. It can be obtained from the Newton-Euler or 
the Lagrangian equations, (W. Khalil et Dombre 2002), 
(Featherstone et Orin 2008). It is given by the following 
relation: 

= ( )  + ( , )idmτ M q q N q q&& &  (1) 
 
Where, q , q&  and q&&  are respectively the ( )xn 1 vectors of 
generalized joint positions, velocities and accelerations, 

( )M q  is the ( )xn n  robot inertia matrix, and ( , )N q q&  is 
the ( )xn 1  vector of centrifugal, Coriolis, gravitational and 
friction forces/torques. 
The choice of the modified Denavit and Hartenberg frames 
attached to each link allows to obtain a dynamic model lin-
ear in relation to a set of standard dynamic parameters, stχ  
(Gautier 1986), (Gautier et W. Khalil 1990): 

( )idm st stτ IDM q,q,q χ= & &&  (2) 
 
Where ( )stIDM q,q,q& && , is the ( )x sn N  jacobian matrix of 

idmτ , with respect to the ( )x1sN  vector stχ , of the stan-
dard parameters given by: 

TT T T  ... 1 2 n
st st st stχ χ χ χ =    (3) 

With: 
χsj = [XXj XYj XZj YYj YZj ZZj MXj MYj MZj Mj Iaj Fvj Fcj 
τoffj]

T, 
 
where: 
o      j j j j j jXX , XY , XZ , YY , YZ , ZZ, are the six components 

of the inertia matrix, j jJ ,  of link j at the origin of frame 

j, 
o   j j jMX , MY , MZ  , are the components of the first mo-

ments,j jMS , of link j, 

o jM  is the mass of link  j, 

o jIa , is a total inertia moment for rotor and gears of ac-

tuator j. 
o jFv , jFc , are the viscous and Coulomb friction pa-

rameters of joint j. 
o 

joff Fsj tjτ Of Of= + , is an offset parameter where FsjOf  is 

the dissymmetry of the Coulomb friction with respect to 
the sign of the velocity and tjOf  is due to the current 

amplifier offset which supplies the motor. 
o 14sN n= × , is the number of standard parameters. 
 

The base parameters are the minimum number of dy-
namic parameters from which the dynamic model can be 
calculated. They are obtained from the standard inertial 
parameters by eliminating those which have no effect on 
the dynamic model, and by regrouping some others by 
means of linear relations. They can be determined using 
simple closed-form rules (Gautier et W. Khalil 1990) or 
using a numerical method based on the QR decomposition 
(Gautier 1991).  

The minimal inverse dynamic model can be written as: 

( )idmτ IDM q,q,q χ= & &&  (4) 

Where: 

( )IDM q,q,q& && , is the ( )xn b  matrix of the minimal set of 

basis functions of the rigid body dynamics,  (5) 
χ  , is the ( )xb 1  vector of the b  base parameters.  (6) 

 
Because of perturbations due to noise measurement and 

modeling errors, the actual force/torque τ  differs from 

idmτ , by an error e , such that: 

 ( )idmτ e IDM q,q,q χ eτ = + = +& &&  (7) 

Equation (7) gives the Inverse Dynamic Identification 
Model (IDIM). 
 

We consider the off-line identification of the base dy-
namic parameters χ , given measured or estimated off-line 

data for τ  and ( )  q, q, q& && , collected while the robot is 

tracking some planned trajectories. 
Usually, the signals available from the robot controller 

are the joint position measurement and the ( )xn 1  control 

signal vector vτ , calculated according to the control law.  
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Then ( )  q, q, q& &&  in (7) are estimated with ( )  ˆ ˆq̂, q, q& &&  respec-

tively, obtained by bandpass filtering the measure of q  

(Gautier 1997). The derivatives are off-line calculated 
without phase shift, using a central difference algorithm of 
the lowpass filtered position q̂ . The filtered position ̂q  is 

off-line calculated with a non causal zero-phase digital fil-
ter by processing the input data q , through a lowpass But-

terworth filter in both the forward and reverse direction, 
using the filtfilt procedure from Matlab. 
 

The control signal vτ , is connected to the input current 

reference of the current closed-loop of the amplifiers 
which supplies the motors. Assuming that the current 
closed-loop has a large bandwidth, greater than 500Hz, its 
transfer function is equal to its static gain, cK , in the fre-

quency range (less than 10Hz) of the rigid robot dynamics. 
Then, the actual force/torque τ , is calculated with the rela-
tion: 

g vτ ττ =  (8) 

where: 
gτ , is the ( )xnn  diagonal matrix of the drive gains, 

with: 
  r cg K K Kτ τ=  (9) 

where: 
o rK , is the ( )xnn  gear ratios diagonal matrix of the joint 

drive chains ( m rq K q=& & , with mq& , the velocity on the 

motor side), 
o cK , is the ( )xnn  static gains diagonal matrix of the cur-

rent amplifiers,  
o Kτ , is the ( )xnn  diagonal matrix of the electromagnetic 

motor torque constants. 
o Those parameters have a priori values, given by manu-

facturers, which can be checked with special tests 
(Restrepo et Gautier 1995). 

 
The inverse dynamic identification model (IDIM) (7) is 

calculated at a frequency measurement mf , using samples 

of ( )  ˆ ˆq̂, q, q& &&  to calculate ( )ˆ ˆˆIDM q,q,q& &&  and samples of vτ  

to calculate τ  with (8), at different times kt , mk 1,...,n= , 

while the robot is tracking a reference trajectory 

( )r r rq ,q ,q& && , during the time length obsT , of the trajectory. 

The equations of each joint are regrouped together on all 
the trajectory to get an over-determined linear system such 
that: 

( ) ( )fm fm fm
ˆ ˆˆY τ W q,q,q χ ρ= +& &&  (10) 

With: 

( )  

m

1
fm j 1

j
fm fm

n
fm j n

Y ( t )

Y τ ... , Y ...

