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Abstract

Industrial robots are electro-mechanical systems with double integrator be-
haviour, necessitating operation and model identification under closed-loop
control conditions. The Inverse Dynamic Identification Model (IDIM) is a
mechanical model based on Newton’s laws that has the advantage of being
linear with respect to the parameters. Existing Instrumental Variable (IDIM-
IV) estimation provides a robust solution to this estimation problem and the
paper introduces an improved IDIM-PIV method that takes account of the
additive noise characteristics by adding prefilters that provide lower variance
estimates of the IDIM parameters. Inspired by the prefiltering approach used
in optimal Refined Instrumental Variable (RIV) estimation, the IDIM-PIV
method identifies the nonlinear physical model of the robot, as well as the
noise model resulting from the feedback control system. It also has the ad-
vantage of providing a systematic prefiltering process, in contrast to that
required for the previous IDIM-IV method. The issue of an unknown con-
troller is also considered and resolved using existing parametric identification.
The evaluation of the new estimation algorithms on a six degrees-of-freedom
rigid robot shows that they improve statistical efficiency, with the controller
either known or identified as an intrinsic part of the IDIM-PIV algorithm.
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1. Introduction

Robots are mechanical systems that have a double integrator behaviour
and they must be identified, therefore, while operating in closed-loop. Their
direct and inverse dynamic models are formulated in continuous time and
are calculated from Newton’s laws or the Lagrange equations (Khalil and
Dombre, 2004). The method based on the inverse dynamic identification
model (IDIM) and least squares estimation (LS) is the standard procedure to
identify the dynamic parameters of robots. This approach, termed IDIM-LS,
has been successfully applied to identify the dynamic parameters of several
prototypes and industrial robots (see (Khosla and Kanade, 1985), (Raucent
et al., 1992), (Swevers et al., 1997), (Olsen et al., 2002), (Wu et al., 2008),
(Calanca et al., 2011), (Briot and Gautier, 2015), among others). Good
results can be obtained provided that an appropriate derivative bandpass
filtering of the joint positions is used in order to calculate the joint velocities
and accelerations. However, even with the guidelines for tuning the bandpass
filtering given in (Gautier, 1997), the user can doubt whether the IDIM-LS
estimates are consistent or not because robots are identified while they are
operating in closed loop while it is known that the LS estimates are biased
in this case (Van den Hof, 1998).

Other identification methods have been evaluated: the Total Least Squares
method (Xi, 1995) and (Hollerbach and Nahvi, 1997); the Extended Kalman
Filter (Gautier and Poignet, 2001) and (Kostic et al., 2004); the Set Mem-
bership Uncertainty (Ramdani and Poignet, 2005); an algorithm based on
LMI tools in (Calafiore and Indri, 1999); a ML approach (Olsen et al., 2002),
(Dolinskỳ and Čelikovskỳ, 2017); the closed-loop output error (Östring et al.,
2003) and (Gautier et al., 2013a); a Bayesian approach (Ting et al., 2006);
a method which estimates the nonlinear effects in the frequency domain
(Wernholt and Gunnarsson, 2008); the Unscented Kalman Filter (Dellon and
Matsuoka, 2009); an algorithm based on neural network (Soewandito et al.,
2011). In (Calanca et al., 2011), the authors suggest to complete the IDIM-
LS method with deeper statistical analyses; while in (Miranda-Colorado and
Moreno-Valenzuela, 2017), the authors propose an improvement to the stan-
dard approach by using an algebraic technique for state estimation and a
procedure based on the Semi-Definite Programming (Wensing et al., 2018).
An overview of some of these methods is given by Wu et al. (2010). Al-
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though all these techniques are of great interest, they do not really improve
the IDIM-LS method, even when combined with the derivative bandpass fil-
tering, because the LS estimates are still asymptotically biased. Also, the
robustness against data filtering has not been studied; and some of these
approaches have not been validated on a 6 DOF industrial robot. Except
for the approach presented in (Gautier et al., 2013a), only the direct or in-
verse dynamic model is validated and the condition that the columns of the
observation matrix are not correlated with the error terms is not addressed,,
even though it is a critical condition to obtain consistent estimates, see e.g.
(Young, 2011).

An approach able to provide consistent estimates while the system is
identified in closed loop is the instrumental variables (IV) technique intro-
duced by Reiersøl (Reiersøl, 1941). In the system identification community,
IV methods have been studied extensively; see e.g. Young (1970, 1981, 2011)
for continuous time systems; and Wong and Polak (1967); Rowe (1970); Jake-
man and Young (1979); Söderström and Stoica (1983); Young (1976, 2011)
for discrete time systems. One interesting feature of the optimal Refined IV
approach to both continuous (RIVC) and discrete-time (RIV) model identifi-
cation (Young, 2015) is the use of an optimal prefiltering process which takes
into account the noise model and so provides statistically efficient estimates
(i.e. with minimum variance). Furthermore, for systems identified in closed-
loop, specific techniques are able to deal with an unknown controller: see
e.g. Gilson et al. (2011); Young (2011). Although these methods are appeal-
ing, they were developed primarily for Linear Time Invariant (LTI) systems
and so cannot be applied straightforwardly to complex, nonlinear robot sys-
tems. This may explain why there are few applications in robotics (see e.g.
(Puthenpura and Sinha, 1986), (Yoshida et al., 1993) and (Xi, 1995)). A first
attempt to bridge the gap between robotics and automatic control was made
in (Janot et al., 2014a) where a generic IV approach relevant for the identifi-
cation of rigid industrial robots was proposed. The set of instruments is the
IDM constructed from simulated data calculated from the simulation of the
DDM. The simulation of the direct dynamic model assumes the same refer-
ence trajectories and the same control structure for both the actual and the
simulated robots and is based on the previous IV estimates. This algorithm,
termed the IDIM-IV method, validates the inverse and direct dynamic mod-
els simultaneously, improves the noise immunity of estimates with respect
to corrupted data in the observation matrix and has a rapid convergence.
Despite the good results obtained, the statistical efficiency of the IDIM-IV
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estimates is not addressed, the relationships that exist between the IDIM-IV
approach and the approaches in automatic control are not emphasized and
the controller is assumed to be known to the user.