Y ( t )

τ

τ

  
  = =   
  

   

 (11) 

( )
( ( ) ( ) ( ))

 

( ( ) ( ) ( )
m m m

1 j
fm 1 1 1

j
fm fm

n j
fm n n n

ˆ ˆˆW IDM q t ,q t ,q t
ˆ ˆˆW q,q,q ... , W ...

ˆ ˆW ˆIDM q t ,q t ,q t

  
  = =   
  

    

& &&

& &&

& &&

(12) 

where: 

( ( ) ( ) ( ))j
k k k

ˆ ˆˆIDM q t ,q t ,q t& && , is the  jth row of  the ( )xn b re-

gressor matrix ( ( ) ( ) ( ))k k k
ˆ ˆˆIDM q t ,q t ,q t& && , (5). 

j
fmY  and j

fmW , represent the mn equations of jointj , 

* m obs mn T f= , is the number of sample measurements. 

The notation ( )( ) ( )fm fm
ˆ ˆ ˆ ˆˆ ˆW IDM q,q,q W q,q,q=& && & &&  will be 

used also to recall that fmW , is calculated with a sampling 

of ( )ˆ ˆˆIDM q,q,q& && . 

In order to eliminate high frequency force/torque ripple in 
τ , and to window the identification frequency range into 
the model dynamics, a parallel decimation procedure low-
pass filters in parallel fmY  and each column of  fmW  and 

resamples them at a lower rate, keeping one sample over 

dn . This parallel decimation can be carried out with the 

Matlab decimate function, where the lowpass filter cut-off 
frequency is equal to 0.8 /(2 )m df n× × . 

 
After the data acquisition procedure and the parallel de-

cimation of (10), we obtain the over determined linear sys-
tem: 

 ( ) ( )ˆ ˆˆY τ W q,q,q χ ρ= +& &&  (13) 

where: 
o ( )Y τ  , is the x1( r )  vector of  measurements, built from 

the actual force/torque τ , 

o ( )ˆ ˆˆW q,q,q& && , is the x( r b )  observation matrix, built from 

the estimated values ( )ˆ ˆq̂,q,q& &&  of ( )  q, q, q& && . 

o ρ , is the x1( r )  vector of errors. 

o m dr n* n / n=  , is the number of rows in (13). 

 
In  Y  and W , the equations of each joint are grouped 

together such that: 

,   

1 1

n n

Y W

Y ... W ...

Y W

   
   = =   
   
   

    (14) 

where jY and jW  represent the m dn / n  equations of joint 

j . 

The ordinary LS (OLS) solution ̂χ  minimizes the 
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squared 2-norm 
2

ρ �of the vector of errors. 

 Using the base parameters and tracking “exciting” ref-
erence trajectories (Gautier et W. Khalil 1992) allow to get 
a full rank and well conditioned  matrix W . The LS solu-
tion χ̂  is given by: 

( )( )1T T
χ̂ W W W Y W Y

− += =  (15) 

It is computed using the QR factorization of W . Stan-
dard deviations 

iχ̂σ , are estimated using classical results 

from statistics under the assumptions that W  is a determi-
nistic matrix, thanks to the data filtering procedure de-
scribed above, and ρ , is a zero-mean additive independent 

Gaussian noise, with a covariance matrix 
ρρ

C , such that: 
T 2

ρρ ρ r( ) σC E ρρ I= =  (16) 

where E  is the expectation operator and rI , the ( )xr r  

identity matrix. 
 

An unbiased estimation of the standard deviation ρσ  is: 
22

ρ
σ (r b )ˆ ˆY Wχ= − −  (17) 

The covariance matrix of the estimation error is given 
by: 

T 2 T 1
χχ ρ

[( )( ) ] σ ( )ˆ ˆ ˆˆ ˆC E χ χ χ χ W W −= − − =  (18) 

i

2
χ χχσ C ( )ˆ ˆ ˆ i,i=  is the ith diagonal coefficient of 

χχˆˆC . The 

relative standard deviation 
riχ

%σˆ  is given by: 

ri iχ χ i%σ 100σ χˆ ˆ ˆ= , for iχ̂ ≠ 0 (19) 

The OLS can be improved by taking into account differ-
ent standard deviations on joint j  equations errors 

(Gautier 1997). Each equation of joint j  in (13), (14), is 

weighted with the inverse of the standard deviation of the 
error calculated from OLS solution of  the equations of 
joint j  , given by: 

( ) ( )( )j j j j
j

ˆ ˆˆY τ W IDM q,q,q χ ρ= +& &&  (20) 

This weighting operation normalizes the errors in (13) 
and gives the weighted LS (WLS) estimation of the pa-
rameters. 

This identification method is illustrated in Fig. 1. 
The calculation of the velocities and accelerations are re-
quired using well tuned bandpass filtering of the joint posi-
tion (Gautier 1997). 
One of the numerous validations of the identification is to 
simulate, a posteriori, the direct dynamic model (DDM) 
given by (10) and to compare the simulated trajectories 
with real trajectories when the torques are the same. These 
comparisons have to be done on trajectories which were 
not used for the identification process. 

( )   1q M ( q ) - N( q, q )τ−=&& &  (21)   

 

Robot

( )

Inverse D ynam ic 

Identif ication M odel

ID IM

ˆ ˆˆID M q ,q ,q& &&
ˆ ˆˆ, ,& &&q q q( )( )fm

ˆ ˆˆW IDM q,q ,q& &&

Linear LS

2ˆ m in -Y W
χ

χ χ=( )( )ˆ ˆˆ( ),  , ,  Y W IDM q q qτ & &&

( )q t( )tτ
Control law

χ̂

( )r r rq ,q ,q& &&

obsT

sampling ( )

 bandpass 

filtering

fm

+

lowpass filtering 

+ downsampling

sampling(fm )

( )fmY τ

 

Fig. 1: IDIM LS identification scheme. 

 

3. Instrumental variable technique 

3.1. Theoretical approach 

From a theoretical point of view, the statistical assump-
tions for efficient LS estimation are violated in practical 
applications. In the equation (13), the observation matrix 
W is built from the measured joint positions q and from  ,   
which are numerically computed from q ,q ,q& && . Therefore 
the observation matrix is noisy. Moreover identification is 
carried out in closed-loop control. These violations of as-
sumption imply that the LS estimator, χ̂ , may be non con-
sistent. Indeed, from (13) , it comes: 

T T T T  ev
ˆW Y W W W ρ W Wχ χ= + =  (22) 

With  evρ is the vector of errors (errors in variable) when 

W is corrupted by noise nfW W W∆= −  

 evρ W ρ∆ χ= +  (23) 
Thanks to the Slutsky’s theorem, it is obtained:   

1
T T1 1

plim plim plimm m m evm
m m m

χ̂ χ W W W ρ
m m

−

→∞ →∞ →∞

   = +    
   

 (24) 

 
With: 

m
plim

→∞
is the convergence in probability, 

 m is the number of repetition of W  and evρ ,  

mW (resp. evmρ  ) is the concatenation of W  (resp. evρ ). 

 
Under the classical assumptions: 

( )Tplim ET
m m

m

1
W W W W

m→∞

  = 
 

   is positive definite (25) 

plim ET T
m evm ev

m

1
W ρ (W ρ )

m→∞

  = 
 

 exists (26) 

As evρ  depends on the observation matrix W  according to 

(23), E T(W ρ ) 0≠ . Therefore, the estimator is not consis-

tent.  
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Instrumental Variable method deals with this problem of 
noisy observation matrix (called error in variable in the sta-
tistical frame) and can be statistically optimal (Davidson et 
Mackinnon 1993) (Young et Jakeman 1979). The Instru-
mental Variable Method proposes a consistent estimator by 
building the instrument matrix V such as (22) becomes: 

T T T T
Vev

ˆV Y V Wχ V ρ V Wχ= + =   (27) 
The instrumental variable solution, Vχ̂ ,  is the solution of  
(27): 

( )T T
V

1
χ̂ V W V Y

−
=  (28)  

In the following V is calculated as a function of Vχ̂   . That 
defines an iterative procedure such as: 

 ( )T T
Vk 1 k k

1
χ̂ V W V Y

−

+ =  (29) 

where :  ( )Vkk
ˆV V χ=  

This needs for  ( )T
kV W  to be a regular matrix. Assuming: 

  T
k,mplim m

m

1
V W

m→∞

 
 
 

is non singular and, (30) 

  T T
k,m kplim Eevm ev

m

1
V ρ (V ρ ) 0

m→∞

  = = 
 

  (31) 

With k ,mV  is the concatenation of kV   

for any k, Vkχ̂   converges to  χ  with m. Indeed, with the 
Slutsky’s theorem, we obtain: 

 
1

T T
Vk k,m k,m

1 1
plim plim plimm evm
m m m

χ̂ χ V W V ρ
m m

−

→∞ →∞ →∞

   = +    
   

 (32) 

And with (30) and (31),  it comes: 
 Vkplim

m

χ̂ χ
→∞

=  (33) 

Then the IV estimator is consistent. 
 

3.2. Calculation of the instrumental matrix 

The main problem is to find an instrument matrix V. A 
usual solution is to build an observation matrix from simu-
lated data instead of measured data. These simulated data 
(called also instruments) are the outputs of an auxiliary 
model (Young et Jakeman 1979) which is an approxima-
tion of the noise-free model of the process to be identified. 
We chose the Direct Dynamic Model of the robot (DDM) 
given by (21) to be this auxiliary model. 

The IV method adapted for dynamic identification of 
robots can be resumed by the following algorithm illus-
trated  

Fig. 2: 
• The algorithm is initialized with any the values ac-

cording to the subsection 3.4.  
• At each step of the iterative algorithm, S S Sq ,q ,q& && are 

calculated by simulation of the closed loop robot tracking 
exciting trajectories using the DDM with the parameters 
identified at the previous step. SW  is obtained as a sam-

pling of  IDIM, ( )S S S SID q ,q ,q& &&  , and we choose the in-

strument matrix as: 

 ( ) ( )Vk S S S Vkk S
ˆ ˆV χ W q ,q ,q ,χ= & &&

  (22) 
 ( )Y τ  is calculated from the sampling and filtering of the 

measurements of  τ , and ( )W q,q,q& &&  is calculated through 

IDIM using the sampling and filtering of q  . 
• Vk+1χ̂  is given by (29) which is the LS solution of  

(27), 
• The algorithm stops when the relative error decreases 

under a tolerance, ideally chosen to be a small number):   
 

with the estimation error: 

k S Vk
ˆε Y W χ= −  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2  : IV identification procedure 

3.3. Calculation of the solution 

Suitable solutions consist in using orthogonal projection 
such as QR decomposition. In this case, we have: 

W WW Q R= , 

V VV Q R= . 
With: 

VQ and WQ are orthogonal matrices which are projectors 

on the vectorial subspace spanned by the columns of V  
and W. 

VR and WR are upper triangular matrices. 

 
Considering only the b base parameters to be identified, we 
check we have at each iteration: 
rank(RW) = rank(QW) = rank(RV) = rank(QV) = b. 
 
This relation guarantees that the matrix VTW is invertible. 
Then, equation (27) becomes: 

k 1 k

k

ε ε

ε
α+ −

≤

robot

SSS q,q,q &&&

τ

q

Control
Law

Control
Law

Sτ
( ) ( )( )

VVkk
ˆ                DDM( )

S S S S SM q q τ N q ,q

χχχχ

= −&& &

Band pass  
filter

ˆ ˆq̂,q,q& &&

( )ˆ ˆˆIDM q,q,q& &&

( )
sam p lin g + //f i lte r in g

ˆ ˆˆID M  W q ,q ,q  → & &&

( ) Vk

IDIM

ˆτ =ID q ,q ,q χS S S S S
& &&

( )S S S S Ssampling
IDM W q ,q ,q =V  k→ & &&

obsT

sampling+filtering
τ Y→

obsTT

k k Vk+1
 

T ˆV Y  V Wχ=
obsTr

r

r

q

q

q





 
 

&

&&

Actual closed loop robot

Simulated closed loop robot
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T T T T

VV V W W V ev V W ŴQ Y Q Q R χ Q ρ Q Q R χ= + =  (34) 

 

Vχ̂ is the LS solution of the last equations. 