The aim of this paper is twofold. First, we show how a prefiltering pro-
cess inspired by RIVC identification can be introduced into the IDIM-IV
identification algorithm for robot system identification, so establishing links
between the robotic and the automatic control approaches to identification.
The resulting IDIM-PIV method extends the work undertaken in Brunot
et al. (2017), where the IDIM-IV residuals are statistically analysed, and in
Janot et al. (2017), where the joint velocities and accelerations are estimated
with a state space estimation technique. Secondly, the issue of identifying the
IDIM model in the presence of an unknown controller is addressed by a para-
metric identification. Practical validation of this new algorithm is carried by
experiments conducted on a six Degrees-Of-Freedom (DOF) industrial robot
arm, Stäubli TX40.

The paper is organised as follows. The next section provides the back-
ground to robot system architecture, including the models, control laws and
sensors used in the analysis and control of robot systems, as well as the nota-
tion used in such analysis. Section 3 summarizes the standard techniques for
robot identification and the use of prefilters in IV algorithms. In the fourth
section, the proposed prefiltering process and the method of controller identi-
fication are described. The results of experiments are summarized in Section
5; and finally, the concluding remarks are provided in Section 6.

2. Robot System Architecture

2.1. Robot Dynamic Models

The Inverse Dynamic Model (IDM) of a rigid robot with n moving links
is the expression of the (n× 1) torque vector, τidm, as a function of the joint
positions and their derivatives (Khalil and Dombre, 2004). The following
relationship is derived by application of Newton’s law or the Lagrangian
equations:

τidm(t) = M (qnf (t)) q̈nf (t) +N (qnf (t), q̇nf (t)) (1)

where M is the (n × n) inertia matrix; N is the (n × 1) vector of cen-
trifugal, Coriolis, gravitational, and friction torques; and qnf , q̇nf , q̈nf are,
respectively, the (n × 1) noise-free vectors of joint positions, velocities and
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accelerations. According to Gautier (1986), a joint j of an industrial robot
has 14 standard parameters:

χj = [XXj XYj XZj Y Yj Y Zj ZZj (2)

MXj MYj MZj Mj Iaj Fvj Fcj τoffj ]
T

where XXj, XYj, XZj, Y Yj, Y Zj and ZZj are the six components of the
inertia matrix at the origin of frame j; MXj, MYj, MZj are the three com-
ponents of the first moments; Mj is the mass of link j; Iaj is the total inertia
moment for rotor and gears of the actuator; Fvj and Fcj are, respectively,
the viscous and Coulomb friction coefficients; τoffj is an offset parameter
containing the asymmetry of the Coulomb friction with respect to the sign
of the velocity and the current amplifier offset which supplies the motor.

Since some of these parameters have no effect on the dynamic model,
while others are regrouped with linear relations, we obtain a (b × 1) vector
of base dynamic parameters: θ; see (Gautier, 1991). In addition, the IDM
is linear with respect to the base parameters and so we obtain the following
linear relation

τidm(t) = φ (qnf (t), q̇nf (t), q̈nf (t))θ = φnf (t)θ, (3)

where φ is the (n× b) matrix of basis functions (from hereon referred to as
the ‘observation matrix’). It is worth noting that base parameters are simply
referred to as model parameters in Marconato et al. (2013). Each element
of φ is a basis function of the body dynamics. These basis functions can be
nonlinear relationships involving the positions, velocities and accelerations
and the nature of these nonlinearities can be estimated, if this is required,
using the approach suggested in Janot et al. (2017).

As a result of inevitable measurement noise and modelling errors, the
actual torque τ differs from τidm by an error v, so that the usual definition
of the Inverse Dynamic Identification Model (IDIM) is given by

τ (t) = τidm(t) + v(t) = φ (qnf (t), q̇nf (t), q̈nf (t))θ + v(t). (4)

The associated DDM relates the joint accelerations to a nonlinear function
of the states (positions and velocities) and the parameters: e.g.,

q̈nf (t) = M (qnf (t))
−1 (τidm(t)−N (qnf (t), q̇nf (t))) . (5)
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2.2. Control Laws

As pointed out previously, robots need to operate within a closed-loop
control system due to their double integrator behaviour. In particular, the
joint positions are controlled within two nested loops: an inner-loop for the
current control and an outer-loop for the position control. Most often the
control laws are simple Proportional Derivative (PD), Proportional Integral
Derivative (PID), or computed torque and passive control (see Chapter 14 in
Khalil and Dombre, 2004, for details on this topic). In the present paper, it
is assumed that the controller is linear; that each link is controlled separately
from the others; and that there is one position sensor (i.e. an encoder or a
resolver) for each link. This is a typical configuration for an industrial robot,
as explained in Khalil and Dombre (2004). According to the same reference,
the integral action is usually weak, or even deactivated when the position
error is too small, in order to avoid oscillations due to the Coulomb friction.

Considering the link j, the controller Cj is defined by

ντj(t) = Cj(p)(qrj(t)− qmj
(t)), (6)

where Cj denotes the controller (normally a PD or PID in practice), p =
d/dt is the differential operator, ντj is the control signal, qrj is the reference
trajectory and qmj

is the measured position. For convenience, the controller is
modelled as a continuous-time system although, in practice, it is implemented
in Discrete Time (DT) on the micro-controllers that are used to perform the
control actions. The control signal, ντj , serves as a reference to the inner
current loop of the amplifiers that supply the motors. Assuming that the
current closed-loop has a bandwidth greater than 500 Hz, its transfer function
is modelled as a static gain, gτj that applies in the frequency range of the
rigid robot dynamics ωdyn (usually less than 10 Hz). The actual torque of
the link τj is then calculated by

τj(t) = gτjντj(t). (7)

2.3. Position Sensor

The (n× 1) vector of measured joint positions can be expressed as

qm(t) = q(t) + ξ(t), (8)

where q is the (n × 1) vector of joint positions and ξ is a (n × 1) vec-
tor of continuous-time noises source. In order to avoid problems associated
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Figure 1: Closed-loop diagram of Stäubli TX40 robot

with continuous-time white noise inputs, the noise filters are considered as
discrete-time systems (see e.g. Gilson et al., 2008; Young, 2015, and the prior
references therein). Consequently, the output noise is given by

qm(ti) = q(ti) + ξ(ti) = q(ti) +H(z−1)e(ti), i = 1, · · ·nm (9)

where H is the (n×n) output noise transfer function matrix in the backward
shift (delay) operator z−1, i.e. z−1e(t) = e(t−∆t), where ∆t is the sampling
interval; e is a (n × 1) vector of zero mean value, white noise inputs with
(n×n) covariance matrix Λ; and nm is the number of recorded measurements.
By including the modelling elements, Figure 1 illustrates the closed-loop
structure of the robot considered in this study.

Since there is one independent sensor per link, H is set diagonal and
composed of filters Hj(z

−1), j = 1, 2, . . . , n. Furthermore, the white noise
elements in the (n × 1) vector e are assumed to be uncorrelated and so the
covariance matrix Λ is also diagonal, with a covariance λj for the link j.
Following from this, the equation for each link j takes the form

qmj
(ti) = qj(ti) +Hj(z

−1)ej(ti). (10)

According to Bélanger et al. (1998), a shaft encoder has a white, zero
mean and uniformly distributed noise with a variance equal to 1

3
∆2, where

∆ is the encoder resolution. Swevers et al. (2007) have pointed out that,
in a factory environment, the position sensors can be influenced by other
machines like welding apparatus and other electromagnetic disturbances. For
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this reason, we consider a more general case where the noise is not necessary
white, especially at high frequency. A covariance proportional to ∆2 seems
reasonable in the operating range of system, i.e. below ωdyn.

According to Marcassus et al. (2007), the resolution of the Stäubli TX40
robot is 2 × 10−4 degree per count. Such a resolution is common for an
industrial robot that needs to respect the standard (ISO, 1998), with criteria
on position accuracy and repeatability, amongst others (see e.g. Khalil and
Dombre, 2004). This order of magnitude shows that the spectral density
of the noise is really low below ωdyn. Consequently, the measurement noise
Hj(z

−1)ej(ti), of link j, is assumed to have a spectral density located in high
frequencies and that this spectral density can vary.

2.4. Closed-loop Relations

In order to highlight the role of the filters used for the standard IDIM-LS
and IDIM-IV methods, as summarized later in Section 3, we now need to
consider the closed-loop system in more detail by examining the situation at
joint j. The linear part of the DDM, Gj(p), is defined by

Gj(p) =
1

p(Jjp+ Fvj)
, (11)

namely a free integrator in series with a first order system, where Fvj the
viscous friction coefficient and Jj given by

Jj = max
qnf

(Mjj(qnf )). (12)

Jj is the maximum value, with respect to qnf , of the inertia moment and this
defines the smallest stability margin of the position closed-loop as qnf varies.
The joint j can be modelled as shown in Figure 2, where dj is the nonlin-
ear disturbance regrouping the Coulomb friction, the centrifugal, Coriolis,
gravitational torques and the coupling effects, such as

dj(t) = −Nj (qnf (t), q̇nf (t)) + Fvj q̇nfj(t)−
n∑

k=1,k 6=j

Mjk(qnf (t))q̈nfk(t) (13)

with Nj, the jth element of N defined by (1). The whole system is modelled
as a hybrid one: the dynamic system and the controller models are continuous
time, whereas the noise filter is discrete time. Although the robot system
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Figure 2: Robot model of link j

operates in closed-loop, the identification concerns the open-loop dynamic
model from the input command signal ντj and output position signal qmj

.
From Figure 2, the following closed-loop relationships can be derived,

qmj
(t) = Tj(p)qrj(t) + Sj(p)ξj(t) + Sj(p)Gj(p)dj(t)

Tj(p) =
gτjCj(p)Gj(p)

1 + gτjCj(p)Gj(p)
, Sj(p) =

1

1 + gτjCj(p)Gj(p)

(14)

where Sj is the sensitivity function and Tj is the complementary sensitivity
function: see e.g. Aström and Murray (2010). As explained in the previous
section, a discrete time model is more suitable for the noise filter representa-
tion. Therefore, the closed-loop relation can re-written informally in hybrid
terms

qmj
(ti) = Tj(p)qrj(ti) + Sj(p)Hj(z

−1)ej(ti) + Sj(p)Gj(p)dj(ti). (15)

Since for each p, Tj(p) + Sj(p) = 1, both functions cannot be made small
simultaneously. In order to have a good tracking at low frequencies, the
controller is tuned to insure Tj(p) ≈ 1 and, consequently, Sj(p) ≈ 0. As Tj
is a low-pass filter, we have the opposite configuration at high frequencies.
Noting that the relevant information comes from the reference signal, the
closed-loop transfer function Tj provides an ideal frequency range for the
filtering process. In this range, we have Tj(p) ≈ 1, Sj(p) ≈ 0 and the
component from the noise becomes negligible. For these reasons, it is sensible
to filter the measured position close to the closed-loop dynamics in order to
retrieve a low noise position signal. Note that this is consistent with Chapter
14 in Khalil and Dombre (2004), which suggests that PID control laws provide
good tracking if there are high position gains and the integral action is weak.

Finally, the closed-loop transfer function of the position, qj, is given by

qj(ti) = Tj(p)qrj(ti)− Tj(p)Hj(z
−1)ej(ti) + Sj(p)Gj(p)dj(ti), (16)
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while the torque closed-loop transfer function is defined by

τj(ti) = gτjCj(p)Sj(p)
[
qrj(ti)−Hj(z

−1)ej(ti)
]
− Tj(p)dj(ti). (17)

3. Closed-loop System Identification

The purpose of the identification process is here to provide a reliable
model for the design of control laws. In the robotic context, continuous-time
design is the norm. Therefore, the identified model is continuous-time; i.e.
the parameters are not a function of the sampling interval. In practice, this
model can be digitised to any appropriate sampling interval for digital control
implementation.

3.1. The IDIM-LS Method

The LS regression method is the most straightforward method for IDIM
model parameter estimation because the IDIM is linear with respect to the
parameters. However, for this to be applied without introducing asymptotic
bias on the estimates, the IDIM model formulation requires the regressors in
the measurement vector to be adequately filtered in order to deal with any
noise on the measured robot data.