 
Compared with LS regressions, the IV method needs 

two QR decompositions. 

3.4. Initialization of the algorithm 

Another problem is to choose the initial values 0χ̂ . 

We can use CAD values, or identified values with the 
IDIM method, but we show that there is no need at all of a 
priori values.  
We propose an algorithm not sensitive to the initial condi-
tions, which assumes that the condition  

( ) ( )ddm k ddm k ddm k
ˆ ˆ ˆq ( χ ),q ( χ ),q ( χ ) q,q,q& && & &&�  (35) 

is satisfied at any iteration k , and especially for  k =0. 
This is possible by taking the same control law structure 
for the actual robot and for the simulated one with the 
same performances given by the bandwidth, the stability 
margin or the closed-loop poles. Because the simulated ro-

bot parameters kχ̂ , change at each iteration k , the gains 

of the simulated control law must be updated according to 
kχ̂ . 

For example, let us consider a PD control law for each 
joint j . The inverse dynamic model IDM (1) for the joint 

j , can be written as a decoupled double integrator per-

turbed by a coupling force/torque, such that: 

= ( )  + ( , )

= ( ) ( ) + ( , )= ( ) 

j

n

j idm j ,i i j
i 1

n

j , j j j ,i i j j , j j j
i j

τ τ M q q N q q

M q q M q q N q q M q q p

=

≠

=

+ −

∑

∑

&& &

&& && & &&

 (36) 

where jp  is considered as a perturbation given by: 

( )  ( , )
n

j j ,i i j
i j

p M q q N q q
≠

= − −∑ && &  (37) 

( )j ,iM q  , which depends on q  , is approximated by a 

constant inertia moment jJ , given by: 

( )( )
j jj j a j , j j a

q
J ZZ I max M q ZZ I= + + − −  (38) 

jJ , is the maximum value, with respect to q , of the in-

ertia moment around joint jz  axis. This gives the smallest 

damping value and the smallest stability margin of the 
closed-loop second order transfer function (42), while q  

varies. 
It can be calculated from a priori CAD values of inertial 

parameters and must be taken at least as 
jj aZZ I+ . 

The joint j  dynamic model is approximated by a dou-

ble integrator, where jp , is a perturbation,  as following: 

( ) ( )
( )j j j j j

j , j j

1 1
q τ p τ p

M q J
= + +&& �  (39) 

Let us consider the joint j  PD control of the actual robot 

which is illustrated Fig. 3: 
 

+
-

+
- j

agτ

jr
q

j

a
vk

1
a

jJ
1

s
1

s
+

+

j

a
pk

jp

j
vτ jq& jqjτ jq&&

 

Fig. 3: Joint PD control of the actual robot. 

 
The control input calculated by the robot controller is 

given by: 

( )j j j j j

a a a
p v r j v jv k k q q k qτ = − − &  (40) 

j
vτ , is the current reference of the current amplifiers which 

supplies the motor. 
The joint j  , force/torque is given by: 

j j

a
j g vτ ττ =  (41) 

where: 

j

agτ , is the actual drive gain, calculated with the actual 

parameters in (9). 
a

jJ , is the actual value of jJ . 

• In order to tune the tracking performances of the 

reference position 
jrq , the transfer function jr

j

q

q
 is calcu-

lated with =0jp : 

=0

=0

 
j

j

j j j j

j
j

j
j a 2

r j
p

a a a a
v p p

j
j a2

r j
p

a 2 a
nj nj

q 1
H

q J s 1
s 1

g k k k

q 1
H

q 2s
s 1

τ

ζ
ω ω

 
 = =
 
  + +

 
 = =
 
  + +

 (42) 

where: 
a

njω , is the actual natural frequency which characterizes 

the closed-loop bandwidth, 
a

jζ , is the  actual damping coefficient which character-

izes the closed-loop stability margin, with: 

j

i i

a

a a a
nj p v a

j

g
k k

J

τω =  ,        
1 ji

i

aa
va

j a a
p j

gk

2 k J

τζ =  (43) 

Then it comes: 

2 j

a
nja

p a
j

k
ω

ζ
=        ,        

j

j

a
ja a a

v j nj a

J
k 2

gτ

ζ ω=  (44) 
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The closed-loop performances are chosen with the desired 
2 poles of a second order transfer function characterized 

by,  d
njω , d

jζ , where: 
d

njω , is the desired natural frequency, 
d

jζ , is the desired damping coefficient. 

Because the actual values are unknown, the gains are 
calculated from (44), where the unknown actual values, 
a

njω , a
jζ , a

jJ , 
j

a
ig ,  are replaced respectively by their  

desired values, d njω , d
jζ , and by their a priori values, 

ap
jJ ,

j

apgτ : 

2 j

d
nja

p d
j

k
ω

ζ
=   ,      

j

j

ap
ja d d

v j nj ap

J
k 2

gτ

ζ ω=  (45) 

where: 

 and 
j

ap ap
jJ gτ are a priori values of  the actual unknown 

values  and 
j

a a
jJ gτ , respectively. 

Now, let us consider the joint j  PD control of the simu-

lated robot which is illustrated Fig. 4. 
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Fig. 4: Joint PD control of the simulated robot. 

 

The variables ( ) ,   
j j j j jddm ddm ddm ddm ddmv , q , q , qτ τ & && , in Fig. 

3, are computed by numerical integration of  kˆDDM( χ ) ,  

according to (21).  
The control law of the simulated robot has the same 

structure as the actual one, Fig. 3, where we take: 

j

a
ig =

j

ap
ig , the a priori value of 

j

a
ig , 

a
jJ = k

jĴ , the value of jJ , (38), calculated with the es-

timation kχ̂ , at iteration k. 

j

s
pk , 

j

s
vk , are the gains of the simulated control law. 

They are calculated in order to keep the same perform-
ances for the simulated closed-loop and for the actual 
closed-loop, that is to say to keep the same desired values, 
d

njω  and  d jζ , for the closed-loop poles. Then, it comes: 

    ,         2  
2 j j j

j

d k
nj js a s d d

p p v j njd ap
j

Ĵ
k k k

gτ

ω
ζ ω

ζ
= = =  (46) 

The proportional gain, 
j

s
pk , does not depend at all on 

the parameters values, but the derivative gain in the simu-

lator , 
j

s
vk , must be updated with kjĴ , at each iteration k . 

It is important to note that only the gain in the simulated 

closed-loop, 
j

s
vk , is modified during the iterative proce-

dure. The actual gain of the robot control law, 
j

a
vk ,  is not 

modified. 

The simulated closed-loop tuning given by, d
njω , d

jζ , 

differs from the actual one, a
njω , a

jζ , with the following 

ratio, calculated by taking (45) into (43): 

j

j

aa a ap
nj j j

d d a ap
nj j j

gJ

J g

τ

τ

ω ζ
ω ζ

= =  (47) 

Usually this ratio is between 0.8 and 1.2. The actual val-

ues, a
njω , a

jζ , can be estimated from step response or 

frequency analysis of the actual closed-loop. But this is not 
necessary, because there is little effect on the identification 

accuracy, assuming, d
njω , is regularly chosen more than 10 

times greater than the frequency range of the robot dynam-
ics. This allows to keep 

( ) ( )ddm k ddm k ddm k
ˆ ˆ ˆq ( χ ),q ( χ ),q ( χ ) q,q,q& && & &&� , at each iteration 

k. 
We propose to take a regular inertia matrix 

0( , ) ddm
ˆM q χ , in order to have a good initialization for the 

numerical integration of the DDM given by  (21). This is 
named the "regular initialization".  

It can be obtained with: 
0 0χ̂ = , except for, 0 1, jIa j 1,n= =  (48) 

The inertia of the rotor and gear of actuator j  is gener-

ally taken into account in the IDM model (1) as: 
τ  

jr j j Ia q= &&    (49) 

Then, the initial inertia matrix becomes the identity ma-
trix, which is the best regular matrix: 

0( , ) =ddm n
ˆM q Iχ  (50) 

Another simple regular initialization is to take:  

 0 0χ̂ = , except for, 0 1, jZZ j 1,n= =  (51)  

The initial inertia matrix, 0( , )ddm
ˆM q χ , is no more the 

identity matrix, but remains regular. 
Another point is to choose the state initial condition of the 
state vector, ( )(0) (0)ddm ddmq ,q& , in order to integrate the 

DDM. The actual values ( )(0) (0)q ,q& , are supposed to be 

not perfectly known because of noises. Then, we choose, 

( ) ( )(0) (0) (0) (0)ddm ddm r rq ,q q ,q=& & , which is close to 

( )(0) (0)q ,q& . Because the closed-loop transient response 

due to different initial conditions differs between the actual 
and the simulated signals during a transient period of ap-

proximately, 5 d
n/ ω , the corresponding joint force/torque 

samples are eliminated from the identification data. 
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3.5. Discussion on the assumptions 

The IV method is based on two assumptions. The instru-
ments matrix has to be not correlated with the noise (see 
(31)) and the matrices product between the instrument ma-
trix and the noisy observation matrix has to be full rank 
(see  (30)). These two assumptions imply that the IV esti-
mator is consistent. 

As seen in the previous section, the instrument matrix is 
built from a deterministic simulation. The only link be-
tween the instrument and the noise could be provided indi-
rectly from the parameters identified at the previous step. 
This correlation is much lower than the noise on the sys-
tem.  Assuming that evρ  is a zero-mean additive independ-
ent noise, we have: 

T T
k kE E Eev ev(V ρ ) (V ) ( ρ ) 0=�  

Which guarantees the assumption (31). 

In this paper, it is assumed that the trajectory is enough ex-
citing in order to identify the base parameters. This means 
that : ( )nfW q,q,q& && which is the noise free observation ma-

trix built from the real trajectory, is full rank. According to 
the last section: 

( ) ( )ddm k ddm k ddm k
ˆ ˆ ˆq ( χ ),q ( χ ),q ( χ ) q,q,q& && & &&� so k nfV W� . 

As nfW W W∆−� , it comes T T T
k nf nf nfV W W W W W∆= −  

It is not very probable that the noise on the observation 

matrix W∆  gives the assumed full rank matrix TkV W singu-

lar. Indeed, we collect a very high number of samplings (at 
least 500 x b). So, the noises tend to be zero-mean additive 
independent noises. It means the columns of ∆W are inde-
pendent. ∆W is also a full rank matrix. In addition, we 
check we obtain rank(RW) = rank(RV) = rank(QW) = 
rank(QV) = b at each step of the algorithm. Therefore, the 
assumption (30) is always true. 

4. Experimental Validation 

4.1. Case study: modeling of the SCARA robot 

The identification method is carried out on a 2 degrees 
of freedom planar direct drive prototype robot without 
gravity effect, shown on Fig. 5. This direct drive prototype 
is very well suited to our purpose because it emphasizes 
non linear coupling when classical industrial robots with 
gear ratio above 50, divides this non-linear phenomenon by 
at least 2500. Moreover, the dynamic model of this robot 
includes eight parameters which allows us to present sev-
eral conditions for the identification. At last, this robot and 
its real parameters, called the nominal parameters, are well 
known. Thus, we can check the physical meaning of the 
identified parameters. 

The description of the geometry of the robot uses the 
modified Denavit and Hartenberg (DHM) notations (W. 

Khalil et Kleinfinger 1986) which are illustrated on Fig. 6. 
The robot is direct driven by 2 DC permanent magnet mo-
tors supplied by PWM amplifiers. 

 

 

Fig. 5: The scara robot prototype. 
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Fig. 6: DHM frames of the scara robot. 