The Bandpass Filtering Process

In most applications, the available information is the (n×1) measurement
vector of the joint positions, qm. The joint velocities and accelerations have
to be retrieved from this information in order to build the observation matrix
φ, as described in Gautier (1997). First, qm is filtered to obtain an estimate
q̂ and then, if this filtering is adequate, the derivatives can be calculated
using centralized finite differencing, while limiting noise amplification. In
order to achieve this objective, the filter type and the cut-off frequency, ωfq ,

are selected such that
(
q̂, ̂̇q, ̂̈q

)
≈ (qnf , q̇nf , q̈nf ) in the range [0, ωfq ]. The

filter, which is usually of the Butterworth two-pass or ‘smoothing’ variety
(filtfilt routine in MatlabTM), where it is applied in both forward and reverse
directions to eliminate the phase lag that is inherent in the forward-pass
filtering operation. The signals are obtained in this manner because they are
then used to construct the nonlinear basis functions, operations that do not
tolerate the presence of any phase distortion in the component signals. The
rule of thumb for the cut-off frequency is ωfq ≥ 5ωdyn, which is consistent
with the observations made in relation to equation (15). The combination
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Figure 3: Bode diagram of filters involved in the bandpass filtering

of the two-pass Butterworth filter and central differencing is referred to as
the BandPass (BP) filtering process. Figure 3 depicts the tuning of this
BP filtering for a system with a Nyquist frequency of 1 kHz and a robot
bandwidth of 10 Hz. Consequently the Butterworth filter cut-off frequency is
tuned to 50 Hz. As expected, the bandpass filter behaves like the continuous-
time differentiation in the robot’s bandwidth and rejects the high frequency
components.

In practice, the torque is perturbed by high-frequency ripples: unmod-
elled friction and flexibility effects, which are rejected by the controller. These
ripples are removed prior to the identification with a parallel lowpass filter-
ing of each basis function at the cut-off frequency ωFp ≥ 2ωdyn. As shown
in equation (17) of Section 2.4, the choice of ωFp may be invoked to retain
enough information, while attenuating the high frequency noise. Since there
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is no more useful information beyond the cut-off frequency, the parallel low-
pass filtering is used as part of a ‘decimation’ procedure: i.e. resampling to
keep one sample over nd = ωnyq/ωFp. After data acquisition and decimation,
we obtain

τFp(ti) = Fp(z
−1)τ (ti) = φFp

(
q̂(ti), ̂̇q(ti), ̂̈q(ti)

)
θ + vFp(ti), (18)

with Fp the parallel filter applied to each element of the observation matrix

φFp

(
q̂(ti), ̂̇q(ti), ̂̈q(ti)

)
= Fp(z

−1)φ
(
q̂(ti), ̂̇q(ti), ̂̈q(ti)

)
, as well as the error

vector vFp(ti) = Fp(z
−1)v(ti).

Least-Squares

If nm measurements are recorded during the experiment, after the re-
sampling we have N = nm/nd available sets of data. From (18), there is
an overdetermined linear system which can be solved using standard LS
regression analysis: i.e.,

θ̂LS(N) =

[
1

N

N∑

i=1

φTFp
(t(i))φFp(t(i))

]−1 [
1

N

N∑

i=1

φTFp
(t(i))τFp(t(i))

]
, (19)

with t(i) = ti.nd
= t0 + i.nd/fm, where t0 and fm are, respectively, the ini-

tial time and the recording frequency. Without modelling errors, the LS
estimator is statistically consistent and efficient under the two conditions:

– Ē
[
φTFp

(t)φFp(t)
]

is full column rank;

– Ē
[
φTFp

(t)vFp(t)
]

= 0.

where Ē[f(t)] = lim
N→∞

1
N

∑N
i=1E[f(ti)], with E the mathematical expectation

(see e.g. Ljung, 1999). It is well known that, for closed-loop systems, the
assumption that the observation matrix is not correlated with the error is
not valid due to the feedback (see e.g. Van den Hof, 1998). This is clearly
emphasized by comparing (15) and (17) where both qmj

and τj are corrupted
by ej. In practice, however, thanks to the appropriate filtering, the IDIM-LS
estimates remain statistically consistent, provided that ωfq and ωFp are tuned
accordingly to ∆ and ωdyn.
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3.2. Refined Instrumental Variable Identification

Another well-known technique for linear dynamic system estimation is the
Instrumental Variable (IV) method, which is suitable for system identification
in open or closed-loop situations. The standard IV approach is useful but
can suffer from low statistical efficiency (high variance estimation). There
is an approach to improving IV estimation in this regard: the one used
in the present paper that exploits the notion of ‘prefiltering’ the data and
is developed in the context of Maximum Likelihood (ML) estimation (see
Young, 2015, and the prior references therein).

The Refined IV (RIV) estimation algorithm is an iterative method that
jointly estimates the system and noise parameters of a Box-Jenkins model.
Young (2015) shows how the RIV iterative algorithms are based on the ML
formulation and can be considered either as a special Gauss-Newton pro-
cedure, or as a simple application of Pseudo-Linear Regression (PLR) (see
Solo, 1980). The RIV estimate is given by

θ̂RIV (N) =

[
1

N

N∑

i=1

ζT (ti)L(z−1)φ(ti)

]−1 [
1

N

N∑

i=1

ζT (ti)L(z−1)τ (ti)

]
.

(20)
Here ζ is the (n×b) instrumental matrix and L is a (n×n) matrix of optimal
prefilters. If there are no modelling errors, the RIV estimate is consistent
under the two conditions required for IV estimation, namely:

– Ē
[
ζT (t)φL(t)

]
is full column rank;

– Ē
[
ζT (t)vL(t)

]
= 0.

The first condition means that the instrumental matrix must be well cor-
related with the observations (termed instrument relevance by Wooldridge,
2008). The second condition expresses the fact that the instrumental matrix
must be uncorrelated with the noise on the observations and is sometimes
referred to as the instrument exogeneity.

In the present context, assuming no modelling error, the observational
noise vector v in (4) is assumed to be modelled as follows

v(ti) = Hτ (z
−1)e(ti), (21)

where e is a (n×1) white noise vector, with zero mean and (n×n) covariance
matrix Λ; and Hτ is a (n × n) discrete-time transfer function matrix, the
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elements of which are assumed to be asymptotically stable and invertible.
Section 4.1 provides further information about this noise model.

RIV theory shows that the optimal variance is reached with

L(z−1) = Λ−1H−1τ (z−1) ζ(ti) = L(z−1)φnf (ti). (22)

while the optimal covariance matrix (i.e. the lower bound) is given by

P opt =
{
Ē
[[
H−1τ (z−1)φnf (ti)

]T
Λ−1

[
H−1τ (z−1)φnf (ti)

]]}−1
. (23)

The main question raised by this general formulation of the problem is the
choice of the instruments to estimate φnf . This has received a lot of at-
tention in automatic control, (see e.g. Söderström and Stoica, 1983, and the
references given previously in the introduction) and section 4 below considers
the prefiltered IV method we propose for use in robot identification.