 
 

 
The dynamic model depends on 8 minimal dynamic pa-

rameters, considering 4 friction parameters: 

[ ]T
1R 1 1 2R 2 2 2 2 ZZ Fv Fc ZZ LMX LMY Fv Fc  χ =

 (52) 
2

1R 1 1 2ZZ ZZ Ia M L= + +   

2R 2 2ZZ ZZ Ia= +  

L =0.5m, is the length of the first link. 
In the case of the SCARA robot, the parameters, 2LMX , 

and 2LMY , are identified instead of,  2MX  , and 2MY , re-

spectively. 
The 8 columns, , 1,8:,kIDM k = , of ( )IDM q,q,q& && , in 

IDIM (7), are the following: 
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 (53) 
The closed-loop control is a PD control law (40) , ac-

cording to Fig. 3, with: 
2 1 1R 2R 2J ZZ ZZ LMX= + + , and 2 2RJ ZZ= . 

The actual gains are calculated with (45), taking a de-

sired damping, d jζ =1, for joint 1 and joint 2. 

The desired natural frequency, d
njω , is chosen according 

to the driving capacity without saturation of the joint drive. 
For this robot we obtain a full bandwidth with, 

1 /
1

d f
n rd sω = , and 10 /

2

d f
n rd sω = . 

The sample rates of the control and of the measurement 
are equal to, mf =200Hz.  

Torque data are obtained from (41), and from the current 
reference data vτ . 

The simulation of the robot is carried out with the same 

reference trajectory and with the same control law struc-

ture as the actual robot.  

The gains in the simulator are calculated with (46) and 
with the same values,d

jζ =1, 1 /
1

d
n rd sω = , and 

10 /
2

d
n rd sω = . 
The new identification process is performed in different 

cases in order to compare the previous IDIM technique to 
the new IV technique and to investigate the robustness of 
IV with respect to the initialization, to the data filtering and 
to the closed-loop tuning. All the results are given in SI 
units, on the joint side. 

4.2. Comparison of  IDIM and IV with good initial 

values, 0 IVˆ ˆ χ χ= . 

At first, the algorithm is initialized with, IDIMχ̂ , the vector 

of parameters identified with the IDIM LS estimator.  
The IDIM LS off-line estimation is carried out with a 

filtered position q̂ , calculated with a 20Hz cut-off fre-

quency forward and reverse Butterworth filter, and with 

the velocities ̂q& , and the accelerations, q̂&& , calculated with 

a central difference algorithm of q̂ .  The parallel decima-

tion of fmY  and fmW , in (10), is carried out with a sample 

rate divided by a factor, dn =20, and a lowpass filter cut-

off frequency equal to, 0.8* /(2* )=4Hzm df n .The results of 

the IDIM identification are given in Table 1.  

Starting with good initial values 0 IVˆ ˆ χ χ= , IV algo-

rithms converges in only 2 steps to obtain the optimal solu-
tion as shown in the table 2. The IV solution is very close 
to the IDIM solution. Hence, the IV method does not im-
prove the IDIM solution calculated with good bandpass 
filtered data. 

A validation is plotted on Fig 7, at the frequency meas-
urement, mf =200Hz. It shows that the actual joint torques, 

( )fmY τ , and the torques estimated with the identified mod-

el, ( )2, 2
e fm ddm ddm ddm

ˆ ˆY W q ,q ,qδ χ χ= & && are very close.  

Both methods give a small relative norm error, 
ˆY W / Yχ− <3%, which shows a good accuracy for the 

model and for the identified values. 
It can be seen that the parameters, 1Fv , and 2Fv , have 

no significant estimations because of their large relative 
standard deviation (>30%). They have no significant con-
tribution in the joint torques and they can be cancelled to 
keep a set of essential parameters of a simplified dynamic 
model, without loss of accuracy (W. Khalil, Gautier, et 
Lemoine 2007). 

 However, we prefer to keep all the parameters in the 
following, for a better comparison of IDIM and IV identi-
fication methods. 
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Fig. 7.IV validation 

Table 1: IDIM identification 

Parameter IDIMχ̂  
χ

2 σˆ  
rχ

%σˆ  

1RZZ  3.44 0.034 0.50 

1Fv  0.03 0.031 52. 0 

1Fc  0.82 0.1 6.0 

2ZZ  0.062 0.0006 0.51 

2LMX  0.121 0.0014 0.56 

2LMY  0.007 0.0007 5.0 

2Fv  0.013 0.006 23.0 

2Fc  0.137 0.006 2.30 
IDIMˆY W / Yχ− =0.024 

 

Table 2: IV identification 

Parameter  2χ̂  
χ

2 σˆ  
rχ

%σˆ  

1RZZ  3.44 3.45 0.036 0.52 

1Fv  0.03 0.04 0.032 40. 0 

1Fc  0.82 0.82 0.05 3.0 

2ZZ  0.062 0.061 0.0006 0.49 

2LMX  0.121 0.124 0.0013 0.52 

2LMY  0.007 0.007 0.0005 3.5 

2Fv  0.013 0.013 0.0084 30.0 

2Fc  0.137 0.137 0.008 3.0 
IVˆY W / Yχ− =0.021  

 
 

4.3. IV, validation of  the regular initialization, 
0

2( , )=ddm
ˆM q Iχ . 

The robustness of  IV with respect to a wrong initializa-
tion, such as the regular initialization (50), is investigated. 

The initial values of the dynamic parameters are given 
by (48), with: 

 [ ]T1 0 0 1 0 0 0 00ˆ   χ =  

The identified values given in Table 3, are very close to 
those given in Table 1. This result validates the regular ini-
tialization procedure. 
Moreover the algorithm converges in only 3 steps and is 
not time consuming. 