3.3. The IDIM-IV Method

In the context of robot model identification, Janot et al. (2014b) have
shown that the simulation of the DDM provides a very convenient way to
obtain the instruments. This simulation model contains the whole closed-
loop and, following previous IV terminology, is referred to as the ‘auxiliary
model’ (Levadi, 1964). From the simulation of this auxiliary model, noise-free
simulated signals are retrieved and used to construct the instrumental matrix.
These signals are noise-free since the only input is the reference trajectory
which is perfectly known. By noting the simulated signals with a subscript s,
the instrumental matrix is defined as ζ(ti) = Fp(z

−1)φ (qs(ti), q̇s(ti), q̈s(ti)),
which can be viewed as an estimation of the noise-free part of the observation
matrix.

The IDIM-IV method (Janot et al., 2014b) includes the parallel filter and
the downsampling process, i.e. L(z−1) ← Fp(z

−1)In, with In the (n × n)
identity matrix. This has the advantage of being more robust to inappro-
priate filtering than the IDIM-LS method, as shown in Janot et al. (2014b);
and since it is a valid IV estimator, the IDIM-IV estimates are statistically
consistent, so that

ετ (t) = τ (t)−Φ
(
q̂(t), ̂̇q(t), ̂̈q(t)

)
θ̂, (24)

is also a consistent estimation of v(t) (White, 1980; Janot et al., 2014b).
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The main limitation of the IDIM-IV method is that it does not take into
account the noise model Hτ (z

−1) in (21). The first objective in this paper is,
therefore, to remove this limitation and so generate estimates with reduced
variance and improved statistical efficiency arising for the introduction of
special prefilters. This yields the IDIM-Prefiltered IV (IDIM-PIV) algorithm,
which is developed in the next section 4.

4. Prefiltered Instrumental Variable Identification for Robot Sys-
tems

Many IV techniques have been suggested in the automatic control and
systems literature to identify common model structures, such as AutoRegres-
sive Moving Average with eXogenous inputs (ARMAX) or Box-Jenkins (BJ)
models (see e.g. Gilson et al., 2011). The IDIM-PIV method is inspired by
the Refined IV (RIV) family of methods for estimating the parameters in
discrete or continuous-time LTI transfer function models.

The special nature of the RIVC algorithm lies in the nature of the prefilter,
which is hybrid in form and optimal in the sense that the algorithm yields
maximum likelihood parameter estimates for LTI models that have minimum
variance, i.e. the estimates achieve the Cramer-Rao lower variance bound (see
section 3.2). In the following sub-section 4.1, we consider a related prefilter,
inspired by the RIVC prefilter, that can be used within a closed loop setting
for robot identification. However, because of the nonlinear nature of the
dynamic system and the functions involved in the observation matrix, neither
the prefilter nor the estimates can be considered necessarily as fully optimal
in this sense although, as we shall see, they do lead to estimates that have
smaller variance than those of the standard IDIM-IV.

4.1. Input Noise Model

The model of the closed loop feedback system for link j of the robot sys-
tem, as depicted by Figure 2, has similarities with the closed loop systems
considered in (Gilson et al., 2008) and chapter 9 of (Young, 2011). How-
ever, the two methods described in these references cannot be applied in a
straightforward way in the present robotic context. This is because the robot
identification variable is the input torque, τj, and not the output position;
and the disturbance, dj, is function of the states (position and velocity) and
the user has no influence on this.

15



In order to highlight the torque noise, it is best to consider the controller
equation for link j which, from (6), (7) and (9), takes the form:

τj(ti) = gτjCj(p)(qrj(ti)− qmj
(ti)) (25)

= gτjCj(p)(qrj(ti)− qj(ti))− gτjCj(p)Hj(z
−1)ej(ti)

= φj (q(ti), q̇(ti), q̈(ti))θ − gτjCj(p)Hj(z
−1)ej(ti)

= φj (q(ti), q̇(ti), q̈(ti))θ +Hτj(z
−1)ej(ti),

where φj is the jth row of the observation matrix φ and the signals qrj ,
qmj

and qj are defined in Figure 2. Combining continuous and discrete-time
operators informally, in order to illustrate the hybrid nature of the problem,
we see that,

Hτj(z
−1) = −gτjCj(p)Hj(z

−1) (26)

The objective is then to use Hτj as a prefilter for the PIV method.

4.2. The Integrated Random Walk Smoother

The standard BP method for estimating the joint velocities and accelera-
tions is suboptimal and requires a priori knowledge of the system bandwidth.
An optimal and fully automatic alternative method that does not require
such knowledge is based on a combination of the Kalman Filter and Fixed
Interval Smoother (KF-FIS). This is described in chapter 4 of Young (2011),
which provides a full description of the general approach applied to a variety
of different state-space model forms. This approach was first suggested for
off-line differentiation of signals in the identification of continuous-time lin-
ear and nonlinear systems by Young et al. (1993); and was later applied to
continuous-time nonlinear engineering systems by Coca and Billings (1999).
This same approach can be used in the present robot identification context
by modelling the joint position j as a simple Integrated Random Walk (IRW)
process described by a simple state equation of the form,

[
qj(ti)
q̇j(ti)

]
=

[
1 ∆t
0 1

] [
qj(ti−1)
q̇j(ti−1)

]
+

[
0
1

]
$j(ti−1), (27)

qmj
(ti) = qj(ti) + ξj(ti),

where $j and ξj are, respectively, the process and measurement noise inputs;
qj and q̇j are the states to be estimated; ∆t is the fixed sampling period and a
single hyper-parameter, in the form of the Noise Variance Ratio (NVR) asso-
ciated with the stochastic input $j(ti), is optimised by maximum likelihood
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based on ‘prediction error decomposition’ (see e.g Harvey and Peters, 1990).
The resulting KF-FIS algorithm yields the estimates q̂j and ̂̇qj that are re-
quired to construct the observation matrix. This Integrated Random Walk
SMoothing (IRWSM) algorithm is coded as the routine irwsm in the CAP-
TAIN Toolbox1 for MatlabTM and, by applying this simple routine twice,
the joint acceleration estimate can be retrieved. It should be stressed that,
thanks to the maximum likelihood optimisation, the practitioner does not
have to provide any priori knowledge. Recently, Janot et al. (2017) have
introduced this as an alternative to the conventional bandpass filtering pro-
cess.