Table 3: IV identification with regular initialization 

Parameter 0χ̂  3χ̂  
χ

2 σˆ  
rχ

%σˆ  

1RZZ  1.0 3.45 0.036 0.52 

1Fv  0.0 0.04 0.032 40. 0 

1Fc  0.0 0.82 0.05 3.0 

2ZZ  1.0 0.061 0.0006 0.49 

2LMX  0.0 0.124 0.0013 0.52 

2LMY  0.0 0.007 0.0005 3.5 

2Fv  0.0 0.013 0.0084 30.0 

2Fc  0.0 0.137 0.008 3.0 
 

The relative norm errors on joint position, velocity and 
acceleration are plotted on Fig.8 ,with the following leg-
end: 

• norm error relative to the actual filtered joint position, 

jddm j j
ˆ ˆq q / q− , velocity 

jddm j j
ˆ ˆq q / q−& & & , and accel-

eration, 
jddm j j

ˆ ˆq q / q−&& && && , where ( )ˆ ˆq̂,q,q& && , are calculated 

as given in section 4.2. 
* norm error relative to the reference joint position, 

j j jddm r rq q / q− , velocity, 
j j jddm r rq q / q−& & & , and accel-

eration, 
j j jddm r rq q / q−&& && && . 

The assumption (35), 

( ) ( )ddm k ddm k ddm k
ˆ ˆˆˆ ˆ ˆq ( χ ),q ( χ ),q ( χ ) q,q,q& && & &&� , at each iteration 

k, is confirmed Fig. 8, with a constant relative norm error 
close to 0.5% for the position, 5%, for the velocity and 
10%, for the acceleration. 

These results validate the updating procedure (46), of 
the simulated PD control law gains. 

It can be seen also on Fig 8 that the simulated trajectory, 

( )ddm k ddm k ddm k
ˆ ˆ ˆq ( χ ),q ( χ ),q ( χ )& && , is 3 to 5 times closer to 

the actual one, ( )ˆ ˆq̂,q,q& && ,  than to the reference one, 

( )r r rq ,q ,q& && , with a relative norm error close to 1.5% for 

the position, 15%, for the velocity and 30%, for the accel-
eration. Moreover, this error depends on the closed-loop 
bandwidth. It means that computing the observation matrix 
in (13) with  the reference trajectory, ( )r r rq ,q ,q& && , leads to a 

bad identification of the dynamic parameters.  
Then, the assumption 

, ( ) ( )ddm k ddm k ddm k
ˆ ˆˆˆ ˆ ˆq ( χ ),q ( χ ),q ( χ ) q,q,q& && & &&� ,  is valid. 
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Fig. 8: • norm error relative to the filtered actual position, veloc-
ity, acceleration. * norm error relative to the reference position, 

velocity, acceleration. 
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Fig. 9: • norm error relative to the filtered actual position, veloc-
ity, acceleration. * norm error relative to the reference position, 

velocity, acceleration. 

 
The fast convergence of each parameter is shown in Table 
4 , and is plotted on Fig 10. 

 

Table 4: Parameters convergence with IV identification 

Parameter 0χ̂  1χ̂  2χ̂  3χ̂  

1RZZ  1.0 3.46 3.45 3.45 

1Fv  0.0 0.04 0.02 0.02 

1Fc  0.0 0.82 0.85 0.85 

2ZZ  1.0 0.06 0.061 0.061 

2LMX  0.0 0.122 0.124 0.124 

2LMY  0.0 0.05 0.07 0.07 

2Fv  0.0 0.005 0.01 0.01 

2Fc  0.0 0.130 0.132 0.132 
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Fig. 10: IV parameters convergence 
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We have seen that 

( ) ( )ddm k ddm k ddm k
ˆ ˆˆˆ ˆ ˆq ( χ ),q ( χ ),q ( χ ) q,q,q& && & &&� , at each iteration 
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k, with a constant small error. On the contrary, the relative 
torque norm error, given in Table 3, and plotted on Fig 12, 
dramatically decreases in only 3 steps. This shows the fast 
algorithm convergence. 

4.4. Comparison of  IDIM and IV,  without data 
filtering. 

All the actual and simulated data are sampled at mf = 

200Hz. 
The IDIM LS estimation is carried out with the measured 

joint position q , and with ( )ˆ ˆq,q& && , calculated by a central 

difference algorithm of q , without lowpass Butterworth 

filtering.  There is no parallel decimation. IDIM Results 
are given in Table 5 
IV starts with the regular initialization. IV Results are giv-
en in Table 6. 

Table 5: IDIM identification results without data filtering 

Parameter IDIMχ̂  
χ

2 σˆ  
rχ

%σˆ  

1RZZ  1.5 0.05 1.6 

1Fv  0.095 0.15 80.0 

1Fc  0.55 0.26 23.3 

2ZZ  0.14 0.018 6.7 

2LMX  0.63 0.035 2.7 

2LMY  0.1 0.023 11.8 

2Fv  0.001 0.143 700.0 

2Fc  0.19 0.244 68.40 
IDIMˆY W / Yχ− =0.8 

 

Table 6: IV identification results without data filtering 

Parameter 0χ̂  2χ̂  
χ

2 σˆ  
rχ

%σˆ  

1RZZ  1.0 3.45 0.007 0.1 

1Fv  0.0 0.05 0.023 21.0 

1Fc  0.0 0.81 0.004 0.24 

2ZZ  1.0 0.061 0.0004 0.3 

2LMX  0.0 0.124 0.0015 0.3 

2LMY  0.0 0.008 0.0009 5.6 

2Fv  0.0 0.023 0.0022 48.0 

2Fc  0.0 0.13 0.0038 1.5 
IDIMˆY W / Yχ− =0.08 

 
The identified values with IDIM are not good while the 

identified values with IV are still good. 
IDIM fails because of the too large noise in the observa-

tion matrix, ( )fm
ˆ ˆW q,q,q& && , coming from the derivation of 

q , without lowpass filtering. Then the LS estimation is 

biased. 
IV succeeds because the observation matrix, 

( ), k
fm ddm ddm ddm

ˆW q ,q ,qδ χ& && , is calculated without noise with 

the simulated values ( )ddm ddm ddmq ,q ,q& && . 

This validation shows that IV cancels the bias of IDIM es-

timation, coming from a noisy estimation of ( )ˆ ˆq̂,q,q& && , 

which gives a too noisy observation matrix ( )fm
ˆ ˆW q,q,q& && . 

 

4.5. IV robustness with respect to error in the si-

mulated closed-loop tuning, d
nω  

This section investigates the effect of an error between 

the actual value, a nω , and the simulated value d
nω  , of the 

natural frequency which represents the closed-loop band-
width. 

The IV identification is performed taking half the values 
of the full ones given in section 3.4, 

/2=1/2 (rd/s)
1 1

d d f
n nω ω=  and 10/2 (rd/s)

2 2

d d f
n n / 2ω ω= = , 

and the same procedure used to obtain results shown in 
Table 2, that is to say a frequency measurement, 

mf =200Hz, and a parallel decimation with a factor, 

dn =20, and a lowpass filter cut-off frequency equal to 

4Hz .  
The parameters, given in Table 7, converge in only 6 steps 
to values which are very close to those obtained in Table 2, 
with  a full closed-loop bandwidth. 
 

Table 7: IV with half full bandwidth 

Parameter 0χ̂  6χ̂  
χ

2 σˆ  
rχ

%σˆ  

1RZZ  1.0 3.44 0.014 0.2 

1Fv  0.0 0.02 0.012 15.0 

1Fc  0.0 0.86 0.016 1.0 

2ZZ  1.0 0.060 0.0001 0.1 

2LMX  0.0 0.124 0.0002 0.1 

2LMY  0.0 0.007 0.0003 2.0 

2Fv  0.0 0.01 0.003 10.0 

2Fc  0.0 0.13 0.0008 0.3 
 

 
 
 

The relative norm errors on joint position, velocity and 
acceleration are plotted on Fig 11, with the same legend as 
previously. 
It can be seen that, 

( ) ( )ddm k ddm k ddm k
ˆ ˆˆˆ ˆ ˆq ( χ ),q ( χ ),q ( χ ) q,q,q& && & &&� , at each iteration 

k, with a constant norm error larger but close to the value 
obtained with the full bandwidth, Fig.11, close to, 0.5% for 
the position, 5%, for the velocity and 10%, for the accel-
eration. 
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Fig. 12: • norm error relative to the filtered actual position, veloc-
ity, acceleration. * norm error relative to the reference position, 

velocity, acceleration. 
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Fig. 13: • norm error relative to the filtered actual position, veloc-
ity, acceleration. * norm error relative to the reference position, 

velocity, acceleration. 

The relative torque norm error, given in Table 9, and 
plotted on Fig 12, decreases in 6 steps, only twice more 
than with the full bandwidth (see Table 3). This shows that 
IV is not very sensitive to error in the simulated closed-
loop bandwidth, provided the control law structure is 
known. 
However, IV fails beyond 1/3 of the full bandwidth, with 

3d d f
n n /ω ω≤ . 

5. Discussion and conclusion 

One of the improvements of our algorithm is to avoid the 
acceleration calculation. It is one of the major difficult 

points of the LS identification technique. In the general 
case, this problem is solved by a suitable data filtering. 
But, the choice of the cut-off frequency is crucial. If the 
cut-off frequency is too low the system is ill-conditioned 
and the main parameters are badly identified. On the other 
hand, if the cut-off frequency is too large, the observation 
matrix is strongly noisy and the LS estimator is biased. It is 
the reason why some techniques have been developed to 
overcome this problem: by integrating the dynamic model 
(Slotine et Weiping Li 1987)(Middleton et Goodwin 1988) 
or by using the power (Gautier 1997). The drawback of the 
method integrating the dynamic model is the complex ex-
pression of the model. The drawback of the power model is 
the loss of information due to the mix of torques. Indeed, 
the dynamic effect of the wrist is negligible compared to 
the effect of the first three axes. 

 The IV method is not affected by these problems be-
cause we keep all dynamic equations. In addition, the IV is 
less sensitive to the choice of cut-off frequency compared 
with the LS technique. From our point of view, our algo-
rithm acts implicitly as an adaptative filter. Indeed, the 
high frequency noises are eliminated thanks to the integra-
tion of the MDD while the frequency bandwidth of our in-
terest is determined by the bandwidth of the closed loop. 
Finally, experimental results have proven that the prefilter-
ing is not necessary. 

Another major improvement of our approach is to en-
sure the bandwidth of the closed loop in the simulator 
scheme. By this way, we have always S S Sq ,q ,q& && close to 

q,q ,q& && . The correlation between the instrument matrix 

and the observation matrix is still high because V is still 
close to Wnf. That means we ensure the crucial assumptions 

TE(V ρ ) 0=  and TV W  invertible, and this explains why 

our algorithm works very well. 
 Our approach can be seen as an extension of the so-

called SRIVC algorithm (Simplified Refined Instrumental 
Variable Continuous-time) adapted recently for closed 
loop system (Gilson et al. 2006) (Young, Garnier, et Gil-
son 2009). However, these algorithms are quite compli-
cated and need  prefiltering. They do not adapt the gain of 
the simulated feedback as it is proposed in this paper. 
Therefore, our method is not only an application of the IV 
to robotics but enrich the IV methodology by providing 
insights from robotics. 

With our algorithm, the inverse and direct dynamic 
models are both validated at the same time. Up to now, the 
DDM was validated a posteriori in simulation. This is in-
teresting for industrial applications because this algorithm 
saves time. In addition, if something goes wrong, that 
means the dynamic model is not valid since the IV method 
is robust to data filtering. 

 
This paper has presented an extension and an application 

of the IV method. This technique was successfully applied 
on a 2 DOF prototype robot. From these experiments, it 
comes that our IV algorithm is not sensitive to data filter-
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ing, gives additional improvements and can be helpful for 
practice. In addition, the convergence of the purposed al-
gorithm is granted. Indeed, the bandwidth of the closed 
loop implemented to control the robot is ensured in the si-
mulation. This is done by adapting the gains. Finally, it is 
also robust to the initialization. 

However, to apply our algorithm properly, the structure 
of the control law applied to control the robot must be 
known. 

Future works concern the use of this technique to iden-
tify flexibilities.  
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