Finally, note that it is important not to confuse this KF-FIS filtering
procedure, nor the standard BP filtering operations that it replaces, with the
prefiltering used in the IDIM-PIV algorithm, since these fulfill quite different
filtering objectives. The term ‘prefiltering’ is restricted to the iteratively
updated prefiltering used in the IDIM-PIV algorithm described in the next
section 4.3,.

4.3. Main IDIM-PIV Identification Algorithm

In the IDIM-PIV algorithm, we introduce the (lj × 1) vector of noise pa-
rameters ηj for link j. The (l×1) noise vector η then regroups all these noise
parameters, with l =

∑n
j=1 lj and ηT = [ηT1 . . .η

T
n ]. Finally, the complete set

of parameters required for IDIM-PIV estimation are stacked in the (b+ l×1)
vector ρT = [θT ηT ]. With nm sample points, the algorithm is then defined
by the following iterative process:

1. Initialisation. For the initial physical parameters, θ̂0, use the Com-
puter-Aided Design (CAD) values for the inertia, with the other phys-
ical parameters are set to zero. For each link, the initial noise filter is
set as follows: Hj(z

−1, η̂j
0) = 1 with λ̂0j = 1. If the controller is known

then move to step 2. If the controller is unknown, it must be identi-
fied first using the approach described in Section 4.5. The observation
matrix is constructed using the IRWSM algorithm.

2. Iteration: repeat the following steps until convergence is achieved,
where k indicates the kth iteration:

1This Toolbox is available free and can be downloaded via http://captaintoolbox.co.uk.
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(a) Simulate the auxiliary model (i.e. the DDM), using the previous

estimated parameter vector θ̂k−1, in order to retrieve the noise-free
signals for the instruments.

(b) Compute the IDIM-PIV estimate of the physical parameters using
the following IV solution, where the prefiltering is accomplished
using the noise model from the previous iteration:

θ̂k =



nm∑

i=1

n∑

j=1

ζTj (ti, ρ̂
k−1)φLj

(ti, ρ̂
k−1)



−1 

nm∑

i=1

n∑

j=1

ζTj (ti, ρ̂
k−1)τLj

(ti, ρ̂
k−1)


 (28)

with

φLj(ti, ρ̂
k−1) = Lj(z

−1, η̂k−1
j )φj

(
q̂(ti), ̂̇q(ti), ̂̈q(ti)

)
,

ζj(ti, ρ̂
k−1) = Lj(z

−1, η̂k−1
j )φj

(
qs(ti, θ̂

k−1), q̇s(ti, θ̂
k−1), q̈s(ti, θ̂

k−1)
)
,

τLj(ti, ρ̂
k−1) = Lj(z

−1, η̂k−1
j )τj(ti),

Lj(z
−1, η̂k−1

j ) =
(
λ̂k−1
j

)−1

H−1
τj (z−1, η̂k−1

j ).

(c) For each link j, obtain an estimate of the noise parameters, η̂kj ,

and an estimate of the noise covariance, λ̂kj . The output noise
filter Hj can be identified based on

−g−1τj C
−1
j (p)ετj(ti) = Hj(z

−1,ηj)ej(ti), (29)

with
ετj(t) = τj(t)− φj

(
q̂(t), ̂̇q(t), ̂̈q(t)

)
θ̂k. (30)

The noise model, Hτj , is then reconstructed with (26).

3. Estimated covariance. After convergence, an approximate estimate
of the parametric error covariance matrix, based on (23), is computed
by the following relation

P (θ̂) =



Ē




n∑

j=1

[
H−1
τj (z−1, η̂j)φj

(
t, θ̂
)]T

λ̂−1
j

[
H−1
τj (z−1, η̂j)φj

(
t, θ̂
)]






−1

. (31)
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4.4. Noise Filter Identification

In general terms, an AutoRegressive, Moving Average (ARMA) model is
used to represent the noise process Hτj in the IDIM-PIV algorithm, under
the assumption that the noise has rational spectral density; and this model
can be estimated by any available ARMA noise model identification method
(e.g. the routine ivarma in CAPTAIN). However, an easier alternative, as
used here, is to employ the simpler AutoRegressive (AR) model, with its
order identified by the Akaike Information Criterion (AIC); as implemented
by the aic routine in CAPTAIN. This simple method of noise model identi-
fication, combined with the irwsm approach to signal differentiation, means
that IDIM-PIV algorithm does not require any access to prior information
and so it is easier to apply in practice.

4.5. Controller Identification

When the controller is unknown, one solution is to use the IDIM-LS
method, which does not require any knowledge on the controller. However,
as shown in Janot et al. (2014b), it is more interesting to consider the IDIM-
IV method if the system bandwidth is not certain. This is most likely to
be the situation when first identifying a particular robotic system. The
drawback of this approach is, of course, that the IDIM-IV method requires
the controller knowledge for the simulation of the DDM, so it is necessary to
use an alternative strategy.

If the controller structure is known to the practitioner, a parametric iden-
tification method provides a straightforward solution. If the structure is
unknown, the control law (model and parameters) can be identified using
standard techniques, such as RIV or Prediction Error Minimisation (PEM:

see Ljung, 1999). In the robotic context, the controller inputs qr, q̂, ̂̇q and
̂̈q, as well as its output: ντ are available. This poses a Multiple Input Single
Output (MISO) problem of system identification, which can be identified by
the method that best suits the practitioner (see e.g. Pascu et al. (2016)).

Finally, as Khalil and Dombre (2004) explain, a predictive/feed-forward
action can be employed in robotic systems in order to reduce the tracking
error. In this situation, therefore, it may well be relevant to take into account
q̇r and q̈r as additional inputs for the control law identification. Furthermore,
since many industrial robots also have a velocity loop, the velocity ̂̇q can be
a valuable input for the controller identification.
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5. Experimental Results

5.1. Experimental Setup

The experimental evaluation of the proposed IDIM-PIV identification
method has been carried out using the industrial Stäubli TX40 robot, which
is a serial manipulator composed of six rotational joints; see Figure 1. There
is a coupling between the joints 5 and 6 that adds two parameters: fvm6 and
fcm6, which are, respectively, the viscous and dry friction coefficient of the
motor 6. The SYMORO+ software is used to automatically calculate the
customized symbolic expressions of models (see Khalil and Dombre, 2004).
The robot has 60 base dynamic parameters and, from these 60 base parame-
ters, only 28 are well identified with good relative standard deviations. These
28 parameters define a set of essential parameters that are sufficient to de-
scribe the dynamic behaviour of the robot. This set was validated with a
F-statistic, as shown in Janot et al. (2014a) and only the estimation of these
parameters is considered here.

The reference trajectories are trapezoidal velocities (also called smoothed
bang-bang accelerations) that lead to the signals shown in Figure A.9. With
cond(φFp) = 200, these reference trajectories provide sufficient excitation
for the estimation of the base parameters according to Gautier and Khalil
(1991)2. The joint positions and control signals are stored with a measure-
ment frequency fm = 5 kHz. For the IDIM-LS method, the filter cut-off fre-
quencies are tuned according to Gautier et al. (2013a): i.e. ωfq = 5ωdyn = 50
Hz and ωFp = 2ωdyn = 20 Hz for the Butterworth and the decimation filters,
respectively. The maximum bandwidth for joint 6 is ωdyn = 10 Hz. Concern-
ing the control law, a simple controller has been designed to perform tests
in the laboratory. This controller is composed of one PID per axis and is
referred to as the ‘actual controller’.

The identification is conducted using rather noisy data in order to test the
performance of the methods in this regard. For this purpose, the resolution
of the encoders is downgraded to 3600 points per revolution in an equiva-
lent manner to Marcassus et al. (2007). The order of the AR noise model
is selected using the aic routine in CAPTAIN, which makes the procedure
automatic but identifies very high order models in this case. This suggests

2Given the IV nature of the estimation, cond(ζTφFp
) should also be checked as this

will ensure that the instrumental variables are well generated and the IV solution is well
defined.
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that the noise is complex, which probably arises from artifacts introduced
in the decimation and filtering operations required in the preparation of the
data for model identification. However, the resulting prefilter is able to purge
the colour satisfactorily from the noise on data and, as we shall see, produces
a worthwhile improvement in the residual autocorrelations and reduction in
the estimation error variance.

5.2. Known Controller

Three identification methods are considered in this case: the proposed
IDIM-PIV; the standard IDIM-LS; and the IDIM-IV without prefilters. For
the IDIM-IV and IDIM-PIV methods, the controller used for the simula-
tion is the actual controller of the robot. The observation matrix for the
IDIM-PIV method is constructed automatically using the CAPTAIN irwsm
implementation of the IRWSM algorithm; while the usual bandpass filter
design approach is used for the other methods.

For continuous-time modelling purposes, the Coulomb friction is modelled
with a arctangent function instead of a sign function (see Gautier et al.,
2013b). The function 2

π
atan(γq̇j(t)) tends to sign(q̇j(t)) when γ tends to

infinity but, in the present situation a γ = 150 appeared to be satisfactory
and avoided any numerical integration problems. It is worth noting here that
the prior assumption of known relationships for nonlinearities such as this
is not essential because they can be estimated using the State-Dependent
Parameter (SDP) approach discussed in Janot et al. (2017).

Table 1 summarizes the estimated values and their relative standard de-
viations. The estimated parameters of the IDIM-LS method are not satis-
factory due to large mismatches in the estimated inertias zz1r and zz3r : this
is the result of estimation bias induced by the noise correlation arising from
closed-loop operation. The IDIM-IV and IDIM-PIV methods converged in 3
and 5 iterations, respectively, and the resulting estimated parameters were
checked using cross-validation tests in an equivalent manner to Janot et al.
(2014a). In practice, the experimental dataset was divided in two: the first
part for the identification and the second one for the cross-validation. Fig-
ures 4 and A.7 show a comparison between actual joint torques (blue) and
reconstructed joint torques (dashed red). The reconstructed torques, based
on the IDIM-PIV estimates, fit the actual ones as well as the reconstructed
ones based on the standard IDIM-IV method.

With regard to the relative standard deviations, except for two parame-
ters (fv2 and zz3r), the values are less than those of the IDIM-IV method, and
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Table 1: Estimated parameters and relative standard deviations

Param. IDIM-LS IDIM-IV IDIM-PIV IDIM-PIV (Ĉ)
zz1r 1.12 (2.43%) 1.24 (2.64%) 1.25 (1.20%) 1.25 (1.17%)
fv1 8.06 (1.23%) 7.61 (1.45%) 7.61 (1.12%) 7.61 (1.09%)
fc1 6.94 (3.95%) 8.34 (3.74%) 8.33 (2.89%) 8.32 (2.82%)
xx2r -0.43 (5.45%) -0.46 (6.30%) -0.46 (4.34%) -0.46 (4.25%)
xz2r -0.15 (7.87%) -0.16 (10.6%) -0.16 (8.71%) -0.16 (8.52%)
zz2r 0.97 (1.94%) 1.13 (2.05%) 1.13 (1.70%) 1.14 (1.64%)
mx2r 2.44 (3.72%) 2.25 (5.84%) 2.16 (1.66%) 2.16 (1.62%)
fv2 5.59 (1.93%) 5.11 (2.38%) 5.19 (2.48%) 5.20 (2.41%)
fc2 7.94 (3.09%) 9.23 (3.00%) 8.99 (3.22%) 8.97 (3.13%)
xx3r 0.16 (13.8%) 0.14 (18.2%) 0.12 (16.2%) 0.12 (15.8%)
zz3r -0.01 (265%) 0.11 (18.2%) 0.14 (10.9%) 0.14 (10.3%)
my3r -0.61 (4.20%) -0.61 (4.77%) -0.56 (4.50%) -0.56 (4.39%)
ia3 0.16 (8.68%) 0.09 (18.5%) 0.09 (11.2%) 0.09 (11.0%)
fv3 2.06 (3.59%) 1.77 (4.62%) 1.71 (4.12%) 1.72 (3.98%)
fc3 5.88 (4.21%) 7.23 (3.83%) 7.60 (3.07%) 7.59 (2.98%)
mx4 0.00 (272%) -0.03 (50.2%) -0.07 (16.5%) -0.07 (15.2%)
ia4 0.02 (39.6%) 0.03 (28.8%) 0.03 (18.0%) 0.03 (16.8%)
fv4 1.20 (6.21%) 0.97 (8.37%) 0.85 (4.26%) 0.85 (4.18%)
fc4 2.13 (12.6%) 3.13 (9.49%) 3.55 (3.68%) 3.53 (3.61%)
my5r -0.05 (19.6%) -0.04 (30.4%) -0.03 (24.0%) -0.02 (25.1%)
ia5 0.05 (16.7%) 0.05 (24.5%) 0.05 (16.0%) 0.05 (14.7%)
fv5 1.97 (4.80%) 1.55 (6.68%) 1.60 (4.13%) 1.60 (3.73%)
fc5 2.43 (10.1%) 3.82 (7.16%) 3.71 (4.66%) 3.75 (4.14%)
ia6 0.01 (40.7%) 0.01 (64.5%) 0.01 (20.5%) 0.01 (21.1%)
fv6 0.68 (6.79%) 0.59 (8.84%) 0.59 (3.96%) 0.60 (3.53%)
fc6 0.14 (146%) 0.19 (68.1%) 0.26 (59.3%) 0.26 (59.1%)
fvm6 0.62 (5.91%) 0.53 (7.57%) 0.56 (3.99%) 0.56 (3.51%)
fcm6 1.91 (11.0%) 2.35 (9.98%) 2.61 (4.97%) 2.46 (4.76%)
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Figure 4: Cross-validation torques (Nm): measurement (blue), estimation (dashed red)
and error (dotted black) – IDIM-IV (left) and IDIM-PIV (right) – Controller known –
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sometimes significantly so, even though the filters of the latter are correctly
tuned. The reason why there is no improvement in these two parameters is
unclear but it may be because of the small remaining modeling error that
affects the estimated noise signal and the estimation of the H(z−1) which, as
we note in section 5, require very high order AR models. Furthermore, the
estimated covariances of the IDIM-PIV method seem more reliable, as we
see clearly from Figures 5 and A.8 which show the autocorrelation functions
of the model residuals obtained in each case. For the IDIM-PIV method,
the effect of the prefilter is clear, with the estimated autocorrelation coef-
ficients included well within the confidence intervals indicated by the blue
lines; whereas they are larger for the IDIM-IV method and exceed the con-
fidence intervals, so revealing significant serial autocorrelation. Note that
the differences between the confidence interval bounds are due to the num-
ber of samples considered for each methods: the IDIM-PIV method uses
nm = 34500 sampling points for the estimation, while the others use only
N = nm/nd = 276 sampling points, due to the need for the decimation filter.

Based on the above results, we can conclude that, when the controller is
known, the IDIM-PIV method is able to estimate the robot parameters very
well. Although the standard IDIM-IV method yields reasonable results, it is
more sensitive to the noise contained in the signals, showing that the addi-
tion of the prefiltering in IDIM-PIV method is advantageous and provides a
worthwhile improvement. Finally, the IDIM-LS method fails in this situation
and has to be considered unsatisfactory in this regard.

5.3. Unknown Controller

When the controller is unknown, a parametric approach has been consid-
ered. This is used in the case in the IDIM-PIV algorithm, with the Simplified
Refined IV (SRIV) option in the CAPTAIN rivcbj routine employed to iden-
tify a parametric model for the controller. The identified controller model
is composed of six PID elements and is indicated by Ĉ. For link j, the in-
put and the output of the corresponding PID controller are, respectively, the
tracking error (qrj − qmj

) and the control signal ντj . In addition, the veloc-
ity and acceleration of the reference, q̇rj and q̈rj respectively, as well as the
estimated velocity, q̂j, were taken into account, so providing more flexibility
to identify the control law. The user has to provide the routine with these
signals, as well as the orders of the numerator and denominator of the trans-
fer for the given link. In order to identify these orders, maximum orders are
selected at first; then, a linear search is performed to select the orders that
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give the best explanation of the data. Figure 6 shows the identified controller
of link 4 as an example. As described in (Young, 2015), the SRIV option of
the rivcbj routine estimates the continuous-time transfer function using an
iterative RIV method under the assumption of white additive noise. In this
case, the observation matrix for the IDIM-PIV method is again constructed
using the CAPTAIN irwsm technique.

The IDIM-PIV method converged well in 5 iterations. Based on the iden-
tification results shown in the last column of Table 1, the IDIM-PIV method
clearly shows that parametric identification of the controller provides an ef-
fective approach when the controller is unknown. Once again, the relative
standard deviations of the IDIM-PIV estimates are slightly lower than those
of the IDIM-IV method, demonstrating again the advantages of prefiltering.

6. Conclusions

Inspired by the optimal hybrid Refined Instrumental Variable algorithm
for continuous time linear systems (RIVC), the existing IDIM-IV algorithm
for nonlinear robotic system identification has been modified to a new IDIM-
PIV form that includes iteratively updated prefilters to improve its statistical
efficiency. The instrumental variables and prefilters are derived from the
closed-loop model of the robot which is identified systematically, without a
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priori knowledge of the system or, if necessary, the associated control system.
If the controller is unknown, the paper shows how it can be identified using
a parametric method based on the RIVC algorithm.

Experimental validation of the proposed methodology has been carried
out on a 6 DOF industrial robot and it is concluded that:

– The IDIM-PIV is suitable for the systematic identification of an indus-
trial robot without access to the prior knowledge normally required for
such identification;

– The observation matrix required by the IDIM-PIV algorithm can be au-
tomatically constructed using the Integrated Random Walk Smoothing
(IRWSM) technique;

– If the control system is unknown a priori, then a suitable model for
the controller can be identified using the existing RIVC parametric
method;

– The controller identification strategies can be used with standard IDIM-
IV technique, freeing it also from any prior knowledge in this regard.

– The RIVC and IRWSM algorithms required for implementation of the
IDIM-PIV algorithm are available as the rivcbj and irwsm routines in
the CAPTAIN Toolbox for MatlabTM

Research and development studies are continuing on the IDIM-PIV approach,
concentrating on its application to more flexible robots and/or parallel robots.
In this regard, (Vivas et al., 2003), (Guegan et al., 2003), (Briot and Gautier,
2015)(Wu et al., 2010) have applied the standard IDIM-LS method to par-
allel robots; while in (Wu et al., 2008), the authors have applied a standard
LS procedure that is equivalent to the IDIM-LS approach. These success-
ful studies suggest that the IDIM-IV and the IDIM-PIV methods should be
suitable also for parallel robot applications.

Appendix A. Supplementary figures

This appendix includes supplementary figures for the axes 4 to 6 as well
as a plot of the excitation trajectories used for this study.
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